
From Categories to Subcategories: Large-scale Image Classification
with Partial Class Label Refinement

Marko Ristin1 Juergen Gall2 Matthieu Guillaumin1 Luc Van Gool1,3
1ETH Zurich 2University of Bonn 3KU Leuven

Abstract

The number of digital images is growing extremely
rapidly, and so is the need for their classification. But,
as more images of pre-defined categories become available,
they also become more diverse and cover finer semantic dif-
ferences. Ultimately, the categories themselves need to be
divided into subcategories to account for that semantic re-
finement. Image classification in general has improved sig-
nificantly over the last few years, but it still requires a mas-
sive amount of manually annotated data. Subdividing cat-
egories into subcategories multiples the number of labels,
aggravating the annotation problem. Hence, we can expect
the annotations to be refined only for a subset of the already
labeled data, and exploit coarser labeled data to improve
classification. In this work, we investigate how coarse cate-
gory labels can be used to improve the classification of sub-
categories. To this end, we adopt the framework of Random
Forests and propose a regularized objective function that
takes into account relations between categories and sub-
categories. Compared to approaches that disregard the ex-
tra coarse labeled data, we achieve a relative improvement
in subcategory classification accuracy of up to 22% in our
large-scale image classification experiments.

1. Introduction
Over the last few years, we have witnessed an exponen-

tial growth of digital imaging. Possibilities for sharing vi-
sual content through social media, such as Facebook and
Flickr, together with affordable high-quality cameras have
made images ubiquitous in our lives. The semantic orga-
nization of images becomes therefore an imperative if one
wants to access them effortlessly in a meaningful way. With
such a growth, manual categorization is excessively tedious
and expensive. As computers became more powerful and
better algorithms were developed, automatic image classi-
fication has become accurate on smaller datasets with hun-
dreds of categories and thousands of images.

The research community has since then moved to more
challenging, larger datasets, such as ImageNet [28], which

cat lion

feline

feline

subcategory not available

∈ Sfine

∈ Scoarse

Figure 1: Given training data annotated with a set of cat-
egories like “feline”, our goal is to refine the classification
into subcategories like “cat” and “lion”. We assume that the
refined labels are available only for a subset of the training
data Sfine, while for the rest, Scoarse, subcategory labels
are not available.

contain thousands of categories and millions of images. In
such datasets, categories are often organized in a hierarchy.
The deeper one goes in the hierarchy, the finer the categories
are and annotated training data becomes rare. In order to ob-
tain training data for fine subcategories, a natural approach
is to search for images of coarser categories and refine the
labels. This can be very expensive, especially if the subcat-
egories require expert knowledge [12] (e.g., breeds of dogs,
bird or flower species, etc.). In this work, we are interested
in such a scenario where only a subset of the training data
is annotated with fine subcategory labels while the rest has
only coarse category labels (cf . Fig. 1).

In that scenario, we are particularly interested in inves-
tigating how the learning of subcategory classification can
be improved by the simultaneous presence of training data
annotated with coarser labels. To this end, we build on the
framework of NCM forests [26], which are classification
forests with splitting functions based on nearest class mean
(NCM) classifiers [23]. NCM Forests are multiclass classi-
fiers that can be efficiently trained and have shown to per-

1

form well for large-scale image classification [26]. Our first
contribution is a principled approach to automatically learn
optimal values for hyper-parameters of the NCM forest dur-
ing training, namely the number of class means to use at
each node. This is done by adding a regularization term to
the objective function for training splitting functions. We
present this improvement in Section 3. In our experiments,
we show that our Regularized NCM forests outperform the
NCM forests proposed in [26].

In Section 4, we then present our learning method in
more detail. We show how existing state-of-the-art ap-
proaches like Stacking [27] can be adapted to our scenario
and then describe our proposed model for sharing knowl-
edge between coarse and fine categories. The key aspect
of our approach is the introduction of an objective func-
tion that takes into account the hierarchical relations of cat-
egories and subcategories.

As we show in the experiments in Section 5, our pro-
posed method achieves relative improvement of the clas-
sification accuracy at the subcategory level of up to 22%
by training forests with an additional training set that only
contains category labels. We outperform other methods
that also train with this additional training set including
the stacking approach of [27], and reach 99% of the per-
formance achieved by a baseline trained with full supervi-
sion on the whole training set with refined labels. Finally,
we show that an additional improvement can be obtained
by combining the forests with the metric learning approach
proposed in [23].

2. Related Work
Image classification on large-scale data sets has gained

much attention in recent years [2, 13, 28]. While deep con-
volutional networks (CNN) achieve high classification ac-
curacy [18], they are computationally intensive and take
weeks to train. Simpler classifiers, such as nearest class
mean classifiers (NCM) combined with a learned met-
ric [23], proved to be a viable alternative with much
shorter running times and near-zero costs for integrating
new classes. In [26], NCMs were integrated in a random
forest framework [9] which increased the performance and
enabled fast incremental learning on a large scale. In this
work, we address the problem of learning a classifier for
the finest category level when only a part of the training
data is annotated at that level, while the other training sam-
ples have only the labels of a coarser level. This is related
to approaches for semi-supervised or transfer learning.

