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Abstract

This paper proposes an approach for modeling tex-
tured 3D non-rigid models based on Weighted Heat Kernel
Signature(W-HKS). As a first contribution, we show how to
include photometric information as a weight over the shape
manifold, we also propose a novel formulation for heat dif-
fusion over weighted manifolds. As a second contribution
we present a new discretization method for the proposed
equation using finite element approximation. Finally, the
weighted heat kernel signature is used as a shape descrip-
tor. The proposed descriptor encodes both the photomet-
ric, and geometric information based on the solution of one
equation. We also propose a new method to introduce the
scale invariance for the weighted heat kernel signature. The
performance is tested on two benchmark datasets. The re-
sults have indeed confirmed the high performance of the
proposed approach on the textured shape retrieval problem,
and showed that the proposed method is useful in coping
with different challenges of shape analysis where pure geo-
metric and pure photometric methods fail.

1. Introduction

The emergence of 3D scanners, multi-view stereo tech-
niques and more recently consumer depth cameras have
made the acquisition of 3D models easier than before. This
led to a dramatic increase in the amount of 3D data avail-
able. As such the need to develop a 3D search engines has
become more important. And accordingly, developing a
shape search and retrieval algorithms attracted a lot of re-
search to be able to organize and retrieve the 3D content, by
using 3D descriptors and similarity measures. Several tech-
niques and algorithms have been developed over the years
for that goal. One of the key aspects of these techniques
is constructing an efficient shape descriptor which is by no
means a trivial task.

Recently, many sensors are able to acquire the color in-
formation besides the 3D shape, also multiple-view stereo
techniques are able to recover both geometric and photo-
metric information. These photometric features can play
an important role in many shape analysis applications, such
as shape matching and correspondence because it contains
rich information about the visual appearance of real objects.
This new requirement and its important applications adds
another, new dimension to the problem difficulty. Most de-
scriptors proposed so far are confined to shape, that is, they
analyze only geometric and/or topological properties of 3D
models. Therefore more efforts need to be done to consider
color in addition to shape in object representation and de-
scription. The domain of research in this paper is the repre-
sentation of textured shapes in order to develop an efficient
descriptor that combines the color information as well as
the geometric shape information. The sought representa-
tion should cope with non-rigid transformations, which is a
key requirement for many target applications.

Some trials has been done to use the photometric infor-
mation by the fusion of geometric and photometric informa-
tion in a shape descriptors. Evaluation of 3D shape retrieval
methods with respect to other several requirements can be
found in [28].

1.1. Review of Related Work

There has been an extensive work on constructing de-
scriptors for 3D shapes (e.g., [9, 26, 17, 11, 17, 16, 29, 2]).
One of the challenging issues in that regard is how to han-
dle non-rigid transformation. The problem of non-rigid
shape deformation needs more work to compensate for the
degrees of freedom resulting from local deformations. In
the past decade, significant effort has been invested in ex-
tending the invariance properties to non-rigid deformations.
Elad and Kimmel [10] proposed modeling shapes as met-
ric spaces with the geodesic distances as an intrinsic met-
ric, which are invariant to inelastic deformations. Bronstein



et al. [5] used this framework with a metric defined by in-
ternal distances in 2D shapes. Reuter et al. [23] used the
Laplacian spectra as intrinsic shape descriptors, and they
employed the Laplace-Beltrami spectra as ’shape-DNA’ or
a numerical fingerprint of any 2D or 3D manifold (surface
or solid). They proved that ’shape-DNA’ is an isometry-
invariant shape descriptor. Rustamov [25] used an isometry-
invariant shape representations in the Euclidean space, and
then histograms of Euclidean distances to compare between
shapes.

Another type of intrinsic geometry is generated by heat
diffusion processes on the shape. Coifman and Lafon [20]
popularized the notation of diffusion geometry, which is
closely related to scale-space methods in image process-
ing. Sun et al. [27], and [12] proposed heat kernel signa-
tures (HKS) as deformation-invariant descriptors based on
diffusion of multi-scale heat kernels. HKS is a point based
signature satisfying many of the good descriptor properties
but suffers from sensitivity to scale. The authors did not
demonstrate how to retrieve shapes using HKS, although
they pointed out the future potentials in shape retrieval ap-
plications. Bronstein et al. [7, 6] and [1] solved the HKS
scale problem through a series of transformations.

