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Abstract

Multi-task learning is a natural approach for computer
vision applications that require the simultaneous solution of
several distinct but related problems, e.g. object detection,
classification, tracking of multiple agents, or denoising, to
name a few. The key idea is that exploring task relatedness
(structure) can lead to improved performances.

In this paper, we propose and study a novel sparse, non-
parametric approach exploiting the theory of Reproducing
Kernel Hilbert Spaces for vector-valued functions. We de-
velop a suitable regularization framework which can be for-
mulated as a convex optimization problem, and is provably
solvable using an alternating minimization approach. Em-
pirical tests show that the proposed method compares fa-
vorably to state of the art techniques and further allows to
recover interpretable structures, a problem of interest in its
own right.

1. Introduction

Several problems in computer vision and image process-
ing, such as object detection/classification, image denois-
ing, inpainting etc., require solving multiple learning tasks
at the same time. In such settings a natural question is to ask
whether it could be beneficial to solve all the tasks jointly,
rather than separately. This idea is at the basis of the field
of multi-task learning, where the joint solution of differ-
ent problems has the potential to exploit tasks relatedness
(structure) to improve learning. Indeed, when knowledge
about task relatedness is available, it can be profitably in-
corporated in multi-task learning approaches for example
by designing suitable embedding/coding schemes, kernels
or regularizers, see [20, 10, 1, 11, 19].

The more interesting case, when knowledge about the
tasks structure is not known a priori, has been the subject
of recent studies. Largely influenced by the success of spar-

sity based methods, a common approach has been that of
considering linear models for each task coupled with suit-
able parameterization/penalization enforcing task related-
ness, for example encouraging the selection of features si-
multaneously important for all tasks [2] or for specific sub-
groups of related tasks [13, 14, 29, 15, 12, 16]. Other linear
methods adopt hierarchical priors or greedy approaches to
recover the taxonomy of tasks [22, 24]. A different line
of research has been devoted to the development of non-
linear/non-parametric approaches using kernel methods –
either from a Gaussian process [1, 29] or a regularization
perspective [1, 8].

This paper follows this last line of research, tackling
in particular two issues only partially addressed in previ-
ous works. The first is the development of a regularization
framework to learn and exploit the tasks structure, which
is not only important for prediction, but also for interpre-
tation. Towards this end, we propose and study a family
of matrix-valued reproducing kernels, parametrized so to
enforce sparse relations among tasks. A novel algorithm
dubbed Sparse Kernel MTL is then proposed considering
a Tikhonov regularization approach. The second contri-
bution is to provide a sound computational framework to
solve the corresponding minimization problem. While we
follow a fairly standard alternating minimization approach,
unlike most previous work we can exploit results in con-
vex optimization to prove the convergence of the consid-
ered procedure. The latter has an interesting interpretation
where supervised and unsupervised learning steps are al-
ternated: first, given a structure, multiple tasks are learned
jointly, then the structure is updated. We support the pro-
posed method with an experimental analysis both on syn-
thetic and real data, including classification and detection
datasets. The obtained results show that Sparse Kernel MTL
can achieve state of the art performances while unveiling the
structure describing tasks relatedness.

The paper is organized as follows: in Sec. 2 we provide
some background and notation in order to motivate and in-



troduce the Sparse Kernel MTL model. In Sec. 3 we discuss
an alternating minimization algorithm to provably solve the
learning problem proposed. Finally, we discuss empirical
evaluation in Sec. 4.

Notation. With Sn++ ⊂ Sn+ ⊂ Sn ⊂ Rn×n we denote
respectively the space of positive definite, positive semidef-
inite (PSD) and symmetric n× n real-valued matrices. On

denotes the space of orthonormal n × n matrices. For any
M ∈ Rn×m,M> denotes the transpose ofM . For any PSD
matrix A ∈ Sn+, A† ∈ Sn+ denotes the pseudoinverse of A.
We denote by In ∈ Sn++ the n × n identity matrix. We
use the abbreviation l.s.c. to denote lower semi-continuous
functions (i.e. functions with closed sub-level sets) [6].

