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Abstract

One key challenge of facial trait recognition is the large
non-rigid appearance variations due to some irrelevant re-
al world factors, such as viewpoint and expression changes.
In this paper, we explore how the shape information, i.e. fa-
cial landmark positions, can be explicitly deployed into the
popular Convolutional Neural Network (CNN) architecture
to disentangle such irrelevant non-rigid appearance varia-
tions. First, instead of using fixed kernels, we propose a ker-
nel adaptation method to dynamically determine the convo-
lutional kernels according to the spatial distribution of fa-
cial landmarks, which helps learning more robust features.
Second, motivated by the intuition that different local fa-
cial regions may demand different adaptation functions, we
further propose a tree-structured convolutional architecture
to hierarchically fuse multiple local adaptive CNN subnet-
works. Comprehensive experiments on WebFace, Morph II
and MultiPIE databases well validate the effectiveness of
the proposed kernel adaptation method and tree-structured
convolutional architecture for facial trait recognition tasks,
including identity, age and gender recognition. For all the
tasks, the proposed architecture consistently achieves the
state-of-the-art performances.

1. Introduction

In the last decade, great progress has been made in de-

veloping deep neural network for various computer vision

tasks [11, 31]. Among them, Convolutional Neural Net-

work (CNN) [16] has achieved exciting performance on

digit recognition [13, 5], traffic sign recognition [27, 5], ob-

ject recognition [5, 15, 24, 31] and scene labeling [6].

Despite the great success, CNN based methods learn dis-

criminant features mainly from texture information which

may change significantly in real world conditions due to il-

lumination and viewpoints variations. Although the deep

CNN model is proven to be very powerful in handling these

complex real world factors in image processing [35, 31],

additional information that provide more direct and easier

way for parsing these mixed factors may further improve

the disentangling capability. Shape information, i.e. the

configuration of sub-level components, is one of such addi-

tional information. As indicated in [25], for humans, both

texture and shape information play very important roles in

interpreting face images. Because shape information not

only provides easier way to disentangle viewpoints and ex-

pression variation but also directly holds discriminant pow-

er for estimating facial traits, such as gender, age and iden-

tity. It is thus expected that artificial neural network, e.g.

neurobiologically motivated CNN, can also benefit from ad-

ditional shape information for robust facial trait recogni-

tion. However, up to now, there are only a few works on

exploring the shape information for CNN. One previous at-

tempt [21] integrated the shape information (i.e. sub-level

components configuration) as a regularization in the feature

learning procedure for pedestrian detection. Some other

works [29, 36] used shape information obtained from pose-

let or landmark detection results to extract better aligned

image patches for robust feature learning.

In this paper, we also propose to exploit the potential

of facial shape information, i.e. a set of facial landmark-

s, to help CNN based methods learning more powerful and

robust face representation. The basic idea is using differen-

t convolutional kernel according to the shape information,

i.e. distribution of face landmarks, in order that the learned

features would become more invariant to appearance vari-

ations caused by different viewpoints or expressions. One

intuitive example of this idea is shown in Fig. 1. Anoth-

er potential of this kernel adaptation is that the additional

discriminant information contained in the shape may also

be directly coded into the learned feature. Specifically, we

propose a shape driven kernel adaptation for CNN and use

automatically adapted kernels to more efficiently disentan-
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Figure 1. An toy example for clarification of the basic idea of proposed kernel adaptation in a CNN framework. Due to some real world

variations, such as different viewpoints, the appearance of an image I may be significantly different to its transformed version of image I ′.
If proper kernel adaptation function ψ(·) is learned to generate a transformed version of kernel (also called convolutional filter), the feature

maps generated can become invariant to these transformations.

gle the mixed factors in each input face image.

Due to the complex geometric structure and muscle

movement, the facial appearance variation is often non-

rigid. Thus, different facial region may demand different

kernel adaptation function. Therefore, we propose a tree-

structured convolutional architecture, each leaf of which

processes a local facial region and holds a distinctive adap-

tation function. These adaptively learned local convolution-

al features are then fed into a tree-structured network for

further deep representation learning.

