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Abstract

Depth maps captured by consumer-level depth cameras
such as Kinect are usually degraded by noise, missing val-
ues, and quantization. In this paper, we present a data-
driven approach for refining degraded RAW depth maps that
are coupled with an RGB image. The key idea of our ap-
proach is to take advantage of a training set of high-quality
depth data and transfer its information to the RAW depth
map through multi-scale dictionary learning. Utilizing a
sparse representation, our method learns a dictionary of ge-
ometric primitives which captures the correlation between
high-quality mesh data, RAW depth maps and RGB images.
The dictionary is learned and applied in a manner that ac-
counts for various practical issues that arise in dictionary-
based depth refinement. Compared to previous approaches
that only utilize the correlation between RAW depth maps
and RGB images, our method produces improved depth
maps without over-smoothing. Since our approach is data
driven, the refinement can be targeted to a specific class of
objects by employing a corresponding training set. In our
experiments, we show that this leads to additional improve-
ments in recovering depth maps of human faces.

1. Introduction
The recent popularity of consumer-level depth cameras

such as Kinect has led to growing interest in using depth
maps as auxiliary data for various computer vision tasks,
such as pose recognition [1] and scene understanding [2].
The benefits of utilizing depth data, however, are limited by
the relatively low resolution of depth maps as well as depth
degradations due to noise, missing values, and quantization,
which can significantly reduce data quality.

To facilitate the use of depth data, most methods have fo-
cused on the depth upsampling problem, in which a higher-
resolution depth map is recovered from a lower-resolution
input. This task is typically performed with the help of
a corresponding high-resolution RGB image of the scene,
which is jointly captured with the depth map by Kinect.
These methods make use of the RGB image through the

statistical co-occurrence of its discontinuities with those in
the depth map, as they both arise from common underlying
3D structure. Since the RGB image is at a higher resolution,
its discontinuities are used to locate depth discontinuities at
a higher resolution than the input depth map. Many suc-
cessful results have been demonstrated with this approach,
but the computed depth maps often exhibit distortions and
over-smoothing due to the aforementioned degradations in
depth measurements.

In this paper, we present a data-driven approach for
dealing with the problem of low-quality depth data. The
key idea is to transfer high-quality depth map primitives
to the RAW depth map through multi-scale dictionary
learning. Dictionaries are formed through structure-guided
sparse coding [3] of RGB images, RAW depth maps, and
high-quality depth data constructed by Kinect Fusion [4].
Learning the statistical relationship between low- and high-
quality depth maps allows our method to account for the
various degradations that can occur in depth map measure-
ment. However, there exist three major issues that compli-
cate this approach in practice, namely RGB textures uncor-
related with depth map discontinuities, large dictionary size,
and differences in geometric features at different scales. We
present adaptations of our dictionary-based framework to
address these practical issues in the depth refinement pro-
cess.

The performance of our algorithm is evaluated and com-
pared with state-of-the-art depth map refinement methods
that also take a single RGB-D image as input. Our approach
consistently outperforms previous techniques both quantita-
tively in synthetic examples and qualitatively in real-world
instances. We additionally demonstrate that by learning
a class-specific dictionary, the effectiveness of our data-
driven approach can be further enhanced.

2. Related work
Related works on depth map refinement are reviewed in

this section. These techniques can be classified as either
RGB-D based techniques that utilize an additional RGB im-
age to guide the depth map refinement process, or recon-
struction based techniques that merge multiple unaligned
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Figure 1. Practical issues. (a) Surface texture uncorrelated with
depth discontinuities. (b) Variations in depth map degradation:
(Top) missing depth values; (Bottom) blurred depth readings. Be-
cause of such variations, building a dictionary that couples the
high- and low-quality depth map would lead to large dictionary
size. (Figure adapted from [5].)

low-quality depth maps to reconstruct a high-quality depth
surface. Our approach fits into the first category, which is
the focus of the review presented here.

RGB-D based techniques generally assume that there ex-
ists a joint occurrence between depth discontinuities and
RGB image edges. Most early works make use of this as-
sumption by adaptively filtering the depth map according
to edges in the RGB image. In [6], an MRF formulation
for depth map upsampling is introduced with the data term
computed from the depth map and weights for the smooth-
ness terms derived from the high-resolution RGB image.
In [7, 8], a joint bilateral filter [9] is applied to fill holes
and upsample a depth map with the weight of the range
kernel defined by intensity differences in the RGB image.
Favaro [10] introduced the nonlocal structure filter which
demonstrates better structure preservation than the bilateral
filter for depth map recovery.

