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Abstract

Joint object recognition and pose estimation solely from
range images is an important task e.g. in robotics applica-
tions and in automated manufacturing environments. The
lack of color information and limitations of current com-
modity depth sensors make this task a challenging computer
vision problem, and a standard random sampling based ap-
proach is prohibitively time-consuming. We propose to ad-
dress this difficult problem by generating promising inlier
sets for pose estimation by early rejection of clear outliers
with the help of local belief propagation (or dynamic pro-
gramming). By exploiting data-parallelism our method is
fast, and we also do not rely on a computationally expen-
sive training phase. We demonstrate state-of-the art perfor-
mance on a standard dataset and illustrate our approach on
challenging real sequences.

1. Introduction

Since the emergence of commodity depth sensors in the
past few years, recognizing objects and estimating their
pose using such depth sensors is an active research topic.
Several approaches demonstrate that the results for this task
can be improved over methods using only color images by
combining RGB and depth features (e.g. [8, 17, 21]), but
in many situations color cues are either not available, not
informative or unreliable. In particular, in the context of
automated manufacturing and mechanical assembling, ob-
jects may need to be recognized and their pose estimated
from depth data only.

In contrast to color images, depth maps are usually far
less discriminative in their appearance. While a good sta-
tistical model for color images is still an open research
topic, a sensible and simple prior for depth images is given
by a piecewise smooth regularizer. Consequently, we do
not rely on any interest point detection in depth images
and evaluate features densely (or quasi-densely by subsam-

pling) in the query image. Further, real depth sensors ex-
hibit several shortcomings at depth discontinuities, such
as half-occlusions and foreground fattening occurring with
triangulation-based sensors (passive stereo or Kinect-type
active stereo), and mixed pixels with time-of-flight sensors.
Overall, many depth sensing technologies report reliable
and accurate depth values only in smooth regions of the true
scene geometry. Beside that, the piecewise smooth appear-
ance of range images also implies that extracting a full 3D
local coordinate frame is not reliable, but at least estimating
surface normals is rather stable. Thus, feature extraction
can be easily made invariant with respect to two degrees of
freedom (i.e. the surface normal) but not reliably invariant
with respect to the remaining 2D rotation in the local tan-
gent plane. We also believe that for the same reason predict-
ing poses directly based on feature correspondences leads
to large uncertainties in the estimates, and therefore we fol-
low [20, 3] in predicting “object coordinates” (i.e. 3D ver-
tices on the object of interest) and computing more certain
and accurate poses from multiple correspondences.

Finally, objects of interest can be occluded and only be
partially visible. A sensible principle to add robustness with
respect to occlusions is to employ a compositional method,
i.e. to detect the object and estimating its pose by detect-
ing and aligning smaller parts. Due to the locally ambigu-
ous appearance of depth images, we expect a much higher
false-positive rate than with color images when matching
features extracted in the query images with the ones in the
training database, and it will be essential to maintain several
predictions of object coordinates per pixel to address the
amount of false positive matches. In summary, object de-
tection solely from depth data is facing the following chal-
lenges: (i) few salient regions in range images, (ii) unreli-
able depth discontinuities, and (iii) uninformative features
and descriptors.

Since depth cameras report 3D geometry, and our
method is based on predicting 3D object coordinates for
pixels in the range image, we are able to assess the internal
consistency of putative object coordinates by comparing the
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distance between two observed 3D points (back-projected
from the depth map) and the one between predicted ob-
ject coordinates. Grossly deviating distances indicate that
at least one of the predicted object coordinates is an outlier.
Thus, one can easily avoid sampling and evaluating pose
hypotheses from outlier-contaminated minimal sample sets
by scoring this (pairwise) consistency between predictions
and observed data.