All these efforts have focused only on the 3D shape. Re-
cently, taking the photometric information into account to
calculate a 3D shape descriptor has attracted more research.
Liu et al. [21] proposed a method that picks points in re-
gions of either geometry-high variation or color-high vari-
ation, and defines a signature at these points. A geomet-
ric SIFT-like descriptor for textured shapes are defined di-
rectly on the surface in [30]. The work of Kovnatsky et
al. [18, 19] uses the diffusion geometry framework for the
fusion of geometric and photometric information in local
and global shape descriptors. Their construction is based
on an ad hoc definition of a diffusion process on the shape
manifold embedded into a high-dimensional space where
the embedding coordinates represent the photometric infor-
mation. Their method fails to provide a mathematical jus-
tification for their proposed heat kernel framework or the
proposed discretization method. Iglesias and Kimmel [15]
used the diffusion distances based on Schrodinger operators
incorporating texture data, then compared the histograms of
Schrodinger diffusion distances with the earth mover’s dis-
tance. Finally, S. Biasotti et al. [4] proposed the PHOG
descriptor as a combination of photometric, hybrid and ge-
ometric descriptions into one descriptor for textured 3D ob-
ject retrieval.

1.2. Paper Contribution

In this paper, we develop, for the first time, a mathe-
matical framework for the diffusion geometry on textured
shapes. We present an approach for shape matching and re-
trieval based on weighted heat kernel signature. As a first

contribution, we show how to include photometric infor-
mation as a weight over the shape manifold. We also pro-
pose a novel formulation for heat diffusion over weighted
manifolds. As a second contribution we present a new dis-
cretization method for the weighted heat kernel induced by
the linear FEM weights. We also propose a new method
to introduce the scale invariance for the weighted heat ker-
nel signature. Finally, the weighted heat kernel signature is
used as a shape descriptor. This proposed scale normaliza-
tion method eliminates the scale effect with less sensitivity
to noise. The proposed descriptor encodes both the pho-
tometric, and geometric information based on the solution
of one equation. The performance is tested on two bench-
mark datasets SHREC’13 and SHREC’14 of textured 3D
models [8, 3]. Our method outperforms all best-performing
state-of-the-art methods in recent competition SHREC’13
on retrieval of textured 3D models. This can be attributed to
the better capability of our method to capture object shape
and texture compared to other methods as well as its bet-
ter scale invariance property. Fig. 1 shows the steps for the
construction of the proposed descriptor.

This paper is organized as follows. Section 2 presents
some fundamental concepts, such as the heat equation
and the heat kernel. Then it proposes the heat kernel
on weighted manifold, and derives the new discretization
method for the weighted heat kernel based on FEM. Sec-
tion 3 shows how to construct a new descriptor based on the
new mathematical concepts. We report our experimental re-
sults in Section 4. Conclusions and future work are given in
Section 5.

2. The Heat Equation and Heat Kernel

Heat is energy transferred from one system to another
by thermal interaction. The heat equation is an important
partial differential equation which describes the distribution
of heat (or variation in temperature) in a given region over
time. One way to solve this equation is to use eigenfunc-
tions and eigenvalues of the Laplace-Beltrami operator. In
this section we will describe the solution of the heat equa-
tion on a manifold, and the weighted heat equation on a
weighted manifold based on finite element approximation;
also, we will give the definition of the heat kernel, and the
weighted heat kernel.

Modeling the flow of heat at time t on a manifoldM, the
heat equation is a second order parabolic partial differential
equation [24], and is usually written as

4MU(x, t) = −1

2

∂

∂t
U(x, t), (1)

where 4M denotes the positive semi-definite Laplace-
Beltrami operator of M , which is Riemannian equiva-
lent of the Laplacian (Note, there can be a ”conductivity”



Figure 1. Construction of the proposed descriptor.

constant in the RHS that we do not use here). The so-
lution U(x, t) of the heat equation with initial condition
U(x, 0) = u(x) describes the amount of heat on the sur-
face at point x in time t. U(x, t) is required to satisfy the
Dirichlet boundary condition U(x, t) = 0 for all x ∈ ∂M
and all t.

2.1. Heat Kernel

The heat diffusion propagation over M is governed by
the heat equation (1). Given an initial heat distribution u :
M ⊆ Rd → R, as a scalar function defined on a compact
manifoldM, the scale based representation U :M×R→
R of u with, limt→0U(x, t) = u(x) satisfies the heat
equation for all t.