More recently, several methods have posed RGB-D
depth refinement as a constrained optimization problem.
Park et al. [11] formulated the depth map upsampling
problem as a weighted least squares optimization with a
neighbor term defined by structures in the RGB image.
Yang et al. [12] defined the neighbor term using an auto-
regression model. Liu et al. [13] evaluated pixel dissim-
ilarities based on geodesic distance instead of Euclidean
distance to achieve sharper depth boundaries. Also, Yu et
al. [14] and Han et al. [15] presented shape-from-shading
based methods for depth map geometry refinement.

Dictionary learning based methods have long been
adopted for image restoration, in particular for denoising
and hole filling [16], with high performance compared
to filter-based techniques. For depth map upsampling,
Kiechlel et al. [17] and Tosic and Drewes [5] presented
dictionary-based methods that learn statistical dependen-
cies between intensity and depth in a scene that naturally
arise from their common underlying 3D features. With the
learned dictionary, a high-resolution depth map consistent
with the high-resolution image is then inferred from the
low-resolution depth map. This approach, though effective
with clean depth maps, can exhibit reduced performance

with depth maps containing typical measurement degrada-
tions, whose depth distortions unbalance the natural statis-
tical dependencies.

To address this problem, our method learns the statis-
tical relationship between high-quality depth, low-quality
depth and image intensity. By jointly accounting for high-
quality and low-quality depth, our work is able to capture
and model the depth degradation, in contrast to [17, 5]. Dic-
tionaries for these three quantities are also learned in [18].
However, the method in [18] does not address the practical
issues described in the previous section. It does not include
a mechanism to deal with RGB textures uncorrelated with
depth discontinuities, which can mislead dictionary-based
approaches. It also does not employ a technique for manag-
ing dictionary size, instead just using a fixed-size dictionary
with limited performance. Our work additionally differs
by learning scale-dependent and class-specific dictionaries
which can elevate accuracy.

Reconstruction based techniques directly estimate a
higher-quality 3D model by merging multiple lower-quality
depth maps captured from different viewpoints of the same
scene. A state-of-the-art reconstruction-based method is
Kinect Fusion [4], which aligns multi-view depth maps
into a pre-allocated volumetric representation. It has been
shown to be effective for modeling objects with a volume
within a few cubic meters [19]. Although reconstruction
based techniques generally produce higher-quality 3D data
than RGB-D based methods, they are more practical for
static scenes than for dynamic environments. Through this
approach, several research groups have utilized Kinect to
build RGB-D datasets [20, 21] of various scenes and objects
for scene categorization, object recognition and segmenta-
tion. Since Kinect depth maps, as well as depth maps from
other consumer-level depth cameras, often contain holes
and other measurement degradations, depth map refinement
is beneficial for downstream vision tasks.

3. Practical Issues
In this section, we discuss the three major practical is-

sues and how they can affect the quality of recovered depth
maps. The first issue exists for all previous algorithms that
utilize RGB edges to guide depth map refinement. The
second and third issues affect methods based on dictionary
learning.

Uncorrelated texture and depth discontinuities. Al-
though discontinuities in RGB images and depth maps often
coincide due to common scene structure, this is frequently
not the case because of surface textures whose intensity
variations are independent of depth, as illustrated in Fig-
ure 1(a). Consequently, defining depth smoothness weights
based on RGB image gradients can lead to texture copying
artifacts in the resulting depth map. Even when RGB edges



and depth discontinuities co-occur, the gradient magnitudes
of RGB edges depend on intensity differences between the
two depth layers, not on depth differences. As a result, edge
sharpness in the refined depth map may be affected by sur-
face colors, such that a sharp boundary between two depth
layers may exhibit edge sharpness variations due to textures.

Large dictionary size. In image restoration, the degrada-
tion process is assumed to be uniform across the entire im-
age. However, as illustrated in Figure 1(b), this assumption
does not hold for the depth map recovery problem where a
given local scene region can be measured as different low-
quality depth patches due to different forms of degradation,
such as missing values (e.g. from the disparity problem
in Kinect), quantization, noise (e.g. depth-dependent ToF
noise), and blur (e.g. from ToF imaging). To account for
such variations in modeling the statistical relationship be-
tween low- and high-quality depth maps, the size of the dic-
tionary would need to be expanded dramatically. In [18],
the fixed-size dictionary limits the ability to model the vari-
ous depth map degradations, hence curbing the performance
of the method.