If one interprets the object coordinate hypotheses per
pixel as unknown (or latent) states, then the pairwise consis-
tency of predicted object coordinates plays the role of pair-
wise potentials in a graphical model. Hence, it is natural
to build on inference in graphical models in this setting in
order to rank sets of putative object coordinates by comput-
ing respective (min-)marginals. In contrast to the standard
use of graphical models, which usually defines a random
field over the entire domain (i.e. image), we utilize many
but extremely simple and local graphical models whose un-
derlying graph has exactly the size of the required minimal
sample set.

Robust geometric estimation is typically addressed by
data-driven random sampling in computer vision. A stan-
dard RANSAC-type approach for rigid object pose estima-
tion would randomly draw three object coordinate hypothe-
ses (not necessarily using a uniform distribution) and eval-
uate the induced pose with respect to the given data. On
a high level view RANSAC generates a large number of
pose hypotheses and subsequently ranks these. We reverse
the direction of computation: our method considers a large
number of overlapping minimal sample sets and removes
the ones clearly contaminated with outliers by utilizing the
consistency criterion. Since the minimal sets are overlap-
ping, applying the consistency criterion to a pair of putative
correspondences is able to discard several minimal sample
sets at once. We believe that our approach is an elegant so-
lution to generate promising sample sets for robust (pose)
estimation exhibiting very few inlier correspondences.

2. Related work
Object detection from 3D inputs has been widely re-

searched during the past decade. Initially many solu-
tions focused on trying to solve object detection from
laser scans or even from synthetically generated meshes
[10, 13, 4]. However, with the popularization of RGB-D
sensors since 2010 there has been an increasing demand of
algorithms [8, 17, 21, 3] that operate at interactive frame
rates and that are able to cope with inputs that are less re-
liable than laser scans. Most of the latter algorithms rely
heavily on RGB data to perform detection, which prohibits
the application of these methods on 3D only inputs. Several
approaches [8, 17, 21] use a global description of the object
(using RGB edges and depth normals), hence these meth-
ods have difficulties in handling occlusions. Brachmann et

al. [3] on the other hand compute features densely for each
pixel, and subsequently apply a regression forest followed
by pose scoring to determine detections. Because it uses a
dense description of local features it is able to address oc-
clusions. The biggest advantage of RGB-D algorithms over
methods that rely solely on 3D or depth data is their capa-
bility to deliver up to real-time performance. Further, these
methods are able to cope with noisier data returned by com-
modity depth sensors.

Methods that utilize only 3D data as input can be based
on either global or local object representations. Several pro-
posed methods based on a global object representation em-
ploy the Hough transform [11, 16, 23]. These approaches
create a set of features that are accumulated in a Hough vot-
ing space and then select the pose which gathered the largest
number of votes. Like in the RGB-D case, global descrip-
tions suffer again when strong occlusions are present. Sev-
eral local descriptor-based approaches find salient points in
the point cloud and then obtain invariant descriptions of the
regions around them [19, 10, 1, 18]. The main problem with
this approaches is that 3D information, in contrast to RGB,
is usually quite uninformative (many flat surfaces or similar
curves) and one cannot find a sufficient number of reliable
features in many situations.

Spin images [10] are among the successful local descrip-
tors to recognize 3D shapes. Applied on 3D shapes the spin
image is a revolution histogram describing the local surface,
and (due to alignment with the local surface normal) it is in-
variant to 1D rotations in the tangent plane. Mian et al. [13]
also use the normal to obtain an invariant descriptor: they
fix the local coordinate frame by using two points on the
model (in additional to the normal), and fill an occupancy
grid given the local coordinate frame. In this work it was
also shown that the use of occupancy grids is more discrim-
inative than the use of spin images.