The heat kernel can be thought of as the amount of
heat that is transferred from x to y in time t given a unit
heat source at x. Since M is compact then U(x, t) =∫
MK(x,y, t)u(y)dy. It can be shown that the heat ker-

nel has the following spectral decomposition

K(x,y, t) =

∞∑
i=1

e−λitφi(x)φi(y), (2)

where λi and φi are the ith eigenvalue and the ith eigen-
function of the Laplace-Beltrami operator respectively, and
x and y denote two vertices (i.e. 4Mφi(x) = λiφi(x) for
all x.

The heat kernel K(x,y, t) has many good proper-
ties [27, 14]: It is symmetric, invariant under isometric de-
formations, which is a direct consequence of the invariance
of the Laplace-Beltrami operator. It is informative: by only
considering its restriction to the temporal domain, we can
obtain a concise and informative signature. It is multi-scale:
for different values of t the heat kernel reflects local proper-
ties of the shape around x at small t and the global structure
ofM from the point of view of x at large values of t, and it
is stable under perturbations of the underlying manifold.

This is the classical heat kernel, in the following subsec-
tion we will introduce our new formulation for the weighted
heat kernel.

2.2. Heat Kernel on Weighted Manifold

A weighted manifold (called also a manifold with den-
sity) [13] is a Riemannian manifold M endowed with a
measure µ that has a smooth positive density h with respect

Figure 2. Discrete triangulated surface. Left:A vertex xi and its
adjacent faces. Middle: the definition of the angles αij and βij
and the weights hi, hj , hTα and hTβ . Right: the definition of
the interior angles αi, αj , αk of triangle T at vertices i, j, k
respectively.

to the Riemannian measure σ. The weighted Laplace oper-
ator 4M,µ, generalizing the Laplace-Beltrami operator, is
defined by

4M,µU = divµ∇U

=
1

h
div(h∇U)

=
1

h
√
detg

∂

∂xi
(h
√
detg)

∂

∂xi
U (3)

for any smooth function U onM, where g be the Rieman-
nian metric onM. It is possible to extend 4M,µ to a self-
adjoint operator in L2(M, µ), which allows one to define
the heat semigroup e−t4M,µ . The heat semigroup has the
integral kernel Kt(x, y), called the heat kernel of (M, µ).

We propose the weighted heat equation

4M,µU(x, t) = −1

2

∂

∂t
U(x, t) (4)

with initial condition U(x, 0) = u(x) and Dirichlet bound-
ary condition U(x, t) = 0 for all x ∈ ∂M and all t > 0.

2.3. Finite Element Discretization of the Weighted
Heat Equation

The weak formulation of the weighted heat equation (4)
is obtained by multiplying by a test function ϕ ∈ C2 and
integrating the resulting relation over the weighted manifold
(M, µ)∫
M
ϕ
∂

∂t
U(x, t)dµ+

1

2

∫
M
ϕ4M,µU(x, t)dµ = 0 (5)

where dµ = hdσ, dσ is the Riemannian measure and h is
a smooth positive density. Then, by writing the weighted



Laplacian in terms of the divergence we get

∫
M
ϕ
∂

∂t
Uhdσ +

1

2

∫
M
div(h∇U)ϕdσ = 0, (6)

Using the Green formula we get,

∫
M
ϕ
∂

∂t
Uhdσ +

1

2

∫
M
(h∇U).∇ϕdσ = 0. (7)

We thus obtain the weak formulation of (4)

∫
M
ϕ
∂

∂t
Udµ+

1

2

∫
M
(∇U.∇ϕ)dµ = 0 (8)

Let B = {ϕi}ni=1 be a family of n linearly independent
C2 functions. We form an approximation Ũ(x, t) to U(x, t)
by

Ũ(·, t) :=
n∑
i=1

ai(t)ϕi, t > 0. (9)

Replacing U by Ũ in (8) we obtain

n∑
i=1

B(i, j)
∂

∂t
ai(t) +

1

2

n∑
i=1

L(i, j)ai(t) = 0 (10)

where

B(i, j) =

∫
M
ϕiϕjhdσ, (11)

and

L(i, j) =

∫
M
(∇ϕi.∇ϕj)hdσ. (12)