Scale-dependent depth features. Dictionaries learned at
a certain geometric scale may not be as suitable at another
scale due to differences in geometric features. Taking hu-
man faces as an example, dictionary primitives may model
the shapes of facial features such as the nose and cheeks
at one level, but primitives that capture skin details such as
wrinkles would be more useful at a finer scale. Thus, using
a dictionary learned at one scale for refining depth maps at
another can be less effective.

4. Proposed Algorithm
As in other dictionary-based depth refinement methods,

ours assumes that local patches in depth maps and RGB im-
ages can be represented by a sparse linear combination of
basis functions [22]:

y = Dα, (1)

where y = {yh, yl, yc} denotes the high-quality depth
map, low-quality RAW depth map, and aligned RGB im-
age respectively, D = {Dh,Dl,Dc} denotes their corre-
sponding dictionaries containing basis functions, and α =
{αh, αl, αc} represents sparse vectors of basis function co-
efficients. Our goal in this work is to recover yh given yl
and yc, by learning a joint dictionary of {Dh,Dl,Dc} such
that αh = αl = αc:

arg min
D,α

 yh
yl
yc

 =

 Dh

Dl

Dc

α+ λ|α|1, (2)

where |α|1 is the L1-norm of α, and λ is a parameter to
control the sparsity of coefficients. Using the learnt joint

(a) RGB Image (b) Raw Image (c) Single scale (d) Multi-scale
Figure 3. Results from single and multi-scale dictionary recovery,
shown as RGB texture mapped onto a depth surface. The dark
lines and regions result from depth quantization and missing data
due to occlusion.

L0-RGB Raw depth 1st level 2nd level 3rd level
Figure 4. Multi-scale refinement of the depth map. 1st: coarsest
level; 2nd: middle level; 3rd: finest level. For illustration, the
depth maps in the 1st and 2nd levels are bicubic upsampled to the
resolution of the 3rd level.

correlation in {Dh,Dl,Dc} from training data, we first es-
timate the α which minimizes yl = Dlα and yc = Dcα.
We then use Dh and the estimated α to recover yh = Dhα.
This framework follows standard procedures in dictionary-
based image restoration [16] and super-resolution [23]. We
refer readers to [23] for details on joint dictionary learning
and sparse coefficient estimation [24].

In the following, we describe our main contributions
on how to address the three practical issues within this
dictionary-based framework.

RGB-D structure similarity measure. To deal with the
first issue of uncorrelated texture and depth discontinuities,
we formulate a measure for predicting which RGB edges
are most likely to coincide with depth discontinuities. To
determine this reliably, we examine the consistency be-
tween local edge structures and depth layer boundaries,
rather than simply taking the gradient magnitude of indi-
vidual pixels. After upsampling the depth map by bicubic
interpolation to the resolution of the RGB image, the simi-
larity measure is computed as follows:

κ(yl(x), yc(x)) =
| < g(yl(x)), g(yc(x)) > |
‖g(yl(x))‖2‖g(yc(x))‖2

, (3)

where g(yl(x)) = {∂xyl(x′), ∂yyl(x
′)},x′ ∈ N(x), is a

concatenation of gradients in the x (∂x) and y (∂y) direc-
tions within a local neighborhood N(x) of x, < ·, · > de-
notes the dot product operation, | · | denotes the absolute
value operator, and ‖·‖2 is the Euclidian norm of a vector. In
our implementation, N(x) is defined as a 3× 3 local neigh-
borhood, g(yc(x)) is defined using the maximum gradient
magnitudes among the RGB channels, and κ(yl(x), yc(x))
is set to zero if either ‖g(yl(x))‖2 or ‖g(yc(x))‖2 is smaller



(a) Color (b) nAGDP (finest level) (c) without nAGDP (d) with nAGDP (e) Ground Truth
Figure 2. The normalized Absolute Gradient Dot Product (nAGDP), which identifies RGB edges most likely to coincide with depth
discontinuities (where the red end of the spectrum indicates higher values, and the blue end represents lower values). Dictionary-based
depth map refinement based on Equation (5) using nAGDP exhibits improvements over refinement without it (κ = 1). In this example, the
RAW depth map is upsampled by 8×.

than a threshold. We refer to this measure as the normal-
ized Absolute Gradient Dot Product (nAGDP). Figure 2(b)
shows an example of our nAGDP map, which effectively
indicates RGB edges that coincide with depth discontinu-
ities. We utilize the nAGDP map to guide the depth map
refinement process as described later. The effect of κ on
depth map refinement is illustrated by the comparison in
Figure 2(c) and (d), which exhibit dictionary-based refine-
ment without and with nAGDP, respectively.