2. Model

We formulate the problem of solving multiple learning
tasks as that of learning a vector-valued function whose out-
put components correspond to individual predictors. We
consider the framework originally introduced in [20] where
the well-known concept of Reproducing Kernel Hilbert
Space is extended to spaces of vector-valued functions. In
this setting the set of tasks relations has a natural character-
ization in terms of a positive semidefinite matrix. By im-
posing a sparse prior on this object we are able to formulate
our model, Sparse Kernel MTL, as a kernel learning prob-
lem designed to recover the most relevant relations among
the tasks.

In the following we review basic definitions and results
from the theory of Reproducing Kernel Hilbert Spaces that
will allow in Sec. 2.2 to motivate and introduce our learn-
ing framework. In Sec. 2.2.2 we briefly draw connections
of our method to previously prosed multi-task learning ap-
proaches.

2.1. Reproducing Kernel Hilbert Spaces for Vector-
Valued Functions

We consider the problem of learning a function f : X →
Y from a set of empirical observations {(xi, yi)}ni=1 with
xi ∈ X and yi ∈ Y ⊆ RT . This setting includes learn-
ing problems such as vector-valued regression (Y = RT ),
multi-label/detection for T tasks (Y = {0, 1}T ) or also T -
class classification (where we adopt the standard one-vs-
all approach mapping the t-th class label to the t-th el-
ement et of the canonical basis in RT ). Following the
work of Micchelli and Pontil [20], we adopt a Tikhonov
regularization approach in the setting of Reproducing Ker-
nel Hilbert Spaces for vector-valued functions (RKHSvv).
RKHSvv are the generalization of the well-known RKHS
to the vector-valued setting and maintain most of the prop-
erties of their scalar counterpart. In particular, similarly to
standard RKHS, RKHSvv are uniquely characterized by an
operator-valued kernel:

Definition 2.1. Let X be a set and (H, 〈·, ·〉H) be a Hilbert
space of functions from X to RT . A symmetric, positive
definite, matrix valued function Γ : X × X → RT×T is
called a reproducing kernel for H if for all x ∈ X , c ∈ RT
and f ∈ H we have that Γ(x, ·)c ∈ H and the following
reproducing property holds: 〈f(x), c〉RT = 〈f,Γ(x, ·)c〉H.

Analogously to the scalar setting, a Representer theorem
holds, stating that the solution to the regularized learning
problem

minimize
f∈H

1

n

n∑
i=1

V (yi, f(xi)) + λ‖f‖2H (1)

is of the form f(·) =
∑n
i=1 Γ(·, xi)ci with ci ∈ RT , Γ

the matrix-valued kernel associated to the RKHSvv H and
V : Y × RT → R+ a loss function (e.g. least squares,
hinge, logistic, etc.) which we assume to be convex. We
point out that the setting above can also account for the case
where not all task outputs yi = (yi1, . . . , yiT )> associated
to a given input xi are available in training. Such situa-
tion would arise for instance in multi-detection problems in
which supervision (e.g. presence/absence of an object class
in the image) is provided only for a few tasks at the time.

2.1.1 Separable Kernels

Depending on the choice of operator-valued kernel Γ, dif-
ferent structures can be enforced among the tasks; this ef-
fect can be observed by restricting ourselves to the fam-
ily of separable kernels. Separable kernels are matrix-
valued functions of the form Γ(x, x′) = k(x, x′)A, where
k : X ×X → R is a scalar reproducing kernel and A ∈ ST+
a T × T positive semidefinite (PSD) matrix. Intuitively,
the scalar kernel characterizes the individual tasks func-
tions, while the matrixA describes how they are related. In-
deed, from the Representer theorem we have that solutions
of problem (1) are of the form f(·) =