The aforementioned framework is general and the idea of

shape driven kernel adaptation may also be helpful in many

other computer vision tasks. In this paper, we demonstrate

the framework on various facial trait recognition tasks. This

is not only because shape information is crucial for facial in-

terpretation, but also because shape information of faces can

be obtained more reliably with automatic algorithm, such

as [2, 33], compared to other general objects.

In summary, we propose a novel tree-structured kernel

adaptive CNN to exploit shape information in the CNN

framework for robust facial trait recognition. The contribu-

tions of the paper include: 1) propose shape driven kernel

adaptation in CNN framework, which helps learning robust

face representations that are invariant to non-rigid appear-

ance variations; 2) propose a tree-structured deep convolu-

tional fusion hierarchy, which further enhances the power

of kernel adaptation and 3) achieve the state-of-the-art per-

formance in various facial trait recognition tasks, including

identity, age and gender recognition.

2. Related Work

Recently, deep learning methods show notable potential

in various face related computer vision tasks, such as facial

landmark detection [28], facial trait classification [34], face

verification [12, 29] and face recognition [38, 37].

One of the main focuses of these methods is designing

suitable deep network structure to accomplish some specif-

ic tasks [12, 28, 29]. In [12], a hierarchical representation is

learned from multiple overlapping local Convolutional Re-

stricted Boltzmann Machine (CRBM). In [28], three level-

s of deep convolutional network are cascaded to estimate

the accurate position of facial landmarks in a coarse to fine

manner. In [29, 30], multiple local convolutional subnet-

works are gradually fused to obtain robust face verifica-

tion result. The hybrid structure proposed in [29, 30] is

similar to our method, which learn convolutional features

from multiple local regions and fuse these local features by

a tree-structured network. Although our method also ben-

efits from similar fusion hierarchy, we use such a hierar-

chy mainly because the kernel adaptation function is not

be shared over the whole face image with non-rigid vari-

ation. Our method also benefit from the end-to-end opti-

mization of the whole hierarchy, while the hybrid network

proposed in [29, 30] only independently learn multiple lo-

cal ConvNets and an additional metric learning method, e.g.

Joint Bayesian [4], is needed for fusing local features.

The other of them try to modify the optimization ob-

jective to cope with some special scenarios [34, 38, 37].



In [34], a CNN based method was used to conduct facial

age, gender and race classification. The main focus of [34]

was to develop an online model adaptation method, which

can adapt a pre-trained classification model to new environ-

ments in real time after deployment. Both [38] and [37]

propose to extract pose-invariant features for across pose

face recognition. Our kernel adaptation method also helps

achieving pose invariance, but additional shape information

is directly exploited in our method to handle general appear-

ance variation in a more effective and intuitive way.

3. Kernel Adaptation for CNN
In real world environment, facial appearance may

change significantly due to different poses and expressions,

one traditional convolutional layer with fixed kernel func-

tions may generate undesirably different responses for the

same face. To achieve feature invariance under these com-

plex variations, a mechanism, which can make the convolu-

tion kernel automatically adapt to the specific variations of

each face instance, will be beneficial.

To this end, we propose a kernel adaptation mechanis-

m for traditional CNN framework. Suppose the input face

image is I and the kernel function is f , we hope the kernel

function can be automatically adapted for the input face im-

age according to a latent variable S. Then the convolution

with kernel adaptation can be formulated as:

f = ψ(S,Θ), (1)

C = ϕ(I ∗ f + b), (2)

where ϕ(·) is a activation function, and ψ(·) is an adaptation

function that can depict the relationship between the latent

variable S and the proper kernel f . Θ is the parameter of

ψ and b is an additive bias. Generally, the latent variable S
can be any data that contains valuable information for dis-

entangling the mixed factors in current input face image I .