Similar to [13], Drost et al. [4] fix the local coordinate
frame of the shape descriptor by choosing two vertices, but
their descriptor is based on the distance and the geometric
relation of the normals at the chosen surface points instead
of using an occupancy grid. This descriptor design makes
Drost’s features less discriminative than Mian’s but also
faster to compute. Although Drost’s features are less in-
formative, by using all possible combinations of two points
in the model, given an initial point, he was able to con-
struct an overall more informative description. One of the
most important contributions of this work is that it cannot be
classified as either a local or a global description but rather
as both; by taking pairs of points, Drost is able to obtain
invariance to occlusion like other local approaches and at
the same time by creating a feature using every point in the
model it makes the approach robust to non informative ob-
jects. The true potential of Drost’s feature is shown in [22],
by applying several learning techniques they are able to re-



(a) RGB image (b) Depth image (c) Model coordinates (d) Best matching coordinates

(e) Feature (Hamming) distance (f) Self-consistency (g) Pose score (h) Superimposed model

Figure 1. Method overview: (a) input RGB image (for illustration purpose only); (b) input depth image; (c) view on the trained CAD
model with color coded object coordinates; (d) best matching object coordinates for the input to illustrate the level of false positives; (e) the
corresponding minimal feature distances, which also serve as unary potentials in Eq. 3; (f) the smallest min-marginals Eq. 5 per pixel;
(g) the geometric pose scores (Eq. 9) after pose refinement; and (h) points of the model superimposed according to the best pose estimate.

duce the number of features required obtaining a reduced
more informative set of pair features. When compared to
all previous approaches they clearly outperform all of them
in both computation time and accuracy.

Although these techniques using only 3D data as input
obtain very good results, they are designed to work with
relatively clean data such as laser scans. The effect of noise
on detection rates is not assessed in most cases. Another big
drawback are the computation times, since none of these al-
gorithms is able to perform close to real time speeds. In
our work we show that the proposed approach is able of
handling a noisy sensor while performing at several frames
per second. Another challenging aspect not explicitly ad-
dressed in [10, 13, 4, 22] is handling objects with highly
self-similar local shape appearance (e.g. surfaces of revolu-
tion or objects with multiple symmetries).

If local minima were of no concern, then estimating the
pose of a rigid object given depth data amounts to register-
ing two meshes (a given object of interest and the current
depth observation), which can be solved by the ICP algo-
rithm [2] or one of its robust variants. It is well known that
ICP requires a good initial estimate to converge to a sensi-
ble solution. Ultimately, all methods to detect 3D objects
in either depth-only or RGB-D data aim to provide a good
initializer for an ICP-like refinement procedure.

3. Our Approach
Before we describe our method in detail, we provide a

high-level overview (see also Fig. 1): at test time the al-

gorithm maintains a set of putative matching object coordi-
nates for each pixel in the test image (Figs. 1(d,e)). Instead
of sampling minimal sets of correspondences required for
(rigid) pose computation, the utility of pairs of correspon-
dences is assessed by using the consistency with the ob-
served depth data. Triplets of correspondences are ranked
(Fig. 1(f)), and finally promising ones are evaluated using
a standard geometric criterion (Fig. 1(g)) to determine the
best-scoring object pose (Fig. 1(h)).

3.1. Descriptor Computation

Given the nature of depth maps and the problem of de-
tecting objects that occupy only a fraction of the image, we
opt for a dense (or quasi-dense) computation of descriptors
in order not to rely on unstable salient feature points.

A natural choice for a descriptor to represent (local) ge-
ometry is based on an implicit volumetric representation of
range images and 3D surface meshes. We employ a bi-
nary occupancy grid to compute descriptors. A slightly
more discriminative volumetric data structure would be a
(truncated) signed distance function (TSDF), but we discard
this option for efficiency reasons (proper TSDF computa-
tion is costly, and the descriptors would use several bits per
voxel). We believe that using generalizations of successful
gradient-based image descriptors to 3D shapes (such as 3D-
SURF [11]) is not necessary, since the intensity values of
the (3D) image are known to be only 0 and 1 for occupancy
grids (and therefore invariance to intensity transformations
is unnecessary). Consequently, our descriptor is a bit string



of occupancies in the vicinity of a surface point.
In order to obtain some degree of invariance with re-

spect to viewpoint changes, the z-axis of the local coordi-
nate frame at a surface point is aligned with the (local) sur-
face normal. Given the piecewise smooth characteristic of
range images, normals can be estimated relatively reliably
for most pixels (after running a Wiener filter to reduce the
quantization artifacts observed in triangulation-based depth
sensors). For the same reason computation of the second
principal direction is highly unreliable and not repeatable.
Therefore we compute several descriptors at each surface
point by sampling the 2D rotation in the tangential plane
(we sample in 20◦ steps resulting in 18 descriptors per sur-
face point).