Multi-scale solution to address degradation variation.
Since the variations in depth degradation lead to consid-
erably more triples among low-quality depth, high-quality
depth, and intensity, the number of dictionary primitives
needed to model them would increase considerably. Rep-
resenting this with only a fixed dictionary size as in [18]
would result in inadequate performance. Our solution to
this problem is to reduce the effects of degradation varia-
tion via a multi-scale solution where degradation effects are
significantly reduced at coarser scales, and refinement solu-
tions at coarser scales are used as a proxy for the low-quality
depth patches at finer scales. By learning dictionaries using
these proxies instead of the original low-quality depth map,
we circumvent the issue of degradation variation on dictio-
nary size.

To train our dictionary, we downsample the training data
by a factor of 8 using bicubic interpolation. The down-
sampling reduces degradation effects like noise, holes and
quantization in yl, while yh and yc remain accurate after
downsampling. If missing values exist after downsampling
because of large holes, they are filled by using the method
in [11]1. The hole filling of [11] may produce texture copy-
ing artifacts and inaccurate depth boundaries due to irrele-
vant image gradients in the RGB image. To avoid this, we
modify their smoothness term by setting its weight equal
to (1 − κ) and use only the first order neighborhood for
depth propagation within the hole regions. Applying the
hole filling on the downsampled depth map rather than at
the original resolution minimizes bias from the hole filling

1Source code at http://rcv.kaist.ac.kr/˜jspark/
projects/high_quality_depthmap_upsampling/

Algorithm 1: Dictionary Learning
Input: yh, yl, yc
Output: Dh,Dl,Dc

1: Create Gaussian pyramid of yh, yl, yc
2: At the coarsest level, repair y0l using [11]
3: Bicubic downsample repaired y0l to get ỹ0l
4: For each i-th level, do:
5: Compute κ using Equation (3)
6: Learn {Di

h,Di
l ,D

i
c} using Equation (4)

7: Reconstruct yih using Equation (6) and (7).
8: Set ỹi+1

l = yih
9: Output Dh,Dl,Dc at each level

Algorithm 2: Depth Map Refinement
Input: yl, yc, Dh,Dl,Dc

Output: yh
1: Create Gaussian pyramid of yl, yc
2: At the coarsest level, repair y0l using [11]
3: Bicubic downsample repaired y0l to get ỹ0l
4: For each i-th level, do:
5: Compute κ using Equation (3)
6: Reconstruct yih using Equation (6) and (7).
7: Set ỹi+1

l = yih
8: Output reconstructed yh at the finest level

method. After hole filling, we further downsample yl by 2×
to obtain the proxy solution at the coarsest resolution, ỹ0l .

Scale-dependent dictionaries. Using the proxy solution,
ỹ0l , and the downsampled y0h and y0c , we can learn a dictio-
nary and use it to reconstruct and upsample the depth map
progressively up to the original resolution of the RGB im-
age. However, this would ignore the differences in geomet-
ric features that occur at different scales. We therefore learn
a dictionary at each level of the multi-scale solution.

To learn the dictionary at a level i, we solve the following
minimization problem:

argmin
Di

∥∥∥∥∥∥




yih
ỹil
ýic


−




Di
h

Di
l

Di
c


αi

∥∥∥∥∥∥

2

+ λ|αi|. (4)



Instead of using yic directly, we filter yic with L0-norm
smoothing [25] to enhance sharp edges and reduce image
noise. After that, we convert the filtered yic to a gradient im-
age and keep only the maximum magnitude among the RGB
channels. Within each image patch, gradients are then nor-
malized by the maximum gradient magnitude to yield ýic for
training. These steps are taken because gradient magnitude
and direction are uncorrelated with depth map discontinu-
ities. In our implementation, we use patches of size 8×8 for
yih and yic, and size 4× 4 for the lower-resolution ỹil . Depth
patches are normalized to have zero mean before training.
At each level, we randomly sample 100,000 patches from a
training set with a higher probability for patches that con-
tain a larger local sum of κ. After training, each Di

h,D
i
l,D

i
c

contains 1024 patches (basis functions) coupled among the
dictionaries. The dictionary learning algorithm is summa-
rized in Algorithm 1, and the effects of multi-scale dictio-
nary learning and progressive refinements are demonstrated
in Figure 3 and Figure 4 respectively.