To discretize (10) we let N = (M ;T ) be a triangu-
lated surface that approximates M. Here M := {xi; i =
1, . . . , n} is a set of n vertices and T is an abstract sim-
plicial complex containing the adjacency information. We
choose linearly independent basis functions B = {ϕi}ni=1,
where ϕi(xj) = δij is equal to 1 at vertex i, 0 at all other
vertices, and linearly interpolates between 1 and 0 on all tri-
angles incident to vertex i. Label vertex xi simply as i. If
i, j, k are the distinct vertices of a triangle T , then αi, αj , αk
denote the interior angles of T at vertices i, j, k respectively,
and A(T ) is the area of T as shown in Fig. 2, and since h
is piecewise linear we can substitute h in Eq. 11 and Eq. 12

by hiϕi + hjϕj + hkϕk. Then it can be shown that:

∇ϕi.∇ϕj = − cotαk
2A(T )

| ∇ϕ |2 =
cotαj + cotαk

2A(T )∫
T

ϕidσ =
A(T )

3∫
T

ϕ2
i dσ =

A(T )

6∫
T

ϕiϕjdσ =
A(T )

12∫
T

ϕ3
i dσ =

A(T )

10∫
T

ϕ2
iϕjdσ =

A(T )

30∫
T

ϕiϕjϕkdσ =
A(T )

60

Denote by hTk the average value of a function h over a
triangle Tk. Denote by Ne(i) the set of vertices adjacent
to i. Given j ∈ Ne(i) denote by Tα and Tβ the triangles
having (i, j) as an edge and by α and β the interior angles
of Tα and Tβ opposite edge (i, j). Then

B(i, j) =


(hi + hj)

A(Tα)+A(Tβ)
60 +

hTαA(Tα)+hTβA(Tβ)

20 if j ∈ Ne(i)∑
k∈Ne(i)A(Tk)(

hi
15 +

hTk
10 ) if i = j

(13)
where Tk is the counter-clockwise oriented triangle with
vertices i and k, and B(i, j) = 0 whenever i and j are
nonadjacent vertices. Likewise, L(i, j) is given by

L(i, j) =

{
−hTα cotα+hTβ cot β

2 if j ∈ Ne(i)∑
k∈Ne(i) L(i, k) if i = j

(14)

and L(i, j) = 0 otherwise.
To compute the solution to 4, let us consider the gen-

eralized eigensystem {λi, φi}ni=1 of (L,B), which satis-
fies the relations Lφi = λiBφi, i = 1, . . . , n. Since the
Laplacian eigenvectors {φi}ni=1 form a basis of Rn and
(Ũ(x, t))ni=1 ∈ Rn, for any t ∈ R+ we express the so-
lution Ũ(·, t) :=

∑n
i=1 ai(t)φi where a = (ai(t))

n
i=1 is the

unknown vector.
After solving for the coefficients ai(t), then ai(t) =

exp(− 1
2λit)〈u(x), φi〉B where u(x) is the initial value of

Ũ(x, t). Then,

Ũ(·, t) :=
n∑
i=1

exp(−1

2
λit)〈u(x), φi〉Bφi, (15)



or in a matrix form

Ũ(·, t) := φD(t)φTBu(x) (16)

where φ = [φ1, φ2, . . . , φn], and
D(t) = diag(exp(− 1

2λ1t), exp(−
1
2λ2t), . . . , exp(−

1
2λnt)).

Then the heat kernel will be

K(x,y, t) := φD(t)φTB, (17)

and the weighted heat kernel signature will be

K(x,x, t) := Bφ2diag(D(t)) (18)

The heat kernel signature was introduced by [27, 7, 6] as
an intrinsic local shape descriptor based on diffusion scale-
space analysis. Here we introduce the weighted version
by considering the color information at each vertex as the
weight h as discussed earlier.

3. Proposed Descriptor
In this section, we propose an approach for shape mod-

eling and retrieval using weighted heat kernel signature.
Fig. 1 shows the steps for the construction of the proposed
descriptor. The proposed descriptor is based on the BoF
representation of the W-HKS calculated all shape vertices at
different time scales. We propose a novel method to achieve
scale-invariance of HK which is shown to be noise-robust.
The scale normalization step is applied to the W-HKS be-
fore the BoF representation as explained in the following
subsection. The proposed descriptor is compact in size, and
efficient in computation.

3.1. Scale Invariance

Scale invariance is a desirable property of the shape de-
scriptor, which can be achieved by different methods: by
trying to detect the scale, as done in most feature descriptors
(e.g. SIFT) in image analysis, through the normalization
of Laplace-Beltrami eigenvalues, using a series of trans-
formations applied to the HKS [7] in order to avoid scale
detection, or by using local equi-affine invariant Laplace-
Beltrami operator proposed by [22].