In this paper, we use facial shape data to serve as the latent

variable S, which helps learning pose and expression robust

feature for facial trait recognition. The “shape” data S used

in this paper is a vector of the normalized coordinates of fa-

cial landmarks. In the kernel adaptation, Θ replacing the k-

ernel f becomes the learnable parameter of the network. As

long as ψ(·) is differentiable with respect to Θ, Θ can also

be trained with the common back-propagation method [16]

based on the chain rule without much effort.

Although the ideal adaptation function ψ may be very

complex, in this paper, we use a simple linear function to

approximate it. Formally, this liner function in our kernel

adaptation method can be represented as:

f = W · S, (3)

where W is the linear matrix used to generate the adap-

tive kernel f . Note that the form of f in Eqn. (3) is a 1D

vector and in Eqn. (2) is a rearranged 2D matrix with the

same element values. With kernel adaptation as indicated

by Eqn. (3), given an input face image I , the kernel func-

tions f can be adaptively generated according to its shape

information S. As a result, the feature learning process can

automatically achieve certain complex geometric transfor-

mation invariance.

Intuitively, as appearance variation caused by pose and

expression is non-rigid, different facial components may

demand different kernel adaptation functions. Therefore,

instead of using single adaptation function over the whole

face, the kernel adaption is separately adopted in multiple

local CNN subnetworks, indicated as Ci (i = 1, 2, ..., N),
over multiple local facial patches, indicated as Pi (i =
1, 2, ..., N). In this way, each small facial patch Pi has it-

s own adaptation function Wi. Moreover, only landmarks

around the patch Pi contain valuable information for mod-

eling the appearance deformations in this local patch. Thus,

we only use local shape information Si to infer the local

adaptive kernel fi of the local patch Pi. Formally, for each

local subnetwork Ci, we represent its adaptive kernel fi as

a function of corresponding “shape” information Si:

fi = Wi · Si, (4)

Ci = ϕ(Pi ∗ fi + bi). (5)

As the variation caused by pose and expression in each s-

mall local patch can be assumed as a rigid transformation

approximately. This local linear adaptation function is ca-

pable in depicting the relation between local shape informa-

tion and desired kernel function.

4. Tree-structured Kernel Adaptive CNN

In the last section, we propose to learn multiple local k-

ernel adaptive CNNs. Similar to [30], we also attempt to

fuse features learned from multiple facial patches. Howev-

er, instead of ensemble these features in the last few fully

connection layers, we propose a end-to-end tree-structured

convolutional architecture to deeply integrate the face rep-

resentation of local subnetworks.

4.1. Architecture

Totally, the proposed tree-structured kernel adaptive C-

NN consists of three stages, as shown in Fig. 2. Given

a normalized face image I and corresponding facial land-

marks S = {vi|vi ∈ �2, i = 1, 2, ..., N1}, we first con-

struct multiple local kernel adaptive subnetworks C1
i (i =

1, 2, ..., N1) (Fig. 2: Stage 1), each of which learns discrim-

inative features with adaptive kernel f1
i within local im-

age patch Pi centered at the facial landmark vi. Then the

convolutional features of multiple local subnetworks are s-

tacked and fed into the part-fusion subnetworks C2
i (i =
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Figure 2. Flowchart of the proposed tree-structured kernel adaptive CNN. Given a normalized face image I and corresponding facial

landmarks S = {vi}N1
i=1, multiple local kernel adaptive CNN subnetworks {C1

i }N1
i=1 are constructed to learn features from multiple local

patches {Pi}N1
i=1. The convolved features learned by multiple local subnetworks are then combined as the middle-level representations to

learn high-level features with the fusion subnetworks, i.e. multiple part fusion subnetworks {C2
i }N2

i=1 and a global fusion subnetwork C3.

Finally, a logistic regression layer is used to generate the final prediction y from vectorized high level convolved features X .

1, 2, ..., N2) (Fig. 2: Stage 2) to learn the middle level repre-

sentation. After that, a global-fusion convolutional subnet-

work C3 is used to generate high-level representation from

the convolutional features of these parts (Fig. 2: Stage 3).