Depth map refinement. To refine the low-quality input
depth map, we first estimate the sparse reconstruction co-
efficients of patches by minimizing the following function:

arg min
αi
‖ỹil −Di

lα
i‖2 + κ‖ýic −Di

cα
i‖2 + λ|αi|. (5)

In order to ensure consistent reconstruction between neigh-
boring patches, we modify Equation (5) by considering
overlapping patches. For each patch, the sparse coefficients
are then estimated by minimizing

arg min
αi(x)

P(x)‖yih(x)−Di
hα

i(x)‖2 + ‖ỹil(x)−Di
lα
i(x)‖2

+κ(x)‖ýic(x)−Di
cα
i(x)‖2 + λ|αi(x)|, (6)

where P(x) is a binary mask that indicates parts of the re-
constructed depth map that lie within patch overlap areas.
By incorporating the nAGDP map, κ, into Equation (6), we
avoid irrelevant edges in the RGB image which can mislead
coefficient estimation. In our implementation, the refined
patches overlap by a 6-pixel margin. Depth patches are re-
fined in descending order of the local sum of κ. For patches
with the same κ sum, the ordering is determined based on
the amount of overlap with patches that have a higher κ
sum. This ordering allows reliable patches along depth dis-
continuities to be reconstructed before patches in interior
regions [26].

Finally, using the estimated coefficients αi for patches
over the entire image, we reconstruct the depth map by solv-
ing the following optimization function:

arg min
yih

∑
x

‖yih(x)−
∑
x′

w(x′)Di
hα

i(x′)‖2

+µ
∑
x

(1− κ(x))|∇yih(x)|, (7)

where
∑

x(1−κ(x))|∇yih(x)| is the total variation regular-
ization weighted by (1−κ(x)) which suppresses noise in re-
construction,w(x′) is a blending function (

∑
x′ w(x′) = 1)

for overlapping patches which is defined according to dis-
tance from the patch center, and µ = 0.1 in our implementa-
tion. The refinement procedure is summarized in Algorithm
2.

5. Experiments
We first compare our method with state-of-the-art tech-

niques for depth map upsampling using the noisy Middle-
bury dataset from [27]. Then, we evaluate the performance
of our method on depth map completion and enhancement
using a public Kinect dataset [21] and a ToF dataset [27].
Finally, we demonstrate our data-driven recovery using
class-specific dictionaries on face data. Additional re-
sults, including a computation time comparison, quantita-
tive comparisons using a clean Middlebury dataset [29],
qualitative comparisons with various Kinect scene datasets,
and three videos each of recovered Kinect/ToF face depth
and ToF scene depth mesh models are provided in the sup-
plemental material. We assume that the training and testing
data are captured at the same scale. For objects such as hu-
man faces, scale normalization can be done through a face
detector.

5.1. Training data collection

In collecting training data, we employ Kinect Fusion [4]
to capture high-quality mesh data as shown in Figure 5.
We also record camera poses, RAW depth maps, and cor-
responding RGB images. The high-quality and low-quality
depth map pair is obtained through projection of the cap-
tured mesh data and RAW depth map after geometric align-
ment to the RGB image.

In the training process, different levels of the multi-
scale dictionary learning are separated by a scale factor of
dlog2Me, where the magnification M is the ratio between
the resolution of the RGB image and RAW depth map. The
number of scales and patch sizes were set empirically based
on the SNR of depth maps. In our experiments, we found
that three levels are suitable for natural scenes, and two lev-
els are sufficient for face data. We have tested the face data
with a three-level multiscale dictionary, but the results were
similar to that of two levels. Thus, we chose two levels to
reduce computation time. As for patch size, a larger patch
has a greater space of variation and thus requires a larger
dictionary as well as more computation. A smaller size of
patches in low-quality depth maps is preferable because the
greater noise in a low-quality depth map would otherwise
result in a large dictionary. As for the selection of train-
ing data, since we do not have any prior knowledge about
the structures in a given scene, we gather training data that
contains a rich variation in geometry.