The transfer of knowledge in image classification re-
duces the amount of labeled data needed to learn a new
image class by exploiting the existing labels of the other
classes. A straightforward approach extends the train-
ing data with unlabeled samples, whose annotation is in-
duced either based on neighborhood structure in the feature

space [14] or semantic distance between the categories [15].
For approaches based on SVMs, samples from the seman-
tically related classes can be used either as constraints [33]
or regularizers [4] during learning. If the model is based on
shapes, features [32] or parts [25] can be shared. Relations
between classes can also be formulated as constraints for
a neural network [13], or as part of a probabilistic frame-
work [36], which can also be based on attribute similari-
ties [19] or linguistic knowledge bases [27]. Class hierar-
chy can also be implictly learned to share model parameters
between parent and children nodes [29] or to speed up the
classification by stacking classifiers [22].

Relations between classes can also be used to build a
classifier for various levels of a class hierarchy. Under the
assumption that classes on the finer level are more diffi-
cult to classify than classes on a higher level, this results
in a trade-off between accuracy and specificity. This trade-
off was addressed in [11] where specificity was defined by
the given class hierarchy, while the authors of [24] try to
additionally learn specifity based on colloquial human re-
sponses. Image labels can also be leveraged together with
appearance, location distribution and context to annotate a
large data set with additional annotations such as bounding
boxes [16] or segmentation masks [17].

Random forests [9], which have been used for many
computer vision applications including image classifica-
tion [6, 8, 26, 35], have also been used in the context of
semi-supervised or transfer learning. The authors of [34]
propose to uncover image segmentation masks using image
labels as regularizers for both leaf statistics and tree struc-
ture. When data is labeled per bags of samples instead of
individual instances, random forests have been adapted for
multiple instance learning where the trees are trained us-
ing deterministic annealing [21]. Space-time consistency
learned from weakly related videos is used in [20] to im-
prove an object detector. Training data with accurate labels
can be augmented with data with missing [10] or noisy la-
bels [7]. This can be achieved by maximizing a weighted
information gain that takes both sources of training data into
account. In this work we do not consider additional data as
noisy or weakly related, but exploit the relations between
categories and subcategories to improve the classification
accuracy of the subcategories.

3. Regularized NCM Forests
NCM forests have been shown to provide a good trade-

off between training time and accuracy for large-scale im-
age classification [26]. We first briefly discuss NCM forests
in Section 3.1. In Section 3.2 we propose a novel objective
function for training NCM forests, which takes into account
the information gain and the computational cost of a split-
ting function to automatically set important parameters of
NCM forests. In our experiments, we show that this modifi-

cation improves performance. In Section 4, we then proceed
to show how their classification accuracy can be increased
when only a fraction of the training labels are refined.

3.1. NCM Forests

NCM forests belong to the family of random forests [9],
which combine classifiers consisting of T decision trees
independently trained in a distributed fashion. Each tree
t is trained recursively, starting from a root node, on la-
beled images S where each image is represented by a d-
dimensional feature vector ~x ∈ Rd. The incoming data Sn

at node n is split into two disjoint sets by a splitting func-
tion fn : Rd 7→ {0, 1}. The two sets, Snf=0 and Snf=1, are
then passed to the left and right child of the node, respec-
tively, and the training continues recursively for each child.
In NCM forests, the splitting functions are based on nearest
class mean classifiers (NCM) [23]. This consists in comput-
ing the means {cnκ} of a subset of the classes κ ∈ Kn ⊂ K
observed in the data {Snκ} reaching node n:

cnκ =
1

|Snκ |
∑
i∈Snκ

~xi. (1)

Each class mean cnκ is assigned to one of the two children
nodes by means of a binary value eκ ∈ {0, 1}. Hence, the
splitting function is defined by:

fn(~x) = eκ∗(~x) , where κ∗(~x) = argmin
κ∈Kn

‖~x− cnκ‖ . (2)

In other words, a data point closest to the mean of class κ is
passed to the left or right child based on eκ.

For training, a pool of splitting functions Fn is gener-
ated by randomly sampling the subset of classesKn and the
binary values {eκ}κ∈Kn . The splitting function fn ∈ Fn
that maximizes the information gain U is then selected and
stored at the node n:

U(f) = H (Sn)−
∑

i∈{0,1}

|Snf=i|
|Sn|

H(Snf=i)

H(Sn) = −
∑
κ∈K

P (κ|Sn) lnP (κ|Sn)

fn = argmax
f∈Fn

U(f) ,

(3)

where H is the class entropy and P (κ|Sn) the empirical
probability of the class κ within Sn. The training ends
when, for the selected splitting function, |Snfn=0| ≤ µ or
|Snfn=1| ≤ µ. The node n is then converted into a leaf l and
the observed class distribution P l(κ) is stored. Notably,
P l(κ) is computed based on at least µ samples.

For classification, an image ~x is passed through each tree
t until it reaches a leaf lt(~x). The individual tree responses

are then averaged and the most probable class κ∗(~x) is re-
turned as an output:

κ∗(~x) = argmax
κ

1

T

∑
t

P l
t(~x) (κ) . (4)

3.2. Regularized NCM Forests

As shown in [26], the training and testing times of an
NCM forest greatly depend on the number of class means
|Kn|. The larger |Kn|, the more comparisons between an
image feature ~x and the class means {cnκ}κ∈Kn need to be
computed. In [26] it was reported that |Kn| =

√
|K| re-

sults in a good trade-off between efficiency and accuracy.
But fixing |Kn| =

√
|K| for all nodes of the tree might

not be optimal. Indeed, one expects that the optimal num-
ber of class means actually depends on the training data ar-
riving at a specific node. We therefore propose to sample
splitting functions with variable size of |Kn| and use an ob-
jective function that favors information gain and penalizes
large computational cost. To do so, we add a sparsity term
in (3):

U?(fn) = U(fn)− λreg|Kn|, (5)

where λreg is a weighting parameter.
In practice, we sampleKn such that 2 ≤ |Kn| ≤ c

√
|K|.