Instead of storing a full local occupancy grid (centered
at a surface point) we use a subset of voxels (512 in our im-
plementation, i.e. our descriptors are 512 bits long). We ini-
tially utilized a conditional mutual information based fea-
ture selection method [6] to determine the most informa-
tive set of voxels, but this procedure turned out to be rather
slow even with the proposed lazy evaluation technique. The
reason is that many voxels are not very discriminative, and
their respective conditional mutual information is similar.
By running feature selection on example training data, we
observed that only voxel positions near the tangent plane
are selected. Thus, we decided to randomly sample voxel
positions in a box aligned with the tangent plane that has
half the height than width and depth (we use 8cm × 8cm ×
4cm boxes). This means, that building the descriptors from
the given depth images or training meshes is very fast.

3.2. Matching

At test time descriptors are computed for each pixel
with valid depth and estimated surface normal in the (sub-
sampled) depth image, and the task is to efficiently deter-
mine the set of object coordinates with similar local shape
appearance. The natural choice to quantify similarity of bi-
nary strings is the Hamming distance. We experimented
with approximated nearest neighbours implementation for
binary data in FLANN [14] and with a hashing based in-
dexing data structure using orthonormal projections [7].1

Since in our experience the performance is roughly similar
for both acceleration strategies, we only report the results
using FLANN below.

3.3. Pairwise Compatibility

The matching step returns a list of object coordinate can-
didates for each pixel with attached descriptors. Even with-
out generating a pose hypothesis it is possible to assess the
quality of pairs of putative correspondences by exploiting
the information contained in the range image. If p and q

1Since the input of the orthogonal transformation is a binary string,
faster hashing can be achieved by using respective lookup tables.

are two pixels in the query range image, and X̂p and X̂q

are the respective back-projected 3D points induced by the
observed depth, and Xp and Xq are putative correspon-
dences reported at p and q, then a necessary condition for
X̂p ↔ Xp, X̂q ↔ Xq being inlier correspondences is that∥∥X̂p − X̂q

∥∥ ≈ ∥∥Xp −Xq

∥∥. (1)

If the Euclidean distance between X̂p and X̂q deviates sub-
stantially from the one between Xp and Xq , then Xp and
Xq cannot be part of an inlier set. The exact quantifica-
tion of “sufficiently large” deviations depends on the depth
sensor characteristics. Note that this criterion is invariant
to any hypothesized pose. It can be made stronger (more
discriminative) by adding the compatibility of normal esti-
mates as e.g. considered in [4]. In order not to introduce
extra tuning parameters of how to weight the distance and
normal compatibility terms, we focus on the distance based
compatibility of predicted object coordinates in the follow-
ing. We believe that the loss of discrimination power by
excluding normal compatibility has minimal impact on the
results, since the final compatibility scores are based on
triplets of correspondences as described below. Thus, our
scoring function to assess the compatibility between corre-
spondences Xp ↔ X̂p and Xq ↔ X̂q (which will play the
role of pairwise potentials in the following) is given by

ψ(Xp, Xq; X̂p, X̂q)
def
= (2){

∆2(Xp, Xq; X̂p, X̂q) if |∆(Xp, Xq; X̂p, X̂q)| ≤ σ
∞ otherwise.

with ∆(Xp, Xq; X̂p, X̂q)
def
= ‖X̂p − X̂q‖ − ‖Xp − Xq‖.

σ is the maximum noise or uncertainty level expected from
the depth sensor and matching procedure. Since we densely
sample the training data, the value of σ does not need to
reflect the surface sampling density of training meshes. We
set σ = 3mm in our experiments.