(a) (b) (c) (d)
Figure 5. Training data examples. Top row: a natural scene; Bottom row: a human face. (a) Kinect Fusion mesh, (b) High-quality depth
map from projected mesh, (c) RAW depth map, (d) RGB image (after L0-norm smoothing for natural scenes).

Table 1. Upsampling of noisy Middlebury dataset

Art Books Moebius
2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16×

Park et al.[11] 3.76 4.56 5.9 9.32 1.95 2.61 3.31 4.85 1.96 2.51 3.22 4.48
Ferstl et al.[27] 3.19 4.06 5.08 7.60 1.52 2.21 2.46 3.54 1.47 2.03 2.58 3.56

Kiechle et al.[17] 2.82 5.1 6.83 10.8 3.83 5.10 6.12 8.43 4.50 5.73 6.64 8.96
Li et al. [18] 3.02 3.12 4.43 7.43 1.17 1.69 2.55 3.58 1.14 1.59 2.28 3.5

Ours(w.o. nAGDP) 0.99 1.93 2.75 4.02 0.53 0.85 1.25 1.93 0.59 1.0 1.48 2.19
Ours(w. nAGDP) 0.87 1.3 2.05 3.56 0.51 0.75 1.14 1.88 0.57 0.89 1.37 2.14

Table 2. ×8 Upsampling of noisy Middlebury dataset
Art Books Moebius

Planar Dict. 5.34 1.19 2.44
Ours 2.05 1.14 1.37

5.2. Noisy Middlebury dataset

We apply our algorithm to the depth map upsam-
pling problem using the noisy Middlebury dataset provided
by [27]2. In this experiment, our multi-scale dictionary is
trained from our Kinect examples for natural scenes. We
progressively upsample and refine the recovered depth map
by a factor of 2× until the depth map resolution reaches the
target upsampling resolution. Table 1 reports quantitative
comparisons to related methods in terms of RMSE, and Fig-
ure 6 shows a qualitative comparison of 8× upsampling for
the Art example. The training data used for the state-of-the-
art learning-based approach [17]3 are identical to that used
for our method. Comparisons are also presented for our
approach without and with nAGDP . Our approach consis-
tently outperforms the compared methods4, indicating that

2 https://rvlab.icg.tugraz.at/project_page/
project_tofusion/project_tofsuperresolution.html

3Source code from http://www.gol.ei.tum.de/index.
php?id=6&L=1

4Note that the standard RMSE used in Table 1, e.g. RMSE(θ) =√
E((θ̂ − θ)) where θ̂ is the upsampled result and θ is ground-truth, is

different from the metrics used in [27] and [17]. Comparisons with other

our dictionary representation learnt with Kinect data is ef-
fective and general enough for refinement of non-Kinect
depth degradations.

In Table 2, we show results for an additional experiment
where the training data contains only large planar objects.
Using training data with large planar objects is effective for
scenes composed of planar surfaces, but results in larger
error for scenes with curved surfaces and regions with small
scale geometry.

5.3. Kinect natural scene data

We also tested our algorithm on natural scene data in
Figure 7, where the first two examples are from the NYU
RGB-D dataset [21] and the last one is from Park et al. [30]
which has ground truth depth from Kinect Fusion. More ex-
amples can be found in the supplemental material. We com-
pare our results with those from Park et al. [11], Kiechle et
al. [17], and Li et al. [18]. Our results exhibit higher-quality
refinement especially for regions with ambiguities. In Fig-
ure 7(d), although our results are less sharp, our refined edge
locations are more accurate due to the usage of nAGDP. For
the third example, we provide RMSE values in addition to
difference maps between ground truth and results, which
indicate the effectiveness of our method quantitatively. The
use of nAGDP helps our approach to avoid irrelevant RGB

error metrics are presented in the supplemental material.



(a) RGB (b) Input (c) Park et al.[11] (d) Ferstl et al.[27](e) Kiechle et al.[17](f) Ours (w. nAGDP)
Figure 6. Examples of 8× upsampling on the Art dataset.
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Figure 7. Comparisons on natural scene data captured by Kinect. More examples can be found in the supplemental material.

edges and bleeding of depth map values. The multi-scale
processing also plays an important role in correctly refining
the depth map at different scales.