Notably, if c = 1, we use
√
|K| as upper bound for the num-

ber of class means |Kn| of a splitting function fn. Mind that
λreg fine-tunes the selection of split functions at the nodes,
while the parameter c only impacts the sampling process.

We denote an NCM forest trained with (5) by Regular-
ized NCM Forest (RNCMF). In Section 5, we show that the
regularized NCMFs outperform the NCMFs [26].

4. From Categories to Subcategories

As already explained, we consider a scenario in which
we are provided two disjoint sets of training data S. The
first set, Scoarse, is annotated with labels of coarse classes
Kcoarse (e.g. “canine”, “feline”), while the second set Sfine
comes also with labels of subcategories, i.e. fine classes
Kfine that refine the coarse ones (e.g. “wolf”, “lion”). The
main goal of our system is to classify images into fine
classes by exploiting all the available data. This scenario
can be seen as a special case of weakly supervised learning
at several levels. First, we can consider the coarse and fine
classes as completely independent (Section 4.1 and 4.2).
We can also view a data point labeled with a coarse cate-
gory as an uncertain observation or a partially missing label
(Section 4.3). Finally, since we know by design the relation-
ship between classes, we can also see the coarse-to-fine link
as encoding a constraint on the knowledge transfer (Sec-
tion 4.4 and 4.5).

4.1. Stacked RNCMF

Among the methods for knowledge sharing considered
in [27], the one based on stacking SVM classifiers achieved
a remarkable trade-off between simplicity and performance.
In such a setting, the outputs of a set of source classifiers are
concatenated to the input features for learning the classi-
fiers for the target classes. In our hierarchical scenario, we
use coarse classes as source classifiers and the finer ones
as target. The stacking strategy is also readily adaptable
to RNCM forests. We train a first RNCM forest T1 on
Scoarse to classify coarse classes. The samples of Sfine are
then pushed through T1 and the resulting probabilities P
over coarse classes are normalized (P ′ = αP) and concate-
nated to the feature vector ~x, yielding the new feature vector
~x1 = (~x, P ′(κ1), . . . , P

′(κ|Kcoarse|)).
A second forest T2 is then trained on Sfine to distinguish

fine classes using the augmented features ~x1. At test time,
an image follows the same procedure. First, it is fed into
T1 to obtain ~x1, which is then pushed through T2 to obtain
the probabilities over the fine classes. Stacking has the dis-
advantage that two forests need to be trained and evaluated
for classification, and that its performance depends heavily
on the quality of the source classifiers. Instead, we propose
in Section 4.4 a novel training approach that learns a single
RNCM forest with hierarchical class information.

4.2. Joint RNCMF

Similar to [10], we consider the case of a flat set of la-
bels, where we simply try to learn a RNCMF to perform
two independent classification tasks jointly: the first task
is to separate the coarse classes, and the second one is to
separate the fine classes. We thus denote such a forest as a
Joint RNCMF, or J-RNCMF. In order to train a J-RNCMF
on Scoarse and Sfine, the regularized information gain (5) can
be computed as a sum of both gains, each one operating on
its own level of classes:

U?(fn) = Ufine(f
n) + λUcoarse(f

n) + λreg|Kn|, (6)

Uset(f
n) = Hset (S

n
set)−

∑
i∈{0,1}

|Snf=i,set|
|Snset|

Hset(S
n
f=i,set),

Hset (S) = −
∑

κ∈Kset

P (κ|S) lnP (κ|S) ,

where Snset = Sn ∩ Sset and set ∈ {coarse,fine}.
In other words, we consider the classes Kfine and Kcoarse

to be unrelated, and merely prefer splitting functions that
classify well both sets of classes in parallel. Since samples
of Kfine and Kcoarse alike are present at a node, the class
means can be computed over both sets of classes. A richer
pool of class means improves the performance, as we will
see in Section 5, and allows us to integrate the additional
knowledge of coarse classes in a straightforward manner.

4.3. NN-RNCMF

Similar to [14], the label of each sample in Scoarse can be
refined based on a simple classifier, such as nearest neigh-
bors (NN), trained on Sfine. Although this approach is as
generic as Stacking, it can be easily adapted to exploit our
hierarchical setting. This is done by constraining the near-
est neighbour search for a sample in Scoarse only to samples
of its corresponding subcategories in Sfine. The coarse la-
bels of Scoarse are then replaced by the refined ones and an
RNCMF can be trained on Scoarse, refined ∪ Sfine using only
the labels of the finer categories. We refer to this approach
as NN-RNCMF.

4.4. Hierarchical RNCMF

The Joint RNCMF approach described above ignored the
relations between categoriesKcoarse and subcategoriesKfine,
by treating the levels of the hierarchy as two independent
classification tasks. As a matter of fact, we can easily add a
hierarchical flavor to J-RNCMF. We derive for each sample
in Sfine a category label based on its subcategory according
to the hierarchy. To use this additional information, only the
term Ucoarse in (6) needs to be rewritten:

Ucoarse(f
n) = Hcoarse (S

n)−
∑

i∈{0,1}

|Snf=i|
|Sn|

Hcoarse(S
n
f=i),

(7)
i.e. Ucoarse is not computed only over the data Sn ∩ Scoarse
with coarse-only labels, but over the entire Sn.