3.4. Minimal Sample Set Generation

Rigid pose estimation requires at least three (non-
degenerate) point-to-point correspondences. Given three
such correspondences, e.g. {X̂p ↔ Xp, X̂q ↔ Xq, X̂r ↔
Xr}, a Euclidean transformation and therefore pose esti-
mate can be computed via the Kabsch algorithm or Horn’s
method [9]. The task at hand is to generate a promising set
of three correspondences from the candidate object coordi-
nates determined for each pixel.

Randomly sampling three putative correspondences will
be inefficient, since the inlier ratio is very small as illus-
trated in the following example: if the object of interest is
seen in about 5% of the image pixels, and 10 putative cor-
respondences are maintained per pixel (and contain a true
positive for each pixel covered by the object), the inlier ratio



is 0.5%, and naive RANSAC sampling at a 95% confidence
level will require more than 20 million iterations. This value
is only a coarse estimate, since it is too pessimistic (e.g.
by assuming a naive sampling over the full image instead
of a more sophisticated sampling strategy) and too opti-
mistic (by assuming pixels seeing the object have always
a true positive correspondence) at the same time. Never-
theless, almost all random minimal sample sets will contain
at least one outlier, and the pairwise compatibility criterion
described in Section 3.3 will be crucial to efficiently deter-
mine promising sample sets.

To this end we propose to compute min-marginals via
dynamic programming on a tree2 to quickly discard outlier
contaminated sample sets. Let {p, q, r} be a set of (non-
collinear) pixels in the query image, let Xs, s ∈ {p, q, r}
range over the putative object coordinates, and φs(Xs) be
a unary potential (usually based on the descriptor simi-
lary), then the negative log-likelihood (energy) of states
(Xp, Xq, Xr) according to our graphical model is

Epqr(Xp, Xq, Xr)
def
= φp(Xp) + φq(Xq) + φr(Xr)

+ ψ(Xp, Xq; X̂p, X̂q) + ψ(Xp, Xr; X̂p, X̂r). (3)

We use the Hamming distance between the descriptor ex-
tracted at pixel s and the ones returned by the (approximate)
nearest neighbor search for Xs as unary potential φs(Xs).

Note that min-marginals, i.e. the quantities µpqr(Xp)
def
=

minXq,Xr
Epqr(Xp, Xq, Xr) for each Xp can be computed

via the bottom up pass of belief propagation on a tree rooted
at p. In our case we only need 3 correspondences to deter-
mine a pose estimate, and therefore the tree degenerates to
a chain. If the minimum sample size is larger—e.g. when
computing the pose of an object subject to low-parametric
and (approximately) isometric deformations—the obvious
generalization of the underlying graph is a star graph.

The relevant values computed during BP are the upward
messages

mq→q(Xp) = min
Xq

{
φq(Xq) + ψ(Xp, Xq; X̂p, X̂q)

}
(4)

sent from a leaf q to the root p. Note that the min-marginals
can be expressed as

µpqr(Xp) = min
Xq,Xr

Epqr(Xp, Xq, Xr)

= φp(Xp) +mq→p(Xp) +mr→p(Xp). (5)

Further, observe that the vector of messages mq→p
def
=

(mq→p(Xp))Xp
can be reused in all trees containing the

(directed) edge q → p, leading to substantial computa-
tional savings. For certain pairwise potentials ψ the mes-
sage vector computation is sub-quadratic in the number of

2Understood as an instance of min-sum belief propagation.

states (i.e. putative object coordinates in our setting, see
e.g. [5]), which would lead to further computational ben-
efits. Unfortunately our choice of the pairwise potential
given in Eq. 2 does not allow an obvious faster algorithm
for message computation. Message computation does not
only yield the value of the messages, mq→q(Xp), but also
the minimizing state

X∗q→p(Xp)
def
= arg min

Xq

{
φq(Xq) + ψ(Xp, Xq; X̂p, X̂q)