5.4. ToF dataset

We additionally tested our method on the real-world ToF
dataset provided by [27], with ground truth depth maps ob-
tained using a structured light scanner. An example of our
results is shown in Figure 8, along with a quantitative com-
parison.

5.5. Kinect face data

In Figure 9, we demonstrate our method on class-specific
depth refinement using human faces. Our face dictionary is
trained at multiple scales using six faces whose high-quality
depth maps were captured with Kinect Fusion. The face
areas are manually cropped and resized to the same scale
for both training and testing. As shown in Figure 9, the
RAW depth maps are full of quantization errors and have
missing depth values around the nose due to occlusion.

Our results are compared with those of Kiechle et



Books Devil Shark
RMSE[mm] RMSE[mm] RMSE[mm]

He et al.[28] 14.90 15.74 14.08
Ferstl et al.[27] 6.5 8.42 7.74

Ours(w.o. nAGDP) 7.1 5.81 8.8
Ours(w. nAGDP) 4.02 3.56 5.5

Bold text indicates the best result.

Figure 8. Real-world ToF data upsampling. Left: Y-channel image, and upsampled depth map. The RAW low-resolution depth map is
shown in the upper-left corner of the output depth map (relative resolution between the two images is preserved). Right: RMSE comparison.

Front view Side view

(a) RGB (b) RGB crop (c) RAW (d) Kiechle[17] (e) Ours
Figure 9. 3D meshes of face testing examples. Side views are arranged in the same order as the front views.

al. [17], for which the aligned Kinect Fusion depth map is
used to train their joint intensity and depth co-sparse dic-
tionary. Different from our method, theirs does not include
low-quality depth maps as training data, and their recon-
struction is performed at a single scale. For better visual-
ization, we also show side views of recovered depth maps.
Note that our method does not over-smooth the sharp fea-
tures of noses and mouths. We also note that the shape of
the nose in the third example of our results is different from
the actual nose shape. This is because the large quantization
errors introduce ambiguities in dictionary matching, which
cannot be resolved using only the given frontal view.

The benefit of using multi-scale and data-dependent dic-
tionary learning is illustrated in Figure 10. In (b), the re-
sults are generated using a generic multi-scale dictionary
trained from natural scenes. In (c), the depth maps are com-
puted using the same dictionary at each scale, which was
learned from faces. Results of our proposed approach, with
different dictionaries learned for different scales from face
data, are exhibited in (d). Even though we applied the same
multi-scale approach to each case, the outcomes are differ-
ent according to the dictionaries used. The most severe case
is the generic dictionary which results in over-smoothing
across the entire facial structure. With the same face dictio-

(a) (b) (c) (d)
Figure 10. Different dictionaries for face reconstruction with the
multi-scale approach. (a) RGB; (b) Generic dictionaries; (c) Sin-
gle dictionary for different levels; (d) Ours.

nary at each scale, critical facial features are over-smoothed,
such as at the tip of the nose. These distortions indicate that
a single dictionary does not adequately model face geome-
try at different scales.

For experiments on ToF face data, please see the supple-
mental material.

6. Conclusion
We presented a multi-scale dictionary-based depth map

refinement method that addresses three important practical
issues neglected in previous work. Through modifications
of the dictionary learning and reconstruction framework to
deal with these matters, significant improvements in perfor-
mance are gained over state-of-the-art techniques.



References
[1] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,

R. Moore, A. Kipman, and A. Blake. Real-time human pose
recognition in parts from a single depth image. In CVPR,
2011. 1

[2] V. Vineet, C. Rother, and P. Torr. Higher order priors for joint
intrinsic image, objects, and attributes estimation. In NIPS,
2013. 1

[3] H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse
coding algorithms. NIPS, 19:801, 2007. 1

[4] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,
P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, and
A. Fitzgibbon. Kinectfusion : Real-time 3d reconstruction
and interaction using a moving depth camera. In 24th annual
ACM symposium on User interface software and technology,
ser. UIST ’11, pages 559–568, 2011. 1, 2, 5

[5] I. Tosic and S. Drewes. Learning joint intensity-depth
sparse representations. IEEE Trans. on Image Processing,
23(5):2122–2132, 2014. 2

[6] J. Diebel and S. Thrun. An application of markov random
fields to range sensing. In NIPS, 2005. 2