In this way, a classification error of a subcategory in Sfine
is less penalized if the wrongly predicted subcategory be-
longs to the same category as the true subcategory, or, in
other words, more penalized if the labels also disagree at
the coarser level. We refer to this model as Hierarchical
RNCMF, or H-RNCMF.

4.5. Our Full Model: NN-H-RNCMF

NN-RNCMF and H-RNCMF are complementary and
can be combined. Indeed, while NN-RNCMF provides
coarsely labeled data with fine labels, H-RNCMF essen-
tially does the opposite and exploits the derived coarse la-
bels of the finely labeled data. This leads to our full model,
which we refer to as NN-H-RNCMF. First, the training sam-
ples of Scoarse are assigned the label of the closest neighbor
in Sfine as in NN-RNCMF. Thus, each sample in S is now
assigned a class label κcoarse ∈ Kcoarse as well as κfine ∈ Kfine
which refines κcoarse. For learning such a NN-H-RNCMF,
(6) is modified by using Ucoarse as in (7) and computing Ufine
over Sn using the estimated fine labels for Scoarse:

Ufine(f
n) = Hfine (S

n)−
∑

i∈{0,1}

|Snf=i|
|Sn|

Hfine(S
n
f=i). (8)

In this way, our model exploits both the class hierarchy and
the observation that coarsely labeled data should match one
of the finer subcategories.

5. Experiments
We perform our experiments on a subset of

ILSVRC 2010 [28], a well-established and challeng-
ing dataset for large-scale image classification. The
hierarchy of ILSVRC 2010 is given as a directed acyclic
graph based on WordNet (each node represents a class, also
called a synset). In this work, we focus on the classes that
have a unique parent class. More precisely, we collected
all leaf synsets of ILSVRC 2010 as our subcategories and
their parents as categories, and class subtrees that overlap
are ignored altogether. The remaining parent synsets form
our coarse categories Kcoarse, while their corresponding
children represent the subcategories Kfine. We obtain thus
|Kcoarse|=143 coarse classes and |Kfine|=387 fine ones.

The original training, validation and test sets of
ILSVRC 2010 are reduced to Kfine. The reduced training
set consists of 487K images where we have between 1.4K
and 9.8K images for each coarse class and between 668 and
2.4K images for each fine class. There are 50 and 150 im-
ages per fine class in the validation and the test set, respec-
tively. If not otherwise stated, the performance is measured
as top-1 average accuracy over Kfine.

Since in our scenario we assume that subcategory la-
bels are only available for a subset of the training data,
we randomly split the training data S in two disjoint sets
for each fine class. While the first set Scoarse has only
the category labels, the second set Sfine includes the la-
bels of the subcategories as well. If not otherwise stated,
|Sfine| = |Scoarse| = 0.5|S|. A detailed list of the classes is
part of the supplementary material and the training, evalua-
tion, and testing images are published on-line [1].

In our experiments, we use the publicly available 1k-
dim. bag-of-visual-words (BoW) based on densely sampled
SIFT features which are provided by [5]. The features are
whitened based on the training data.

5.1. Regularized NCM Forest

We evaluate the influence of all the parameters on the
validation set. If not stated otherwise, we follow [26] and
enforce at least µ = 10 samples at a leaf and restrict |Kn| ≤√
|K|. The forests consist of 50 trees. Besides accuracy,

we also measure the test runtime by the average number of
comparisons per tree and image as in [26].

First, we investigate the influence of parameters on our
RNCMF which is trained on the full training set S to clas-
sify fine classes. The performance of RNCMF depends on
the number of splitting functionsFn generated during train-
ing. To this end, we generate between 10 and 1000 class
sets Kn and, for each set, we sample between 10 and 100

NCM 7.24 15.71
k-NN 11.20 15.10
Multiclass SVM [3] 18.11 17.60
NCMF [26] 17.58 18.52
Our RNCMF 19.01 19.79

a) no metric b) MET

Table 1: Average accuracy on the test set for classifying
fine classesKfine. The proposed regularized NCMFs outper-
form NCMFs and the other methods. Using metric learning
(MET) as in [23] further improves the accuracy.

assignment configurations {eκ}κ∈Kn . The results for both
parameters are shown in Fig. 2a) and b). The default val-
ues in those experiments are 1000 sets, 50 assignments and
λreg =0.01 (5). Fig. 2a) shows that the accuracy increases
and the test runtime decreases if more sets Kn are sampled.
The decrease of test runtime is caused by the regularizer.
The number of random assignments {eκ}κ∈Kn has no sig-
nificant impact. Fig. 2c) shows the impact of the sparseness
term in (5). Large values for λreg reduce test runtime, but
also classification accuracy. We fix λreg = 0.001 since it
reduces test runtime without loss of accuracy.

In Table 1, we compare RNCMF with NCMF [26] and
other multiclass classifiers, namely NCM, k-NN, and mul-
ticlass SVM [3]. For all approaches, the parameters are op-
timized on the validation set. The evaluation is performed
on the test set. The results show that the proposed RNCMF
outperforms NCMF and the other methods. In addition, we
train a distance metric MET as in [23] on the training set and
apply it to the features, which reduces their dimensionality
to 512 and additionally boosts performance, cf . Table 1b).

