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Figure 1: An toy example of kernel adaptation in the CNN framework.

One key challenge of facial trait recognition is the large non-rigid appear-

ance variations due to some irrelevant real world factors, such as viewpoint

and expression changes. Current Convolutional Neural Network (CNN)

based methods learn discriminant features mainly from texture information

thus suffers from these real world nuisance variables. Although state-of-

the-art deep CNN models [1, 4] are proven to be powerful in handling these

complex factors and learning invariant features, however very deep and large

network structure seems to be essential to achieve such invariance [4].

Rather than using deeper and larger networks, in this paper, we explore

how the shape information, i.e. facial landmark positions, can be explicitly

deployed into the popular CNN architecture to learn invariant features in a

more intuitive and compact way.

First, instead of using fixed kernels, we propose a kernel adaptation

method to dynamically determine the convolutional kernels according to the

positions of facial landmarks S, as shown in expression (1).

f = ψ(S,Θ), (1)

where ψ(·) is an adaptation function that can depict the relationship between

the facial landmarks S and the proper kernel f . Θ is the parameter of ψ . A

sketch of the basic idea is shown in Figure 1. As aforementioned, due to real

world variation, the appearance of an image I may be significantly different

to its transformed version of image I′. However, if proper kernel adaptation

function ψ(·) is learned to generate a transformed version of kernel (also

called convolutional filter), the convolutional feature maps would become

invariant to these transformations.

Although the ideal adaptation function ψ may be very complex, in this

paper, we use a simple linear function to approximate it. Formally, this liner

function in our kernel adaptation method can be represented as:

f =W ·S, (2)

where W is the linear matrix used to generate the adaptive kernel f . With

kernel adaptation as indicated by Eqn. (2), given an input face image I,

the kernel functions f can be adaptively generated according to its shape

information S. As a result, the feature learning process can automatically

achieve certain complex geometric transformation invariance.

Second, motivated by the intuition that appearance variation caused by

pose and expression is non-rigid, different facial components may demand

different kernel adaptation functions. Therefore, instead of using single

adaptation function over the whole face, the kernel adaption is separately

adopted in multiple local CNN subnetworks, indicated as Ci (i = 1,2, ...,N),

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

Stage 1: Local Kernel 
Adaptive Subnetworks 

Stage 2: Part  
Fusion Subnetworks 

 

 

 

Convolve 
Pool 

…
 

 

 

 

…
 

…
 

…
 

Convolve 

   

   

  

Convolve 

 

Stage 3: Global  
Fusion Subnetwork 

 

 

 
  

 

 

 

 

 

 

 

… 

… 

… 

…
 

 

Normalized Face  
Texture and Shape 

 

 

 

 

 

 

  

 

Figure 2: Flowchart of the tree-structured kernel adaptive CNN.

over multiple local facial patches, indicated as Pi (i = 1,2, ...,N). In this

way, each small facial patch Pi has its own adaptation function Wi. More-

over, only landmarks around the patch Pi contain valuable information for

modeling the appearance deformations in this local patch. Thus, we only use

local shape information Si to infer the local adaptive kernel fi of the local

patch Pi. Formally, for each local subnetwork Ci, we represent its adaptive

kernel fi as a function of corresponding “shape” information Si:

fi =Wi ·Si, (3)

As the variation caused by pose and expression in each small local patch

can be assumed as a rigid transformation approximately. This local linear

adaptation function is capable in depicting the relation between local shape

information and desired kernel function.

To jointly learn features from multiple local regions, we further propose

a tree-structured convolutional architecture to hierarchically fuse multiple

local adaptive CNN subnetworks. As shown in Figure 2, given a normalized

face image I and corresponding facial landmarks S = {vi}N1

i=1, multiple local

kernel adaptive CNN subnetworks {C1
i }N1

i=1 are constructed to learn features

from multiple local patches {Pi}N1

i=1. The convolved features learned by

multiple local subnetworks are then combined as the middle-level represen-

tations to learn high-level features with the fusion subnetworks, i.e. multiple

part fusion subnetworks {C2
i }N2

i=1 and a global fusion subnetwork C3. Final-

ly, a logistic regression layer is used to generate the final prediction y from

vectorized global convolved features X . The whole networks can be trained

with common back-propagation method [2] in the end-to-end manner.

Implementations and comparisons are detailed in the paper. Demon-

strated in the experiments, own to the usage of kernel adaptation, with rela-

tively shallow networks and much less parameters, our method can achieve

comparable or better performance compared to state-of-the-art deep learn-

ing methods [1, 3] and other facial trait recognition methods.
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