[7] Q. Yang, R. Yang, J. Davis, and D. Nistr. Spatial-depth super
resolution for range images. CVPR, pages 1–8, 2007. 2

[8] J. Zhu, L. Wang, R. Yang, and J. Davis. Fusion of time-
of-flight depth and stereo for high accuracy depth maps. In
CVPR, 2008. 2

[9] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele.
Joint bilateral upsampling. ACM Trans. on Graph., 26(3):96,
2007. 2

[10] P. Favaro. Recovering thin structures via nonlocal-means
regularization with application to depth from defocus. In
CVPR, 2010. 2

[11] J. Park, H. Kim, Y.-W. Tai, M.S. Brown, and I. Kweon. High
quality depth map upsampling for 3d-tof cameras. ICCV,
pages 1623–1630, 2011. 2, 4, 6, 7

[12] J. Yang, X. Ye, K. Li, and C. Hou. Depth recovery using an
adaptive color-guided auto-regressive model. ECCV, pages
158–171, 2012. 2

[13] M.Y. Liu, O. Tuzel, and Y. Taguchi. Joint geodesic upsam-
pling of depth images. CVPR, pages 169–176, 2013. 2

[14] L. F. Yu, S. K. Yeung, Y. W. Tai, and S. Lin. Shading-based
shape refinement of rgb-d images. In CVPR, pages 1415–
1422, June 2013. 2

[15] Y. Han, J.-Y Lee, and I.S. Kweon. High quality shape from
a single rgb-d image under uncalibrated natural illumination.
In ICCV, 2013. 2

[16] M. Elad and M. Abaron. Image denoising via sparse and
redundant representations over learned dictionaries. IEEE
Trans. on Image Processing, 15(12):3736–3745, 2006. 2, 3

[17] M. Kiechle, S. Hawe, and M. Kleinsteuber. A joint inten-
sity and depth co-sparse analysis model for depth map super-
resolution. ICCV, 2013. 2, 6, 7, 8

[18] Y. Li, T. Xue, L. Sun, and J. Liu. Joint example-based depth
map super-resolution. ICME, pages 152–157, 2012. 2, 3, 4,
6, 7

[19] S. Meister, S. Izadi, P. Kohli, M. Hämmerle, C. Rother, and
D. Kondermann. When can we use kinectfusion for ground
truth acquisition? In Workshop on Color-Depth Camera Fu-
sion in Robotics, IROS, 2012. 2

[20] A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz,
K. Saenko, and T. Darrell. A category-level 3-d object
dataset: Putting the kinect to work. In ICCV, 2011. 2

[21] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor
segmentation and support inference from rgbd images. In
ECCV, 2012. 2, 5, 6

[22] D.L. Donoho. Compressed sensing. IEEE Trans. on Infor-
mation Theory, 52(4):1289–1306, 2006. 3

[23] J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang. Coupled
dictionary training for image super-resolution. IEEE Trans.
on Image Processing, 21(8):3467–3478, 2012. 3

[24] J. Zheng, Z. Jiang, P. J. Phillips, and R. Chellappa. Cross-
view action recognition via a transferable dictionary pair. In
bmvc, volume 1, page 7, 2012. 3

[25] L. Xu, C. Lu, Y. Xu, and J. Jia. Image smoothing via l0
gradient minimization. ACM Trans. on Graph., 30(6):174,
2011. 5

[26] J. Sun, L. Yuan, J. Jia, and H. Y. Shum. Image comple-
tion with structure propagation. ACM Trans. on Graph.,
24(3):861–868, July 2005. 5

[27] D. Ferstl, C. Reinbacher, R. Ranftl, M. Rther, and
H. Bischof. Image guided depth upsampling using
anisotropic total generalized variation. ICCV, 2013. 5, 6,
7, 8

[28] K. He, J. Sun, and X. Tang. Guided image filtering. IEEE
Trans. on PAMI, 35(6):1397–1409, 2013. 8

[29] D. Scharstein and R. Szeliski. High-accuracy stereo depth
maps using structured light. In CVPR, pages 195–202, June
2003. 5

[30] J. Park, H. Kim, Y.-W. Tai, M. S. Brown, and I. Kweon.
High quality depth map upsampling and completion for
rgb-d cameras. IEEE Transactions on Image Processing,
23(12):5559–72, Dec 2014. 6