5.2. From Categories to Subcategories

In order to evaluate the performance of the methods dis-
cussed in Section 4, we use the training sets Sfine and Scoarse,
and first evaluate the parameters of these methods on the
validation set.

5.2.1 Parameters

Stacked RNCMF. Stacked RNCMF consists of two forests
where the second forest is trained and applied on the im-
age features and the probabilities over the categories Kcoarse
estimated by the first forest. Since |Kcoarse|= 143, the fea-
tures have 1143 dimensions in total for the second forest.
The probabilities can be normalized to improve the perfor-
mance. We evaluate the normalizing factors 10{0,1,2,3} and
α=10 led to the best performance.

J-RNCMF and H-RNCMF. Both J-RNCMF and H-
RNCMF depend on the weighting parameter λ, which steers
the impact of Ucoarse in (6). Fig. 3 shows the accuracy for

80 100
16

16.5

17

17.5

18

10

100

500

1000

comparisons

A
vg

.a
cc

ur
ac

y

66 67 68 69 70
16

16.5

17

17.5

18

10
50

100

comparisons

A
vg

.a
cc

ur
ac

y

50 100 150 200
15

16

17

18

19
00.001

0.005

0.01

0.1

comparisons

A
vg

.a
cc

ur
ac

y

a) # sampled sets Kn b) # sampled {eκ}κ∈Kn per set c) regularizer weight λreg

Figure 2: The influence of a) the number of generated class mean subsets Kn (10, 100, 500, 1000), b) the number of
generated assignments {eκ}κ∈Kn per set (10, 50, 100), and c) weighting parameter λreg (0.1, 0.01, 0.005, 0.001, 0) of the
regularization term in (5) on accuracy and test time efficiency, measured by average number of comparisons per tree and
image. While the number of generated assignments is not a very sensitive parameter, generating many subsets of class means
and preferring smaller subsets through regularization improves both efficiency at test time and classification accuracy.

J-RNCMF
H-RNCMF

10−4 10−3 10−2 10−1 100 101
16.7

16.8

16.9

17

λ

A
vg

.a
cc

ur
ac

y

Figure 3: The impact of the weighting factor λwhich steers
the impact of Ucoarse. H-RNCMF outperforms J-RNCMF
as it also considers hierarchical relations between fine and
coarse classes.

different values of λ. Since Ucoarse differs for J-RNCMF and
H-RNCMF, the optimal λ differs, too. While J-RNCMF
achieves the best accuracy (16.86) for λ=0.1, H-RNCMF
achieves the best performance (17.00) with λ = 1.0 and
outperforms J-RNCMF, which highlights the importance of
class relations. For this experiment, we sample Kn only
fromKfine. However, when samplingKn fromKcoarse∪Kfine
the average accuracy for H-RNCMF increases further to
18.10. In the following, we use λ = 0.1 for J-RNCMF,
λ = 1.0 for H-RNCMF and NN-H-RNCMF, and sample
Kn from Kcoarse ∪ Kfine.

NN-RNCMF. We can predict the missing fine labels
of Scoarse in various ways. One possibility is to train an
RNCMF on Sfine and use it to predict fine labels of Scoarse.
This achieves an average accuracy of 14.02. We can also
use the fine labels of the nearest neighbours from Sfine, ig-
noring the class relations, which achieves a better accuracy
of 14.23. If we discard nearest neighbor matches where
subcategory and category do not match, the accuracy im-
proves to 17.03. The best accuracy (17.52) is achieved when

i) NCM 7.14 14.49 16.30
k-NN 9.45 12.33 12.58
Multiclass SVM [3] 17.22 16.24 16.41
RNCMF (baseline) 16.96 17.43 18.54

ii) Stacked RNCMF 17.56 17.80 18.83
J-RNCMF 17.14 17.44 18.39
NN-RNCMF 17.93 18.26 19.29
H-RNCMF 18.35 17.93 19.20
NN-H-RNCMF 18.46 18.48 19.55

a) b) c)

Table 2: Comparison of the accuracy when a) no metric, b)
metric METcoarse learned on Scoarse, and c) metric METfine
learned on Sfine is applied. Methods in i) are solely trained
on Sfine, while methods in ii) are trained on Sfine and Scoarse.
Our full model (NN-H-RNCMF) outperforms the baselines
and other approaches and achieves accuracy close to using
the entire data as reported in Table 1.

the nearest neighbors are only searched among the sam-
ples of the corresponding subcategories. This shows that
the relations between categories and subcategories are also
important for the nearest neighbor approach. We use the
third strategy in the following. Discarding nearest neighbor
matches based on the distance in the feature space does not
improve the performance any further.

Runtime. The training of the RNCM forests takes about
2 hours on a cluster with 800 cores. Finding the nearest
neighbor of the samples from Scoarse in Sfine takes an addi-
tional hour. Classification of an image by a single tree takes
about 50µs for 1K-dimensional pre-computed features.