Subnetworks in both fusion stages, i.e. the part-fusion sub-

networks and the global-fusion subnetwork, consist of one

or more stacked convolution modules. On top of the global-

fusion subnetwork, a single logistic regression layer is cate-

nated to generate the final prediction. Note that Fig. 2 only

depicts a sketchy structure of the proposed tree-structured

kernel adaptive CNN. The detailed configuration of the net-

work which we use in the experiments will be presented in

Section 5.

Although the structure is different from the conventional

CNN [16], the tree-structure kernel adaptive CNN can also

be similarly trained with the back-propagation method. The

differences mainly lie in twofold: the kernel adaptation and

the convolutional fusion. For kernel adaptation, we need to

back-propagate the gradient of the convolutional kernels f1
i

further to the generation function W 1
i based on Eqn. (4):

∂L

∂W 1
i

=
∂L

∂f1
i

∂f1
i

∂W 1
i

=
∂L

∂f1
i

ST
i , (6)

where L is the loss function of the final prediction. As ∂L
∂f1

i

can be calculated in typical back-propagation optimization

of conventional CNN. The gradient of W 1
i can be calculated

with Eqn. (6).

Convolutional fusion is used in both the part-fusion sub-

networks and the global-fusion subnetwork. For simplici-

ty, we only present how to forward propagate features and

backward propagate gradients in the global-fusion subnet-

work. The basic idea is stacking the output feature maps of

multiple part-fusion subnetworks as the input of the global-

fusion subnetwork. As shown in Stage 3 of Fig. 2, the con-

volved features generated by the ith part-fusion subnetwork

are denoted as C2
i (i = 1, 2, ..., N2) and the convolved fea-

tures generated by the global-fusion subnetwork are denot-

ed as C3. In the forward propagation step, the kth feature

map C3
k (k = 1, 2, ...,K3) in C3 is obtained by convolving

all the outputs of the part-fusion subnetworks with kernel

function f3. Suppose C2
ij (j = 1, 2, ...,K2) is the jth fea-

ture map of C2
i . Then, we have:

C3
k = ϕ(

N2∑

i=1

K2∑

j=1

C2
ij ∗ f3

ijk + b3k), (7)

where f3
ijk is the corresponding kernel function, b3k is an

additive bias and ϕ(·) is the activation function. For better

understanding of the subsequent backward propagation pro-

cedure, we present the forward propagation, as indicated in

Eqn. (7), at element level and the uth row and vth column

element [C3
k ]uv of C3

k can be expressed as:

[C3
k ]uv = ϕ(

N2∑

i=1

K2∑

j=1

∑

s,t

[C2
ij ]u+s,v+t · [g3ijk]st + b3k), (8)

where g3ijk is central symmetric with respect to the kernel

function f3
ijk. In the backward propagation step, based on



Eqn. (8), the derivative of the learnable parameters b3k and

g3ijk (or f3
ijk) can be calculated with the chain rule by col-

lecting derivatives propagated from each element of C3
k :

∂L

∂b3k
=

∑

u,v

∂L

∂[C3
k ]uv

∂[C3
k ]uv

∂b3k
, (9)

∂L

∂[g3ijk]st
=

∑

u,v

∂L

∂[C3
k ]uv

∂[C3
k ]uv

∂[g3ijk]st
. (10)

Suppose the derivative of C3
k with respect to the loss func-

tion L, i.e. ∂L
∂C3

k
, is already calculated and sigmoid activa-

tion function is used, we denote δ = ∂L
∂C3

k
◦C3

k◦(1 − C3
k),

where “◦” indicates the element-wise multiplication opera-

tion. Then, Eqn. (9) and (10) can be further simplified as:

∂L

∂b3k
=

∑

u,v

[δ]uv, (11)

