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Figure 1: An example of our method. Given an input panorama with irreg-
ular boundaries (a), our method warps it to regular boundaries while keeps
its (geodesic) appearance (b).

The manipulation of panoramic/wide-angle images is usually achieved via
image warping. Existed methods [1, 2, 3, 4, 5] preserve straight lines besides
shapes. They are not sufficient for warping panoramic/wide-angle images:
image projections will turn straight lines into curved “geodesic lines”, and
it is fundamentally impossible to keep all these lines straight. Instead of
preserving straightness, in this work we propose to preserve geodesic lines.

We define “geodesic lines” as projections of 3-D straight lines onto 2-D
manifolds. Unlike the methods in [1, 5] that straighten geodesic lines, our
method allows them to be curved. But an unnaturally curved geodesic line
can be noticeable, because a geodesic line is not simply a locally smooth
curve. In our solution, we constrain a geodesic line to remain “geodesic”:
it should be warped into another geodesic line, so can preserve its geodesic
appearance. Fig. 1 is an example of our solution.

Given an input panoramic/wide-angle image, we first detect geodesic
lines. We then group geodesic lines such that segments on the same plane
are grouped together. The segments in the same group should have a non-
local property, i.e., they are expected to lie on a common plane after warping.
This non-local property is given by the two rotation angles (θ ,φ) that rotate
one plane to another. Next we present a warping energy function that only
involves the non-local variables (θ ,φ) and the mesh vertexes.

Consider a single segment with two endpoints p̂1, p̂2 before warping
(Fig. 2(a)). p̂1, p̂2 are 3-D points and represented as 3×1 vectors. We use
the camera center as the origin of the 3-D coordinates.

Assume a 3-D point p can be modeled by a transform T from p̂1, p̂2.
The transform involves two parts. In the first part, it is shifted inside the
plane spanned by the two vectors p̂1, p̂2 (see p̂ in Fig. 2(b)). If we use a 3×2
matrix B̂ = {p̂1, p̂2} to denote the basis of this plane, then p̂ can be written
as B̂s, where s is a 2×1 vector to be determined. In the second part, the
transform rotates this plane by some angles (θ ,φ) (Fig. 2(b)). This rotation
can be written as a 3-D rotation matrix Rθ ,φ . Combining these two parts,
the transform T is: T (s,θ ,φ) = Rθ ,φ B̂s. We define an energy to minimize
the difference between a point p and its expected transformed position.

e(p,s,θ ,φ) = ‖Rθ ,φ B̂s−p‖2. (1)

Here p is the 3-D position after warping and will be related to the mesh ver-
texes, and {θ ,φ} are non-local variables that are shared by all the segments
in the same group.

We first minimize Eqn.(1) w.r.t. s and obtain: s = (B̂TB̂)−1B̂TRT
θ ,φ p

This shows a nice property that s is a linear function of p. Substituting s into
Eqn.(1) we obtain:

e(p,θ ,φ) = ‖Cθ ,φ p‖2, (2)

with a matrix Cθ ,φ defined as: Cθ ,φ , Rθ ,φ B̂(B̂TB̂)−1B̂TRT
θ ,φ − I.
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Figure 2: Left: p̂1 and p̂2 are two end points of a geodesic line segment
before warping. Right: p̂ = B̂s is a shifted point on the same plane (black)
as p̂1 and p̂2. This plane is rotated by Rθ ,φ and mapped to another plane
(red). Then p̂ becomes p after warping.

Given all segments clustered into K groups, the energy EG for preserv-
ing all geodesic lines is:

EG({p},{θk,φk}) =
1
L

K

∑
k=1

∑
l∈G(k)

∑
i=1,2
‖Cθk,φk pl,i‖2. (3)

Here L is the number of segments, pl,i (i=1,2) are the two end points in a
segment l, and l belongs to the k-th group G(k). The notations θk and φk
imply that the rotation angles are shared by the segments in the group k,
such that these segments are expected on the same plane after warping. So
{θk,φk} are non-local variables of the group k.

Next we incorporate the geodesic-preserving energy Eqn.(3) in a warp-
ing energy. We consider quad meshes in this paper. The vertexes are denoted
as {v j} with each v j = (u j,v j) as 2-D coordinates. Denote all the vertexes
by a vector V. The warping energy is defined as:

E(V,{θk,φk}) = λBEB(V)+λSES(V)+λGEG(V,{θk,φk}). (4)

Here EB is a boundary-preserving term, ES is a shape-preserving term, and
EG is the geodesic-preserving term defined on vertices. We set λB = 108

for hard constraints, and set λS = 1 and λG = 100. To optimize this energy,
we adopt an alternative scheme between V and {θk,φk}. The details of the
terms and optimization are in the paper.

Our method is demonstrated in various applications, including rectan-
gling panoramas, resizing panoramic/wide-angle images, and wide-angle
image manipulation. An extension to ellipse preservation for general im-
ages is also presented.
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