RNCMF (baseline) 12.04 (1.00) 14.35 (1.00) 16.96 (1.00)
Stacked RNCMF 12.92 (1.07) 15.07 (1.05) 17.56 (1.04)
J-RNCMF 12.59 (1.05) 14.89 (1.04) 17.14 (1.01)
NN-RNCMF 13.99 (1.16) 15.48 (1.08) 17.93 (1.06)
H-RNCMF 14.16 (1.18) 16.15 (1.13) 18.35 (1.08)
NN-H-RNCMF 14.71 (1.22) 16.37 (1.14) 18.46 (1.09)

|Sfine| a) 0.1|S| b) 0.2|S| c) 0.5|S|

Table 3: Average accuracy of RNCMF as baseline trained
on Sfine and the other methods trained on Sfine ∪Scoarse. The
relative performance to the baseline is in the brackets. We
fix |Scoarse| = 0.5|S| and set |Sfine| to a) 0.1|S|, b) 0.2|S|
and c) 0.5|S|. Our approaches improve the baseline, even
when |Sfine| and |Scoarse| are imbalanced. The improvement
is even more pronounced, when there are few fine-labeled
samples. Our NN-H-RNCMF outperforms other methods.

5.2.2 Comparison

We now evaluate the approaches presented in Section 4,
which are trained on both Sfine and Scoarse, and compare
them to an RNCMF that is trained only on Sfine to show
the benefit of the additional training data Scoarse. The results
are shown in Table 2. Since we have seen that metric learn-
ing improves the accuracy, we evaluate two cases. In the
first case, the metric METcoarse is trained on Scoarse and in
the second case METfine is trained on Sfine. Table 2 i) shows
that METcoarse slightly improves the accuracy, but METfine
improves it even more and is the best choice.

Table 2 ii) shows that the approaches ignoring class rela-
tions (Stacked, J) improve the (baseline) RNCMF trained on
Sfine only slightly, while the approaches exploiting the hier-
archy (NN, H, NN-H) outperform the baseline and the other
methods.Our full model NN-H-RNCMF performs best with
an accuracy of 19.55. Notably, this is almost matching the
performance of RNCMF with full supervision, i.e., trained
on S with subcategory annotations for all training samples,
cf . Table 1b), using 50% fewer fine labels.

5.2.3 Impact of Training Size

So far we have used |Scoarse| = |Sfine| = 0.5|S|, but ob-
visouly the relative sizes of those sets matter. Thus, we
now evaluate the impact of the training size for Scoarse
and Sfine. We first keep |Scoarse| fixed, but vary |Sfine| ∈
{0.1|S|, 0.2|S|, 0.5|S|} to observe how the methods cope
with few fine-labeled data when |Sfine| and |Scoarse| are im-
balanced. As baseline, we train RNCMF on Sfine and no
metric is used. As Table 3 shows, the accuracy improves
for all methods when |Sfine| is increased. When there are
few fine-labeled samples, the improvement of the baseline
becomes larger. For |Sfine| = 0.1|S|, our full model NN-
H-RNCMF improves the baseline from 12.04 to 14.71, a

RNCMF (baseline) 16.96 (1.00) 16.96 (1.00) 16.96 (1.00)
Stacked RNCMF 17.18 (1.01) 17.21 (1.01) 17.56 (1.04)
J-RNCMF 16.89 (1.00) 16.80 (0.99) 17.14 (1.01)
NN-RNCMF 17.27 (1.02) 17.51 (1.03) 17.93 (1.06)
H-RNCMF 17.59 (1.04) 17.90 (1.06) 18.35 (1.08)
NN-H-RNCMF 17.87 (1.05) 18.13 (1.07) 18.46 (1.09)

|Scoarse| a) 0.1|S| b) 0.2|S| c) 0.5|S|

Table 4: Average accuracy of RNCMF as baseline trained
on Sfine and the other methods trained on Sfine ∪Scoarse. The
relative performance to the baseline is in the brackets. We
fix |Sfine| = 0.5|S| and set |Scoarse| to a) 0.1|S|, b) 0.2|S|
and c) 0.5|S|. The accuracy increases with the quantity of
coarse-labeled data, and our NN-H-RNCMF improves most
the performance of the baseline.

RNCMF (baseline) 24.54 (1.00)
Stacked RNCMF 22.35 (0.91)
J-RNCMF 21.99 (0.90)
NN-RNCMF 24.19 (0.99)
H-RNCMF 23.95 (0.98)
NN-H-RNCMF 25.15 (1.02)

Table 5: Comparison of average accuracy in classifying
coarse classes Kcoarse. The baseline is trained on S for clas-
sification of Kcoarse, while other models are trained to clas-
sify fine classes Kfine. The relative performance to the base-
line is in the brackets. The experiment is performed on the
test set with 150 images per coarse class. Metric learning is
not used and we fix |Scoarse| = |Sfine| = 0.5|S|. Our NN-H-
RNCMF performs best and even outperforms the baseline
due to the additional knowledge of subcategories.

relative increase of 22%. This is relevant as fine labels are
scarcer and more expensive to obtain than coarse ones.

In a second experiment, we fix |Sfine| = 0.5|S| and vary
|Scoarse|. The results are shown in Table 4. All methods
benefit from a larger training set |Scoarse| with coarse labels.