∂L

∂[g3ijk]st
=

∑

u,v

[δ]uv · [C2
ij ]u+s,v+t, (12)

where [δ]uv is the element of δ, which lies in the uth row and

vth column. To further back-propagate the gradient to the

local subnetwork, the derivative of C2
ij is also calculated:

∂L

∂[C2
ij ]u,v

=
∑

s,t

[δ]u−s,v−t · [g3ijk]st. (13)

With the derivative of C2
ij , the gradients can be further back-

propagated to the former stages, i.e. the location adaptive

CNN subnetworks. Now the forward and backward propa-

gations through the convolutional fusion networks, i.e. part-

fusion and global-fusion subnetworks, can be conducted ac-

cording to Eqn. (8), (11), (12), and (13).

Note, the proposed tree-structured convolution architec-

ture is equivalent to group convolution proposed in [15]

except that the input feature maps of different groups are

learned from different image regions.

4.2. Optimization

Typically, CNN is trained in a pure supervised man-

ner without unsupervised pre-training. Although our tree-

structured kernel adaptive CNN can also be trained with the

back-propagation method as aforementioned, in practice,

we adopt a more efficient optimization method. Similar to

the strategy used in [38], before globally fine-tuning the w-

hole network, we first conduct a stage-wise pre-training of

parameters in each convolutional subnetworks in a pure su-

pervise manner.

More specifically, the optimization of tree-structured k-

ernel adaptive CNN can be divided into four steps. First, we

train multiple kernel adaptive CNN models with Eqn. (6).

After removing the logistic regression layer of the trained

local CNN model, the remaining stacked convolution-

pooling modules are used as the first stage of tree-structured

CNN. Then, the part-fusion subnetworks and global-fusion

subnetwork are supervisely pre-trained in the 2rd and 3rd

step using the same strategy. Finally, with the initialized

parameters, the whole network is further fine-tuned with the

techniques illustrated in the previous subsection. Note, S-

GD is used to optimize our model with momentum 0.9. base

learning rate 0.01 and scaled by 0.95 after each epoch. We

run 100 epochs stage-wise pre-training and 60 epochs glob-

al end-to-end fine-tuning.
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Figure 3. Implementation details of network inputs and topological

structure. (a) Local texture and shape information Pi and Sj ; (b)

topological structure between local adaptive subnetworks and part

fusion subnetworks.
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Figure 4. Implementation details of parameter settings. (a) settings

of single location adaptive subnetwork; (b) settings of single part-

fusion subnetwork and (c) settings of global-fusion subnetwork.

5. Implementation Details
In this section, we elaborate on the structure of the pro-

posed adaptive convolutional neural network which is used

to conduct facial trait recognition. First, the face and land-

marks are automatically detected. Since our method at-

tempt to extensively exploit shape information, the correct-

ness of the used shape information is an important issue

that needs to be considered. To this end, we implement a

state-of-the-art face alignment algorithm, i.e. Supervised

Descent Method (SDM) introduced in [33], to conduct the

facial landmark detection. Trained with large scale wild

face image data provided by the i-bug group in [23], the

algorithm works well in all three benchmark databases, i.e.

WebFace [20] , Morph II [22] and MultiPIE [7].

As shown in Fig. 3 (a), 68 landmarks (red crosses) are

detected. With these landmarks, the face can be normal-
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Figure 5. Gender classification of local and part-fusion subnetworks with stage-wise initialization on WebFace database. Note the label

”Li” or ”Pi” under the horizontal axis indicates the ith local or part subnetwork. Please refer to Fig. 3 for definition of the index. As shown,

the part fusion subnetwork can effectively fuse multiple local subnetworks.

ized with the distance between eye centers, i.e. 40 pixels.