In this work, we propose a local scale normalization
method based on simple operations. It was shown [7] that
scaling a shape by a factor β results in changing K(x, t) to
β2 K(x, β2t). Thus, a series of transformations are applied
to W-HKS as follows. Starting from each point x, the W-
HKS is sampled logarithmically in time (t = ατ ) and the
function

kτ = K(x, ατ ) (19)

is formed. Scaling the shape by β results in a time shift
s = 2 logα β and amplitude scaling by β2. That is,

k′τ = β2kτ+s (20)

We propose to apply the Fourier transform directly to k′τ
in (20), similar method used in [1].

K ′(w) = β2K(w) exp(j 2π w s). (21)

Then taking the amplitude of the FT,

| K ′(w) |= β2 | K(w) | (22)

The effect of the multiplicative constant β2 is eliminated by
normalizing the | K ′(w) | by the sum of the amplitudes of
the FT components. The amplitudes of the first significant
FT components (we normally use 20) are employed to con-
struct the scale-invariant shape descriptor. This proposed
method eliminates the scale effect without having to use
the noise-sensitive derivative operation or the logarithmic
transformation that both were used in [7]. An experiment
comparing the two methods against noise, with consider-
ably superior performance for our method.

3.2. Shape/Color Descriptor

We propose to construct the descriptor as follows: The
W-HKS descriptor is calculated for each triangle mesh
based on Eq. 18. We calculated the W-HKS at all points of a
shape over the three normalized color channels (RGB). The
color information is considered as the weight h at each ver-
tex as shown in Fig. 2 middle: the definition of the weights
hi, hj , hTα , and hTβ . W-HKS is calculated at different
time scales, we used a logarithmic scale-space with base
α = 2 and τ ranging form 0.01 to 8 with step 1/16 for each
color band. Investigating other possible color spaces has
been done, using RGB have approved better performance
than other color spaces, and using three bands have ap-
proved better performance that grayscale. Then the scale
normalization step is applied as explained in Sec. 3.1. Con-
sidering only the first 20 significant FT components the size
of the descriptor now will be n × 20 for n vertex shape.
Then we used the Bag of Features (BoF) to represent the
shape as one feature vector. The bags of features were cre-
ated using the same vocabulary of size 64. Thus the feature
vector size is 64× 3 for any 3D shape.

4. Experimental Results
To test the performance of the proposed approach we use

the SHREC’13 dataset [8] and the SHREC’14 dataset [3].
SHREC’13 dataset is a collection made of 240 texture
shapes, organized in 10 classes, each with 24 models. Each
class (humans, four legs animals, vases etc.) contains six
null models, that is, two base meshes endowed with three
different textures. Each null shape is then modified via
four transformations, including two non-metric-preserving
deformations, one non-rigid deformation, and one additive
Gaussian noise perturbation. All transformations are ap-
plied at different strength levels for the ten classes. Also, the



Figure 3. Sample of 4 different classes of the SHREC’13 bench-
mark [8] with different texture and deformation show the chal-
lenge of the dataset. For each null shape there are a transformed
versions of it that include non-rigid deformation, nonmetric-
preserving deformations, and additive Gaussian noise perturba-
tion.

Figure 4. Sample of 8 different classes of the SHREC’14 bench-
mark [3].

same texture may be shared by models in different classes,
see Fig. 3.

SHREC’14 dataset is made of 572 watertight mesh
models, grouped in thirteen texture and sixteen geomet-
ric classes. Each class contains twelve null models, corre-
sponding to four base meshes endowed with three different
textures. Then, three transformations are applied to each
null shape. The three transformations randomly combine
a geometric deformation (re-sampling, addition of Gaus-
sian noise, an affine deformation, and two non-isometric de-
formations) with a texture one (lightening/darkening, topo-
logical deformations in the texture patterns, affine transfor-
mations in the RGB channels). Samples of the geometric
classes in the dataset are given in Fig. 4.

We compare our method with the four best methods
in the retrieval competition on textured 3D models [8]: a
method based on Scale Invariant Heat Kernels combined
with the color histogram(A2), the Color-weighted His-
tograms of Area Projection Transform (G1), a method based
on 2D multi-view and bag-of-features approach (G2), and
one method merging a shape description based on geodesic
distance matrices with RGB histograms (V2) [8]. We also

Run NN 1-Tier 2-Tier ADR
A2 0.508 0.561 0.730 0.380
W-HKS1 0.7765 0.5350 0.6458 0.4047

Table 1. Results on SHREC’13 dataset compares the proposed de-
scriptor (W-HKS1) against the (A2) based on Scale Invariant Heat
Kernels combined with the color histogram.

compare our results against the PHOG approach proposed
in [4].