5.3. Classification of Categories

Although it is not our original goal, our classifiers for
the subcategories can also be used to classify the categories.
This can be seen as a way of exploiting additional informa-
tion for learning category classifiers. To this end, we only
have to convert the class probabilities stored at leaves from
Kfine to Kcoarse. To obtain a suitable, balanced test set, we
randomly subsample the original test set to contain 150 im-
ages per category and measure average accuracy on it. We
set |Scoarse| = |Sfine| = 0.5|S| and use no metric. Table 5
shows that the approaches which exploit the hierarchy (NN,
H, NN-H) achieve the accuracy of the baseline and outper-
form other approaches which ignore hierarchical relations

A) |Kn| ≤
√
|K|

200 400 600 800
36

38

40

42

44

A

B

C

D

comparisons

A
vg

.a
cc

ur
ac

y

B) |Kn| ≤ 5
√
|K|

C) |Kn| ≤ 10
√
|K|

D) |Kn| ≤ 20
√
|K|

Figure 4: Impact of the upper bound |Kn| ≤ c
√
|K|. Av-

erage accuracy and efficiency at test time measured by the
number of comparisons (per tree and image) are reported.
The experiments are performed on the validation set using
Fisher vectors and a metric METfine learned on Sfine.

NCM [23] 30.22 35.27 42.34
RNCMF (baseline) 30.55 35.99 43.30
H-RNCMF 31.42 36.42 43.62
NN-RNCMF 28.93 32.75 42.26
NN-H-RNCMF 28.25 31.81 41.80

|Sfine| a) 0.1|S| b) 0.2|S| a) 0.5|S|

Table 6: Average accuracy of proposed methods and state-
of-the-art NCM [23] evaluated on the test set and performed
with Fisher vectors and metric learning on Sfine. Since met-
ric learning on Fisher vectors [23] does not generalize well
to nearest neighbors (NN) approaches. H-RNCMF outper-
forms NN-H-RNCMF, as well as the baseline and [23].

(Stacked, J). Remarkably, NN-H-RNCMF outperforms the
baseline, showing that the additional knowledge of subcat-
egories for 50% of the training data helps to improve the
classification of the categories, and that our model makes
good use of that extra information.

5.4. High-dimensional features

High-dimensional features like Fisher vectors have
shown good performance in image classification [30].
Hence, we also evaluate our methods for classifying sub-
categories using the same Fisher vectors with metric learn-
ing as in [23] instead of BoW features. The metric METfine
is trained with Fisher vectors on Sfine. In contrast to the
BoW features, the accuracy of RNCMF can be further im-
proved when the upper bound for the number of the class
means sampled at each node |Kn| ≤ c

√
|K| is increased.

We train the forests with c ∈ {1, 5, 10, 20} on Sfine, with
|Sfine|=0.5|S|, and evaluate them on the validation set. The
results in Fig. 4 show that increasing the upper bound on
|Kn| improves the accuracy. In the following experiments,
we use c = 10, which achieves near optimal performance
with a gain in test time complexity.

Finally, we compare our approaches to the state-of-the-

art NCM [23]. As in Section 5.1 and 5.2, we optimize
the parameters for RNCMF, H-RNCMF, NN-RNCMF and
NN-H-RNCMF on the validation set. The parameters do
not change except that Kn is sampled 100 times per node
instead of 1000 times and the weighting parameter λ (6),
which steers the impact of Ucoarse, increases to 100. For
the evaluation on the test data, the amount of coarse-labeled
data is fixed to |Scoarse|=0.5|S|, while |Sfine| varies. We ap-
plied the metric METfine trained on the corresponding Sfine.
The results are shown in Table 6. In contrast to BoW fea-
tures, nearest neighbours perform poorly and reduce the
performance of NN-RNCMF and NN-H-RNCMF. This is
consistent with [23] where it is shown that a metric learned
on high-dimensional features does not generalize well to
nearest neighbors approaches. For high-dimensional fea-
tures, H-RNCMF therefore performs best.

We also performed preliminary experiments with 4096-
dim. CNN features [31]. Since the features are pre-trained
on the fine categories of ILSVRC 2012, the results are not
directly comparable to the other experiments. RNCMF as in
Table 1 achieves 74.18 accuracy and outperforms multiclass
SVM [3] (71.67) and NCM (66.02). Using the protocol as
in Table 6, NN-H-RNCMF achieves 69.95 (0.1|S|), 71.41
(0.2|S|) and 73.43 (0.5|S|) accuracy while the accuracy of
RNCMF (baseline) is 68.49, 70.49 and 73.07, respectively.

6. Conclusion
In this paper, we have addressed the problem of learning

subcategory classifiers when only a fraction of the training
data is labeled with fine labels while the rest only has la-
bels of coarser categories. To this end, we proposed to use
random forests based on nearest class mean classifiers and
extended the method by introducing a regularized objec-
tive function for training. We also experimentally showed
that the additional training data with the category-only la-
bels improves the classification of sub-categories up to 22%
in a large-scale setting. Finally, we have presented experi-
mental evidence that the approaches taking into account the
hierarchical relations between categories and subcategories
perform better than approaches ignoring these relations.

Acknowledgments. The authors acknowledge financial
support from the CTI project (15769.1 PFES-ES), DFG
Emmy Noether program (GA 1927/1-1), DFG project (GA
1927/2-2 FOR 1505) and Toyota.

References
[1] http://www.vision.ee.ethz.ch/datasets_

extra/mristin/ristin_et_al_cvpr15_data.
zip. [Online; accessed 19-Mar.-2015].

[2] P. Agrawal, R. Girshick, and J. Malik. Analyzing the perfor-
mance of multilayer neural networks for object recognition.
In ECCV, 2014.

http://www.vision.ee.ethz.ch/datasets_extra/mristin/ristin_et_al_cvpr15_data.zip
http://www.vision.ee.ethz.ch/datasets_extra/mristin/ristin_et_al_cvpr15_data.zip
http://www.vision.ee.ethz.ch/datasets_extra/mristin/ristin_et_al_cvpr15_data.zip

[3] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid.
Good practice in large-scale learning for image classifica-
tion. TPAMI, 2013.

