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Recently, sparse representation based generative tracking methods have been
developed for object tracking [1, 2, 3, 4, 5, 6, 7, 9, 10, 11]. These trackers
can be categorized based on the representation schemes into global, local,
and joint sparse appearance models as shown in Figure 1. Given an im-
age with the n sampled particles X = [x1, · · · ,xi, · · · ,xn] and the dictionary
templates T. (a) Global sparse appearance model [3, 4, 6, 7, 9]. These
trackers adopt the holistic representation of a target as the appearance mod-
el and tracking is carried out by solving `1 minimization problems. As a
result, the target candidate xi is represented by a sparse number of elements
in T. (b) Local sparse appearance model [2, 5]. These trackers represent
each local patch inside one possible target candidate xi by a sparse linear
combination of the local patches in T. Note that, the local patches inside the
target candidate xi may be sparsely represented by the corresponding local
patches inside different dictionary templates. (c) Joint sparse appearance
model [1, 10, 11]. These trackers exploit the intrinsic relationship among
particles X to learn their sparse representations jointly. The joint sparsity
constraints encourage all particle representations to be jointly sparse and
share the same (few) dictionary templates that reliably represent them. (d)
The proposed structural sparse appearance model incorporates the above
three models together. Our model exploits the intrinsic relationship among
particles X and their local patches to learn their sparse representations joint-
ly. In addition, our method also preserves the spatial layout structure among
the local patches inside each target candidate, which is ignored by the above
three models [1, 2, 3, 5, 6, 7, 9, 10, 11]. Using our model, all particles X
and their local patches are represented with joint sparsity, i.e., only a few
(but the same) dictionary templates are used to represent all the particles
and their local patches at each frame. Note that, the local patches inside
all particles X are represented with joint sparsity by the corresponding local
patches inside the same dictionary templates used to represent X.

In this paper, we use the convex `p,q mixed norm, especially, `2,1 to
model the structure information of Zk and Zi and obtain the structural sparse
appearance model for object tracking as

min
Z

1
2

K

∑
k=1

∥∥∥Xk−DkZk
∥∥∥2

F
+λ‖Z‖2,1, (1)

where Z =
[
Z1,Z2, · · · ,ZK] ∈ Rm×nK , ‖·‖F denotes the Frobenius norm,

and λ is a tradeoff parameter between reliable reconstruction and joint s-
parsity regularization. The definition of the `p,q mixed norm is ‖Z‖p,q =(
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, and [Z]i j denotes the entry at the i-th row and j-th

column of Z. Figure 2 illustrates the structure of the learned matrix Z.
The comparison results on benchmark [8] are shown in Figure 3. The

results show that our SST tracker achieves favorable performance than other
related sparse trackers [2, 6, 7, 9, 10]. Compared with other state-of-the-art
methods, our SST achieves the second best overall performance.
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Figure 1: Sparse representation based trackers [1, 2, 3, 4, 5, 6, 7, 9, 10, 11].
These methods are grouped based on their sparse appearance models.

Figure 2: Illustration for the structure of the learned coefficient matrix Z.

(a) global sparse appearance model (b) global sparse appearance model

Figure 3: Precision and success plots of overall performance comparison for
the 51 videos in the benchmark [8] (best-viewed on high-resolution display).
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