Then, 36 landmarks (blue circles in Fig. 3 (a)) are select-

ed to extract local patches Pi (green square in Fig. 3 (a))

with the size of 25 × 25 pixels. Note, we also select some

interpolated landmarks to ensure approximately even sam-

pling of facial regions. With the intensity normalized to

[0, 1], these local patches are then fed into the local kernel

adaptive subnetworks as texture information. As aforemen-

tioned, we conduct kernel adaptation in the local subnet-

works. As shown in Fig. 3 (a), the landmarks within a cer-

tain distance, i.e. within the yellow circle in Fig. 3 (a), are

selected as auxiliary landmarks for the corresponding patch

and the coordinates of these nearby auxiliary landmarks are

used as the local shape information Sj . In the second stage

of tree-structured kernel adaptive CNN, 6 part-fusion sub-

networks are used to combine the spatially nearby local

adaptive subnetworks. As shown in Fig. 3 (b), each part-

fusion subnetwork combines approximately 6 local adap-

tive subnetworks. Note, the black rectangles in Fig. 3(b) is

only used to indicate the connections between local adap-

tive subnetworks and part-fusion subnetworks, not the real

facial regions covered by the part-fusion subnetworks. The

parameter settings of the local adaptive subnetworks, the

part-fusion subnetworks and the global-fusion subnetwork

are shown in Fig. 4 (a), (b) and (c) respectively.

6. Experiments
Comprehensive experiments are conducted on three

databases, including WebFace [20] , Morph II [22] and Mul-

tiPIE [7]. First, the effectiveness of kernel adaptation and

tree-structured architecture are evaluated in Section 6.1 and

Section 6.2. Then the comprehensive comparisons of the

state-of-art methods in various facial trait recognition tasks

are provide in Section 6.3.

6.1. Evaluation on Kernel Adaptation

In order to clarify the effect of kernel adaptation with

respect to facial poses, we compare CNN with or without

kernel adaptation on MultiPIE database [7], indicated as a-

CNN and CNN respectively. There are 337 persons in Mul-

tiPIE database, we use the face images that have yaw pose

(b) Results of Local CNN (c) Results of Local a-CNN(a) Reference Face 
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0.1

0

Figure 6. Face Identification on MultiPIE database. (a) A reference

face to clarify local patch positions; (b) Result of CNN without

kernel adaptation; (c) Result of CNN with kernel adaptation. Note

the colorbar maps accuracy to colors. Best viewed in color.

within [−45o,+45o] with neutral expression and normal il-

lumination of all four sessions to conduct experiments. Fol-

lowing the evaluation protocol used in [37], we use face

images of the last 88 subjects as the training set with the

remaining 249 subjects’ images as the test set. And similar

to [37], we also use random “faces” as labels for optimiza-

tion, which means we use the same random “face” label for

the face images with different poses but the same identity.

The performances of 36 local subnetworks with and

without kernel adaptation are shown in Fig. 6(c) and

Fig. 6(b) respectively. As shown, in all the local patches,

the network models trained with kernel adaptation consis-

tently outperform that trained without kernel adaptation in

the multi-pose face recognition task. As shown, for the face

regions that change more dramatically in different view-

points, such as nose, the performance gains are more signif-

icant, which further validate the propose kernel adaptation

method in handling non-rigid appearance variation.

To better understand the effect of kernel adaptation, we

present the differences between the mean frontal adaptive k-

ernels and the corresponding mean profile adaptive kernels

in Fig. 7. As shown, the differences between frontal and

profile adaptive kernels are symmetric with respect to dif-

ferent yaw poses. This adaptation results may help learning

the pose-invariance features.

6.2. Evaluation on Tree-structured Architecture

To evaluate the tree-structured convolutional architec-

ture, we compare our tree-structured CNN, denoted as tree-

CNN, with the conventional CNN for gender estimation on
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Since the appearance variation caused by yaw pose are approxi-

mately symmetric, as is shown, the kernel adaption method can

automatically learn such rule and generate symmetrically different

kernels to cope with such variation. Best viewed in color.