[4] Y. Aytar and A. Zisserman. Tabula rasa: Model transfer for
object category detection. In ICCV, 2011.

[5] A. Berg, J. Deng, and L. Fei-Fei. Large scale visual recog-
nition challenge 2010. http://www.image-net.org/
challenges/LSVRC/2010, 2010. [Online; accessed 13-
Nov.-2014].

[6] A. Bosch, A. Zisserman, and X. Muñoz. Image classification
using random forests and ferns. In ICCV, 2007.

[7] L. Bossard, M. Dantone, C. Leistner, C. Wengert, T. Quack,
and L. Van Gool. Apparel classification with style. In ACCV,
2012.

[8] L. Bossard, M. Guillaumin, and L. Van Gool. Food-101:
Mining Discriminative Components with Random Forests.
In ECCV, 2014.

[9] L. Breiman. Random forests. Machine Learning, 45(1):5–
32, 2001.

[10] A. Criminisi and J. Shotton. Semi-supervised classification
forests. In Decision Forests for Computer Vision and Medi-
cal Image Analysis, Advances in Computer Vision and Pat-
tern Recognition. Springer, 2013.

[11] J. Deng, J. Krause, A. Berg, and L. Fei-Fei. Hedging
your bets: Optimizing accuracy-specificity trade-offs in large
scale visual recognition. In CVPR, 2012.

[12] J. Deng, J. Krause, and L. Fei-Fei. Fine-grained crowdsourc-
ing for fine-grained recognition. In CVPR, 2013.

[13] J. Deng, D. Nan, J. Yangqing, F. Andrea, M. Kevin, B. Samy,
L. Yuan, N. Hartmut, and A. Hartwig. Large-scale object
classification using label relation graphs. In ECCV, 2014.

[14] K. Driessens, P. Reutemann, B. Pfahringer, and C. Leschi.
Using weighted nearest neighbor to benefit from unlabeled
data. In Advances in Knowledge Discovery and Data Min-
ing, volume 3918 of Lecture Notes in Computer Science.
Springer, 2006.

[15] R. Fergus, H. Bernal, Y. Weiss, and A. Torralba. Semantic
label sharing for learning with many categories. In ECCV,
2010.

[16] M. Guillaumin and V. Ferrari. Large-scale knowledge trans-
fer for object localization in ImageNet. In CVPR, 2012.

[17] M. Guillaumin, D. Kuettel, and V. Ferrari. ImageNet Auto-
annotation with Segmentation Propagation. IJCV, 2014.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
classification with deep convolutional neural networks. In
NIPS, 2012.

[19] C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to
detect unseen object classes by between-class attribute trans-
fer. In CVPR, 2009.

[20] C. Leistner, M. Godec, S. Schulter, A. Saffari, M. Werl-
berger, and H. Bischof. Improving classifiers with unlabeled
weakly-related videos. In CVPR, 2011.

[21] C. Leistner, A. Saffari, and H. Bischof. Miforests: Multiple-
instance learning with randomized trees. In ECCV, 2010.

[22] B. Liu, F. Sadeghi, M. Tappen, O. Shamir, and C. Liu. Prob-
abilistic label trees for efficient large scale image classifica-
tion. In CVPR, 2013.

[23] T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka.
Distance-based image classification: Generalizing to new
classes at near-zero cost. TPAMI, 2013.

[24] V. Ordonez, J. Deng, Y. Choi, A. C. Berg, and T. L. Berg.
From large scale image categorization to entry-level cate-
gories. 2013.

[25] P. Ott and M. Everingham. Shared parts for deformable part-
based models. In CVPR, 2011.

[26] M. Ristin, M. Guillaumin, J. Gall, and L. Van Gool. Incre-
mental learning of NCM forests for large-scale image classi-
fication. In CVPR, 2014.

[27] M. Rohrbach, M. Stark, and B. Schiele. Evaluating knowl-
edge transfer and zero-shot learning in a large-scale setting.
In CVPR, 2011.

[28] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet large scale visual
recognition challenge. arXiv:1409.0575, 2014.

[29] R. Salakhutdinov, A. Torralba, and J. Tenenbaum. Learning
to share visual appearance for multiclass object detection. In
CVPR, 2011.

[30] J. Sanchez, F. Perronnin, T. Mensink, and J. Verbeek. Image
classification with the Fisher vector: Theory and practice.
IJCV, 2013.

[31] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[32] M. Stark, M. Goesele, and B. Schiele. A shape-based object
class model for knowledge transfer. In ICCV, 2009.

[33] T. Tommasi, F. Orabona, and B. Caputo. Safety in numbers:
Learning categories from few examples with multi model
knowledge transfer. In CVPR, 2010.

[34] A. Vezhnevets and J. M. Buhmann. Towards weakly super-
vised semantic segmentation by means of multiple instance
and multitask learning. In CVPR, 2010.

[35] B. Yao, A. Khosla, and L. Fei-fei. Combining randomization
and discrimination for fine-grained image categorization. In
CVPR, 2011.

[36] A. Zweig and D. Weinshall. Exploiting object hierarchy:
Combining models from different category levels. In ICCV,
2007.

http://www.image-net.org/challenges/LSVRC/2010
http://www.image-net.org/challenges/LSVRC/2010

