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Several problems in computer vision and image processing, such as ob-
ject detection/classification, image denoising, inpainting etc., require solv-
ing multiple learning tasks at the same time. In such settings a natural ques-
tion is to ask whether it could be beneficial to solve all the tasks jointly,
rather than separately. This idea is at the basis of the field of multi-task
learning, where the joint solution of different problems has the potential
to exploit tasks relatedness (structure) to improve learning. Indeed, when
knowledge about task relatedness is available, it can be profitably incorpo-
rated in multi-task learning approaches for example by designing suitable
embedding/coding schemes, kernels or regularizers, see [4, 6, 7].

The more interesting case, when knowledge about the tasks structure is
not known a priori, has been the subject of recent studies. Largely influenced
by the success of sparsity based methods, a common approach has been that
of considering linear models for each task coupled with suitable parameteri-
zation/penalization enforcing task relatedness, for example encouraging the
selection of features simultaneously important for all tasks [2] or for spe-
cific subgroups of related tasks [5]. One line of research has been devoted
to the development of non-linear/non-parametric approaches using kernel
methods [1, 3].

This paper follows this ideas, tackling in particular the development of
a regularization framework to learn and exploit the tasks structure, which is
not only important for prediction, but also for interpretation. Towards this
end, we propose and study a family of matrix-valued reproducing kernels,
parametrized so to enforce sparse relations among tasks. A novel algorithm
dubbed Sparse Kernel MTL is then proposed considering a Tikhonov regu-
larization approach.

Model

Following [7], we adopt the perspective of reproducing kernel Hilbert spaces
for vector-valued functions (RKHSvv) to interpret the multiple tasks f1, · · · , fT
that we aim to learn as the components of a vector valued predictor f : X →
RT . A RKHSvv is a space H of vector-valued functions, equipped with an
inner product and associated with a matrix-valued kernel Γ :X×X →RT×T

for which a so-called “reproducing property” (which generalizes the repro-
ducing property for scalar RKHS) holds. Our work focuses on “separable
kernels”, that is kernels of the form Γ(·, ·) = k(·, ·)A with k : X ×X → R
and A ∈ ST

+ Positive Semidefinite (PSD) T × T matrix. In this setting we
observe that, thanks to a generalization of the Representer theorem to the
vector-valued case [7], each task ft can be parametrized as

ft(·) =
n

∑
i=1

k(·,xi)〈At ,ci〉RT =
T

∑
s=1

Atsgs(·) (1)

where the ci ∈RT are coefficient vectors and gs(·)=∑
n
i=1 k(·,xi)cis ∈Hk for

s ∈ {1, . . . ,T}. Eq. (1) shows that matrix A is encoding the tasks relations:
The gs can be interpreted as elements in a dictionary and each ft factorizes
as their linear combination. Therefore, any two predictors ft and ft ′ are
implicitly coupled by the subset of common gs.

We consider the setting where the tasks structure is unknown and we
aim to recover it from the available data in the form of a structure matrix A.
Following a denoising/feature selection argument, our approach consists in
imposing a sparsity penalty on the set of possible tasks structures, requiring
each predictor ft to be described by a small subset of gs. Following the de-
facto standard choice of `1-norm regularization to impose sparsity in convex
settings, the Sparse Kernel MTL (SKMTL) problem can be formulated as

min
f∈H,A∈ST

++

1
n

n

∑
i=1

V (yi, f (xi)) +λ (‖ f‖2
H+ε tr(A−1)+µ tr(A)+(1−µ) ‖A‖`1)

(2)

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.
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Figure 1: Tasks structure graph recovered by the Sparse Kernel MTL
(SKMTL) proposed in this work on the 15-scenes dataset.

where ‖A‖`1 = ∑t,s |Ats|, V : Y ×RT → R+ is a loss function and λ > 0,
ε > 0, and µ ∈ [0,1] regularization parameters. Here µ ∈ [0,1] regulates
the amount of desired entry-wise sparsity of A with respect to the low-rank
prior tr(A) (indeed notice that for µ = 1 we recover the low-rank inducing
framework of [2, 8]). This prior was empirically observed (see [2, 8]) to
indeed encourage information transfer across tasks; the sparsity term can
therefore be interpreted as enforcing such transfer to occur only between
tasks that are strongly correlated. Finally the term ε tr(A−1) ensures the
existence of a unique solution (making the problem strictly convex), and
can be interpreted as a preconditioning of the problem.

The non-zero entries of the recovered A can be interpreted as relations
between the corresponding tasks, see Fig. 1.
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