We use the average precision-recall curves, Nearest
Neighbor (NN), First Tier (FT), Second Tier (ST), and Av-
erage Dynamic Recall (ADR) [26] as evaluation measures.
To compute these measures, we assume two objects belong
to the same class if they share both geometric and texture
information. The final score is the average on all possible
queries and it is always less than 1.

Table 1 lists the average measures over all classes in the
SHREC’13 dataset, and Table 2 lists the average measures
over all classes in the SHREC’14 dataset. The table com-
pares the proposed descriptor (W-HKS1) against the (A2)
based on Scale Invariant Heat Kernels combined with the
color histogram. The NN and ADR measures prove that
the proposed descriptor has better performance because it
encodes the color as well as the geometric information.

Another version, called (W-HKS2), of the proposed de-
scriptor is formed by appending the color histogram to the
original descriptor (W-HKS1). Table 3, lists the average
measures on the SHREC’13 dataset. The table compares
the proposed descriptor (W-HKS2) against the five differ-
ent methods. The highest measures (in bold) clearly show
that the proposed descriptor has the best performance.

Fig. 5 shows some retrieval results in the SHREC’13
dataset [8], and Fig. 6 shows some retrieval results in the
SHREC’14 dataset [3]. The models are ordered from left to
right. The first column represents the query model. The
retrieved objects per each query are ranked from left to
right based on the distance measure (L1-Norm) between the
query and all shapes in the dataset. We show only the first
15 retrieved models. These figures clearly demonstrate the
high retrieval rate of the approach. It can be observed that
the proposed method has retrieved the similar shapes with
similar texture first.

Fig. 7 shows the performances of all methods in
terms of average precision-recall curves in the SHREC’13
dataset [8]. The larger the area below such a curve, the bet-
ter the performance under examination. This figure shows
that the proposed descriptor indeed achieves the highest per-
formance over the other five methods.



Figure 5. Shape retrieval results of SHREC’13 dataset. Left: queries. Right: First 15 matches using the W-HKS2 descriptor.

Relevant Highly Relevant
Run NN 1-Tier 2-Tier NN 1-Tier 2-Tier ADR
HKS + Color Hist 0.735 0.408 0.521 0.123 0.228 0.351 0.206
W-HKS1 0.817 0.296 0.396 0.443 0.248 0.336 0.236

Table 2. Results on SHREC’14 dataset compares the proposed descriptor (W-HKS1) against the (A2) based on Scale Invariant Heat Kernels
combined with the color histogram.

5. Conclusions

This paper has addressed the problem of textured 3D
shapes representation. We have presented a new approach
for shape matching and retrieval based on Weighted Heat
Kernel Signature (W-HKS). We proposed to use the color

information as a weight over the shape manifold. We
also proposed a novel formulation for heat diffusion over
weighted manifolds. Then we presented a new discretiza-
tion method for the weighted heat kernel based on FEM.
We also proposed a new method to introduce the scale in-



Figure 6. Shape retrieval results of SHREC’14 dataset. Left: queries. Right: First 15 matches using the W-HKS2 descriptor.

Figure 7. Shape retrieval results of SHREC’13 dataset. Precision-recall curves for all methods.

Run NN 1-Tier 2-Tier ADR
A2 0.508 0.561 0.730 0.380
G1 0.788 0.658 0.748 0.470
G2 0.898 0.733 0.893 0.508
V2 0.879 0.764 0.904 0.520
PHOG 0.951 0.773 0.899 0.534
W-HKS2 0.9242 0.8338 0.9257 0.5701

Table 3. Results on SHREC’13 dataset lists the average measures
on SHREC’13 dataset. The table compares the proposed descrip-
tor (W-HKS2) against five different methods.

variance for the weighted heat kernel signature. The ”bag of
features” (BoF) approach is used to construct compact and
informative shape descriptors. Finally, the weighted heat
kernel signature is used as a shape descriptor. Our experi-
mental results have shown that the proposed descriptor can
achieve high performance on SHREC’13 and SHREC’14
benchmark datasets. The proposed approach has outper-
formed state-of-the-art approaches (five different methods)
for textured shapes representation and retrieval. Different
evaluation measures approved the high accuracy of the pro-
posed framework.
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