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Figure 1: Conceptual illustration of the proposed Projection Metric Learn-
ing (PML) on the Grassmann Manifold. Traditional Grassmann discrimi-
nant analysis methods take the away (a)-(b)-(d)-(e) to first embed the origi-
nal Grassmann manifold G(q,D) (b) into high dimensional Hilbert space H
(d) and then learn a map from the Hilbert space to a lower-dimensional, op-
tionally more discriminative space Rd (e). In contrast, the newly proposed
approach goes the way (a)-(b)-(c) to learn the metric/mapping from the orig-
inal Grassmann manifold G(q,D) (b) to a new more discriminant Grssmann
manifold G(q,d) (c).

In video based face recognition, great success has been made by represent-
ing videos as linear subspaces, which typically reside on Grassmann mani-
fold endowed with the well-studied projection metric. Under the projection
metric framework, most of recent studies [1, 2, 3, 4, 5] exploited a series of
positive definite kernel functions on Grassmann manifold to first embed the
manifold into a high dimensional Hilbert space, and then map the flattened
manifold into a lower-dimensional Euclidean space (see Fig.1 (a)-(b)-(d)-
(e)). Although these methods can be employed for supervised classification,
they are limited to the Mercer kernels which yields implicit projection, and
thus restricted to use only kernel-based classifiers. Moreover, the computa-
tional complexity of these kernel-based methods increases with the number
of training sample.

To overcome the limitations of existing Grassmann discriminant anal-
ysis methods, by endowing the well-studied Projection Metric with Grass-
mann manifold, this paper attempt to learn a Mahalanobis-like matrix on the
Grassmann manifold without resorting to kernel Hilbert space embedding.
In contrast to the kernelization scheme, our approach directly works on the
original manifold and exploits its geometry to learn a representation that stil-
l benefits from useful properties of the Grassmann manifold. Furthermore,
the learned Mahalanobis-like matrix can be decomposed into the transfor-
mation for dimensionality reduction, which maps the original Grassmann
manifold to a lower-dimensional, more discriminative Grassmann manifold
(see Fig.1 (a)-(b)-(c)).

Formally, assume m video sequences are given as {XXX1,XXX2, . . . ,XXXm},
where XXX i ∈ RD×ni describes a data matrix of the i-th video containing ni
frames, each frame being expressed as a D-dimensional feature vector. In
these data, each video belongs to one of face classes denoted by Ci. The
i-th video XXX i is represented by a q-dimensional linear subspace spanned by
an orthonormal basis matrix YYY i ∈ RD×q, s.t. XXX iXXXT

i ' YYY iΛΛΛiYYY T
i , where ΛΛΛi,

YYY i correspond to the matrices of the q largest eigenvalues and eigenvectors
respectively.

Given a linear subspace span(YYY i) on Grassmann manifold (as discussed
in the original paper, we denote YYY iYYY T

i as the elements on the manifold), we
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seek to learn a generic mapping f : G(q,D)→ G(q,d) that is defined as

f (YYY iYYY T
i ) =WWW TYYY iYYY T

i WWW = (WWW TYYY i)(WWW TYYY i)
T . (1)

where WWW ∈ RD×d (d ≤ D), is a transformation matrix of column full rank.
With this mapping, the original Grassmann manifold G(q,D) can be trans-
formed into a lower-dimensional Grassmann manifold G(q,d). However,
except the case WWW is an orthogonal matrix, WWW TYYY i is not generally an or-
thonormal basis matrix. Note that only the linear subspaces spanned by or-
thonormal basis matrix can form a valid Grassmann manifold. To tackle this
problem, we temporarily use the orthonormal components of WWW TYYY i defined
by WWW TYYY

′
i to represent an orthonormal basis matrix of the transformed pro-

jection matrices. As for the approach to get the WWW TYYY
′
i, we give more details

in the original paper. Here, we briefly describe the formulation of the Pro-
jection Metric on the new Grassmann manifold and the proposed objection
function in the following.

Learned Projection Metric. The Projection Metric of any pair of trans-
formed projection operators WWW TYYY

′
iYYY
′T
i WWW , WWW TYYY

′
jYYY
′T
j WWW is defined by:

d2
p(WWW

TYYY
′
iYYY
′T
i WWW ,WWW TYYY

′
jYYY
′T
j WWW )

= 2−1/2‖WWW TYYY
′
iYYY
′T
i WWW −WWW TYYY

′
jYYY
′T
j WWW‖2

F

= 2−1/2tr(PPPAAAi jAAAT
i jPPP).

(2)

where AAAi j = YYY
′
iYYY
′T
i −YYY

′
jYYY
′T
j and PPP = WWWWWW T . Since WWW is required to be a

matrix with column full rank, PPP is a rank-d symmetric positive semidefinite
matrix of size D×D, which has a similar form as Mahalanobis matrix.

Discriminant Function. The discriminant function is designed to minimize
the projection distances of any within-class subspace pairs while to maxi-
mize the projection distances of between-class subspace pairs. The matrix
PPP is thus achieved by the objective function J(PPP) as:

PPP∗ = argmin
PPP

J(PPP) = argmin
PPP

(Jw(PPP)−αJb(PPP)). (3)

where α reflects the trade-off between the within-class compactness term
Jw(PPP) and between-class dispersion term Jb(PPP), which are measured by av-
erage within-class scatter and average between-class scatter respectively as:

Jw(PPP) =
1

Nw

m

∑
i=1

∑
j:Ci=C j

2−1/2tr(PPPAAAi jAAAT
i jPPP). (4)

Jb(PPP) =
1

Nb

m

∑
i=1

∑
j:Ci 6=C j

2−1/2tr(PPPAAAi jAAAT
i jPPP). (5)

where Nw is the number of pairs of samples from the same class, Nb is the
number of pairs of samples from different classes, AAAi j =YYY

′
iYYY
′T
i −YYY

′
jYYY
′T
j and

PPP is the PSD matrix that needs to be learned.
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