WebFace database [20, 26]. WebFace database contains

59930 face images, which is the largest database in the liter-

ature of age and gender estimation study. As the images are

collected from the web, the database contains large vari-

ations in pose, facial expression, illumination, etc, which

make the database one of the most difficult databases for

age and gender estimation. For gender classification, we

use 51330 images of humans with ages above 5 to conduct

4-fold cross-validation. As we adopt stage-wise supervised

initialization, we first show the performance of 36 location

adaptive subnetworks and 6 part fusion subnetworks in the

first and second stages of the tree-CNN. As shown in Fig. 5,

the convolutional fusion of local CNN can consistently im-

prove the classification accuracy.

After stage-wise pre-training and global fine-tuning, as

presented in Fig. 8, the proposed tree-structured CNN out-

performs conventional CNN with comparable filter number

and the same network depth. Note we denote the number of

convolutional layers as the depth of a CNN. With the same

tree structure, we also evaluate our whole framework, i.e.

tree-CNN with kernel adaptation, denoted as tree-a-CNN.

As shown in Fig. 8, two layers tree-a-CNN outperforms

three layers tree-CNN, which may indicate that proposed

kernel adaptation helps learning more compact model to

achieve feature invariance. This is very helpful for an end-

to-end learning system.

6.3. Evaluation on Facial Trait Recognition

Finally, we present comprehensive results on Web-

Face [26], Morph II [22] and MultiPIE [7] in Table 1 to

evaluate the effectiveness of propose shape driven kernel

adaptive CNN for facial trait recognition. For clarification,

we highlight with underline the previous state-of-the-art

methods, which have achieved convincing results on these

databases. The best result in each database are highlighted

with bold typeface. For comprehensive comparison, we al-
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Figure 8. Gender Classification evaluation of CNN, tree-CNN and

tree-a-CNN on WebFace Database.

so show the performance of AlexNet [15] on WebFace and

Morph II and DeepFace [32] on MultiPIE. Note, we use the

structure configuration files provided by Caffe [14] commu-

nity to train the AlexNet from scratch on the corresponding

database. We realize the local connected layer of DeepFace

in Caffe and train DeepFace model from scratch on Mul-

tiPIE database. For both AlexNet and DeepFace, we run

totally 50,000 iterations, with base learning rate 0.01. Step-

size is set as 20,000 and after each step the learning rate is

divided by 10. Note, for DeepFace, 2D image warping in-

stead of the 3D alignment is used to align face images to the

mean shape.

WebFace Database: We conduct age and gender classifi-

cation on the WebFace database. We use all 59930 im-

ages to conduct age estimation and 51330 images with ages

above 5 to conduct gender estimation with a 4-fold cross

validation protocol as in [26]. The comparison results are

shown in Table 1(a). As WebFace is captured in wild en-

vironment, images contains large pose and expression vari-

ation. Thus our proposed tree-a-CNN, which help disen-

tangling these irrelevant variations, achieves significant im-

provements over other comparisons. Our 3 layer tree-a-

CNN also outperforms Krizhevsky’s 8 layer AlexNet, more

specifically tree-a-CNN/Alexnet has 0.34M/60M parame-

ters and 23K/650K neurons, which further validate the ef-

fectiveness of the shape driven kernel adaptation and tree-

structured convolutional fusion architecture.

Morph II Database: Age and gender classification experi-

ments are also conducted on the Morph II database, which

contains about 55,000 face images. With the same evalu-

ation protocol used in [8, 9], the experimental results are

shown in Table 1(b). AlexNet achieves slightly better per-

formance in gender classification tasks. However, our tree-

a-CNN method still achieves best reported results on age

estimation task. The relatively small improvements over

other comparison method is mainly because that the images

of Morph2 are collected under controlled environment and

less challenging pose variations are included. The proposed

kernel adaptation is more effective in challenging real world

environments, in which the captured face images may hold

a massive of relevant or irrelevant factors to be disentangled.



Table 1. Facial trait recognition experiments on WebFace, Morph II and MultiPIE databases.