}
,

which is used to quickly determine the optimal object coor-
dinate predictions at pixels q and r given a prediction Xp at
pixel p. Computation of the min-marginals µpqr(Xr) does
not take into account the third edge potential between pixel
q and r, ψ(Xq, Xr; X̂q, X̂r). Adding this edge to the en-
ergy Eq. 3 would require dynamic programming for triple
cliques, which we considered to be computationally too
costly at this point.3

We densely compute the min-marginals for each pixel
in the query image (i.e. every pixel is the root), and com-
pute messages mp+δk→p from pixel located at an offset δk,
k ∈ {1, . . . ,K}, from p. Our choice of the set {δk} con-
tains the 16 offsets of axis aligned and diagonal offsets at
8 and 16 pixels distance (which aims to trade off local-
ity of predictions and numerical stability of pose estima-
tion). For two edges q → p and r → p the predictions
(Xp, X

∗
q→p(Xp), X

∗
r→p(Xp)) form a minimal sample set

for estimating the rigid pose, and min-marginals are for all
K(K − 1)/2 such triplets are used to rank these minimal
sample sets. The method proceed with estimating and eval-
uating the pose for the top ranked ones (we use 2000) as
described in the next section.

3.5. Pose Hypotheses Evaluation

Assessing the quality of a pose hypothesis by align-
ing the 3D model with the range image appears to be
straightforward—if the poses are affected by no or mini-
mal noise. We do expect a substantial noise level in our
pose hypotheses, and a sensible scoring function to rank the
poses needs to take this into account. To this end a scoring
function needs to be invariant to pose uncertainties. Since
the true pose is effectively a latent variable, we can either
marginalize (i.e. average) over nearby poses4 or maximize
over the latent pose. We choose the latter option. Since we
do not expect or assume to obtain many pose hypotheses
near the true pose, we refrain from using pose clustering
or averaging approaches e.g. employed in [4, 16]. In con-
trast to works such as [20, 3], which refine a pose entirely
based on correspondences between predicted object coordi-
nates and observed depth geometry, we utilize a “classical”

3DP would be cubic in the number of states in such setting.
4Which essentially amounts to smoothing the input, see [12] for an ex-

tensive discussion of building invariance with respect to (geometric) trans-
formation.



geometric approach by determining an optimal alignment
between the given 3D model points and the depth map.

A proper way to assess the quality of a hypothesized pose
(or any latent variable in general) is to “explain” the data
given the assumptions on the sensor noise, i.e. to formulate
a respective cost function that sums (integrates) over the im-
age domain. Unfortunately, this more principled formula-
tion is expensive to optimize. Thus, we employ—like most
of the respective literature—the reverse direction of “ex-
plaining” the model for computational reasons (recall that
up to 2000 pose hypotheses are considered at this stage).
We implemented several methods to robustly refine the pose
of a point set with respect to a depth map, including pose
refinement via (robust) non-linear least squares. In our ex-
perience the following simple alternation algorithm proves
to be efficient and effective:

1. Perform “projective data association” (i.e. establish the
correspondence between a model point Xj and the
back-projected depth X̂j with both X̂j and RXj + T
being on the same line-of-sight), and

2. update R and T using a weighted extension of the
Kabsch algorithm (also known as Wahba’s problem).
The weights wj are derived from the smooth approx-
imation of the robust truncated quadratic kernel (see
e.g. [25, 24] for a discussion of this kernel)

ρτ (e)
def
=

{
e2

4

(
2− e2

τ2

)
if e2 ≤ τ2

τ2

4 otherwise,
(6)

ωτ (e)
def
= ρ′τ (e)/e = max{0, 1− e2/τ2}, (7)

and given by

wj = ωτ

((
RXj + T − X̂j

)
3

)
. (8)

The weights given in Eq. 8 are based on depth deviation
between the transformed model point and the correspond-
ing value in the depth map. If a deph value is missing for
the projected model point, that correspondence is consid-
ered an outliers and has zero weight. τ is the inlier noise
level and we use the same value as for σ (which is 3mm,
recall Sec. 3.3). Please observe that this algorithm does not
optimize a single energy (a property shared with most ICP
variants using projective data association). We iterate these
two steps 10 times on a (random) subset of 1000 model
points. The final score of the pose hypothesis is evaluated
on a larger subset of 10000 model points by using a robust
fitting cost, ∑

j

ρτ

((
RXj + T − X̂j

)
3

)
. (9)

The pose with the lowest cost is reported and visualized.