(a) WebFace

Methods Gender Accuracy Age MAE

BIF [10] 79.32 10.65

RF [19] - 9.38

Ridge [26] 86.99 9.75

AlexNet [15] 88.26 9.43

tree-CNN 88.20 8.60

tree-a-CNN 89.71 7.27

(b) Morph II

Methods Gender Accuracy Age MAE

BIF [10] 96.58 5.09

KPLS [8] 98.35 4.04

KCCA [9] 98.45 3.98

Ridge [26] 97.74 4.80

AlexNet [15] 98.53 4.39

tree-CNN 98.38 3.90

tree-a-CNN 98.48 3.61

(c) MultiPIE

Protocol Methods
Identification Accuracy per Pose

Avg− 45o − 30o − 15o + 15o + 30o + 45o

Setting 1

RFSME-1[37] 81.5 93.2 98.4 96.8 92.4 88.8 91.8

RFSME-20[37] 96.8 100 100 100 100 96.4 98.8

tree-CNN-1 82.8 99.0 100 100 98.7 83.6 94.0

tree-a-CNN-1 95.3 99.9 100 100 100 95.4 98.4

tree-a-CNN-20 97.3 99.9 100 100 100 97.2 99.1

Setting 2

VAAM[1] 74.1 91 95.7 95.7 89.5 74.8 86.9

MLCE[18] 90.0 94.3 95.3 94.7 93.7 87.7 92.6

MDF-SA[17] 93.0 98.7 99.7 99.7 98.3 93.6 97.2

LE [3] 86.9 95.5 99.9 99.7 95.5 81.8 93.2

CRBM [12] 80.3 90.5 94.9 96.4 88.3 75.2 87.6

DeepFace [32] 79.3 96.2 99.2 100 97.1 83.5 92.6

RL [38] 95.6 98.5 100 99.3 98.5 97.8 98.3

tree-CNN-1 85.3 99.3 100 100 99.6 86.2 95.1

tree-a-CNN-1 97.1 100 100 100 100 97.8 99.2

MultiPIE Database: We conduct face identification exper-

iments on MultiPIE database to evaluate capability of pro-

posed method in handling pose variation. The results are

presented with two commonly used protocols, i.e. setting

1 (with 88/249 subjects used for training/testing) and set-

ting 2 (with 200/137 subjects used for training/testing). In

Table 1(c), the first block evaluation use setting 1 and the

second block evaluation use setting 2. Similar to [37], we

also use random face as optimization target. Different from

age and gender recognition which only use the final output

of the network, for face identification task we concatenate

the output of local, part and global CNN to constitute a com-

prehensive representation of the face images. As subjects in

the test set are not included in the training set, an addition-

al distance metric is needed to find the nearest neighbor for

face identification. In this paper, cosine distance metric is

used. With this simple cosine distance over the compre-

hensive representation learned by tree-a-CNN, we achieve

state-of-the-art face identification accuracy (this method is

denoted as tree-a-CNN-1). Note the results of tree-a-CNN-

20 is obtained by averaging 20 models learned with differ-

ent set of random face labels.

7. Conclusions and Future Work

In this paper, we propose a kernel adaptation method in

CNN to exploit shape information for disentangling irrele-

vant non-rigid facial appearance variations. Since different

facial regions have different deformations, to better exert it-

s function, we adopt kernel adaptation in multiple local re-

gions respectively and further propose a tree-structured con-

volutional architecture to jointly learn features in an end-to-

end manner. Evaluations on facial trait recognition tasks

demonstrate the state-of-the-art performances of the pro-

posed tree-a-CNN model.

Although our network has relatively shallow structure

comparing to the state-of-the-art deep convolutional neural

networks [15, 24, 31], our method achieves comparable or

better performance than AlexNet [15] and DeepFace [32].

These results suggest that kernel adaptation method pro-

vides a more compact and effective way to disentangle com-

plex factors in facial images. This is very helpful for an

large end-to-end system like deep networks. In future, we

will try to deploy our kernel adaptation method into larger

and deeper networks to fully explore the potential of shape

information for robust feature learning.
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