3.6. Implementation Notes

Training phase: The core data used in the training stage
are depth images of the object(s) of interest together with
the respective pose data. These depth maps can be gen-
erated synthetically from e.g. CAD models or captured by
a depth sensor. If CAD models are rendered, the camera
poses are generated randomly looking towards the object’s
center of gravity. At this point we do not aim to simulate
the real depth sensor characteristic (e.g. noise or quantiza-
tion effects), which in some cases led to missed correspon-
dences in parts of the object (e.g. the top of the pipe in Fig. 1
has a substantially different appearance in rendered and real
depth maps). From these depth maps we extract a target
number of descriptors (typically 32k in our experiments)
by selecting a random subset of (valid) pixels in the depth
map. Random sampling is slightly biased towards pixels in
the depth map with close to fronto-parallel surface patches.
Thus, about 600k descriptors (32k × 18 for the sampled
tangent-plane rotations) are generated and stored. No fur-
ther processing takes part at training time. Consequently,
the training phase is completed within seconds.

Parallel implementation: Most steps in our approach
can be trivially parallelized (including descriptor extrac-
tion, matching against the database, message passing, and
pose evaluation). While we did not implement any part of
the algorithm on the GPU, we made straightforward use of
OpenMP-based multi-processing whenever possible. The
input depth maps are 640×480 pixels, but we compute pre-
dicted object coordinates on either 320× 240 or 160× 120
images (the latter one for to achieve interactive frame rates).
On a dual Xeon E5-2690 system we achieve between 2
frames per second (320 × 240 resolution) or up to 10 Hz
(160 × 120). Nearest-neighbor descriptor matching is usu-
ally the most time consuming part (see also Fig. 4). We
anticipate real-time performance of a GPU implementation.

4. Experiments
We show results on the Mian dataset [13], since it is the

de facto baseline benchmark dataset for 3D object detection
algorithms. We also show our own datasets recorded with
the ASUS Xtion camera in order to demonstrate our algo-
rithms ability to cope with noisy inputs. Since our 3D ob-
ject detection algorithm takes depth maps as input, we con-
verted the given meshes to range images by rendering into
640×480 depth maps using approximate parameters for the
camera intrinsics (since exact calibration parameters of the
range scanner are not available). Consequently, the amount
of occlusions in our depth maps may be slightly higher
than in the provided meshes. We show as baseline methods
the following approaches: Spin images [13], Tensor match-
ing [13], Drost et al. [4], SVS [15] and Tuzel et al. [22].



Figure 2. Sample frames from the ASUS Xtion sequences. The respective model point cloud is superimposed on the normal-map rendered
input. Correct detections and poses can be seen despite large occlusions, missing depth data, and strong viewpoint changes. The full
sequences are provided in the supplementary material.

0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9
0

0.2

0.4

0.6

0.8

1

Occlusion percentage

R
e
co

g
n
it
io
n

ra
te

Spin Images: 2 h/obj

Tensor matching: 90 sec/obj

Drost, τ = 0.025: 85 sec/obj

Drost, τ = 0.04: 2 sec/obj
SVS: no time given

Tuzel: 15 sec/obj

Our approach, θ = 2: 0.5 sec/obj

Our approach, θ = 4: 0.16 sec/obj

Figure 3. Results obtained on the Mian dataset [13]. It can be seen
that our method is capable to handle occlusions of up to 81% and
still give 100% of detection rates. It is also significant that the
time required to detect a single object compared to the only other
approaches that obtain similar or better detection rates [4, 22], is
of up to 30 times less for our approach when compared with Tuzel
and up to 170 times less compared to Drost.

Experimental setup: The Mian dataset contains 50
scenes with 4 models on which to perform detection.
Ground truth pose is provided for all instances of all ob-
jects. Apart from those 4 models another model exists that
was excluded in Mian’s experiments [13]; hence our ap-
proach and all baselines do not include this object. To vali-
date a detection as valid we use the same thresholds as used
in [4], we also define occlusion values in the same manner.
We provide results for two different resolutions for the pre-
diction image, 320×240 (downsampling factor θ = 2), and
160 × 120 (θ = 4). A smaller resolution of the predicted
object coordinate image means faster computation, but also
a lower probability of finding a inlier sample set (and con-
sequently returning a successful detection).

Experimental results: The quantitative evaluation using
the same evaluation methodology as in [13] is shown in
Fig. 3. In general, our method has state-of-the-art perfor-
mance at the “high quality setting” (θ = 2), and the choice
of θ = 4 to achieve interactive frame rates outperforms
other fast methods at most occlusion percentages. Due to
the impact of downsampling our method performs worse for
highly occluded objects. Note that according to the evalu-

ation methodology the curves in Fig. 3 are not necessarily
monotonically decreasing with respect to occlusion percent-
ages.

Commodity depth sensor data: The results on the Mian
dataset give us a clear understanding of how our approach
compares against previous work, but at the same time the
data is much cleaner than depth maps obtained by cur-
rent commodity sensors. Consequently, we recorded our
own data using an ASUS Xtion depth sensor and ran our
method for objects with available CAD models (either ob-
tained from a 3D model database, such as the toy car and the
bracket, or by approximate manual 3D modeling of pipe-
like structures). When creating the descriptors for the ob-
jects of interest we do not simulate any of the depth sen-
sor characteristics (such as boundary fattening and depth
quantization). Thus, the 3D model to detect and the actual
range images may be significantly different in their depth
appearance. Fig. 2 depicts sample frames with the model
point cloud superimposed on the input depth (rendered via
its normal map). The full sequences are provided in the
supplementary material. These sequences differ in several
aspects from the benchmark dataset [13]: the depth sensor
characteristics at training time and test time do not match,
the depth maps at test time are limited in quality (compared
to a more expensive scanning setup), and objects themselves
are less discriminative in shape.

Computation time: We present results with a CPU im-
plementation of the approach, although a GPU implemen-
tation for most steps in the algorithm is straightforward and
is expected to yield real-time performance (20Hz). In Fig. 4
we break down the individual contributions of the various
stages of our method (descriptor computation, Hamming
distance based descriptor matching using FLANN, message

9% 45% 24% 6% 16%

Descriptors

Matching

Message passing Pose Evaluation

Ranking

Figure 4. Percentage of the total time employed in each of the
stages of the algorithm. We can see that by far the most expensive
step is the feature matching step.



passing for min-marginal computation, ranking/sorting ac-
cording to Eq. 5, and final pose evaluation including ICP).
The exact values vary depending on the input frame and the
object of interest, but in general feature matching (i.e. near-
est neighbor search) consumes a dominant fraction of the
overall frame time. The matching time is typically faster
for object with a highly distinctive local shape appearances
than for object with redundant surface structures, since in
the former case the search trees tend to be more balanced.

5. Conclusions
We have addressed the problem of 3D object detection

and corresponding pose estimation, and we discussed a
more efficient paradigm to solve this task while still obtain-
ing state of the art detection rates. We believe that this work
creates a new and robust framework from which to build
new 3D object detection approaches. In this current work
we left out basically any learning-based technique to boost
the detection performance or run-time behavior. While we
argue that computationally expensive learning techniques
will limit the general applicability of 3D object recognition
(since adding new objects requires time-consuming retrain-
ing), we foresee that more sophisticated processing of train-
ing objects than our current one will lead to more discrim-
inative descriptors, and therefore will be highly beneficial
for this task.
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