∑n
i=1 k(·, xi)Aci

with the t-th task being ft(·) =
∑n
i=1 k(·, xi)〈At, ct〉RT , a

scalar function in the RKHS Hk associated to kernel k. As
shown in [10], in this case the squared norm associated to
the separable kernel kA in the RKHSvv H, can be written
as

‖f‖2H =

T∑
t,s

A†ts〈ft, fs〉Hk (2)

with A†ts the (t, s)-th entry of A’s pseudo-inverse.
Eq. (2) shows how A can model the structural relations

among tasks by directly coupling predictors: for instance,
by setting A† = IT + γ(11>)/T , with 1 ∈ RT the vector
of all 1s, we have that the parameter γ controls the vari-
ance

∑T
t=1 ‖f̄ − ft‖2Hk of the tasks with respect to their

mean f̄ = 1
T

∑T
t=1 ft. If we have access to some notion



of similarity among tasks in the form of a graph with ad-
jacency matrix W ∈ ST , we can consider the regularizer∑T
t,s=1Wts‖ft−fs‖2Hk+γ

∑T
t ‖ft‖2Hk which corresponds

to setting A† = L + γIT with L the graph Laplacian in-
duced by W . We refer the reader to [10] for more examples
of possible choices forA when the tasks structure is known.

2.2. Sparse Kernel Multi Task Learning

When a-priori knowledge of the problem structure is not
available, it is desirable to learn the tasks relations directly
from the data. In light of the observations of Sec. 2.1.1, a
viable approach is to parametrize the RKHSvv H in prob-
lem (1) with the associated separable kernel kA and to op-
timize jointly with respect to both f ∈ H and A ∈ ST+.
In the following we show how this problem corresponds to
that of identifying a set of latent tasks and to combine them
in order to form the individual predictors. By enforcing a
sparsity prior on the set of such possible combinations, we
then propose the Sparse Kernel MTL model, which is de-
signed to recover only the most relevant tasks relations. In
Sec. 2.2.2 we discuss, from a modeling perspective, how
our framework is related to the current multi-task learning
literature.

2.2.1 Recovering the Most Relevant Relations

From the Representer theorem introduced in Sec. 2.1 we
know that a candidate solution f : X → RT to prob-
lem (1) can be parametrized in terms of the maps k(·, xi),
by a structure matrix A ∈ ST+ and a set of coefficient vec-
tors c1, . . . , cn ∈ RT such that f(·) =

∑n
i=1 k(·, xi)Aci. If

now we consider the t-th component of f (i.e. the predictor
of the t-th task), we have that

ft(·) =

n∑
i=1

k(·, xi)〈At, ci〉RT =

T∑
s=1

Atsgs(·) (3)

where we set gs(·) =
∑n
i=1 k(·, xi)cis ∈ Hk for s ∈

{1, . . . , T} and cis ∈ R the s-th component of ci.
Eq. (3) provides further understanding on how A can en-
force/describe the tasks relations: The gs can be interpreted
as elements in a dictionary and each ft factorizes as their
linear combination. Therefore, any two predictors ft and
ft′ are implicitly coupled by the subset of common gs.

We consider the setting where the tasks structure is un-
known and we aim to recover it from the available data
in the form of a structure matrix A. Following a denois-
ing/feature selection argument, our approach consists in im-
posing a sparsity penalty on the set of possible tasks struc-
tures, requiring each predictor ft to be described by a small
subset of gs. Indeed, by requiring most of A’s entries to
be equal to zero, we implicitly enforce the system to re-
cover only the most relevant tasks relations. The bene-
fits of this approach are two-fold: on the one hand it is

less sensitive to spurious statistically non-significant tasks-
correlations that could for instance arise when few training
examples are available. On the other hand it provides us
with interpretable tasks structures, which is a problem of
interest in its own right and relevant, for example, in cogni-
tive science [17].

Following the de-facto standard choice of `1-norm regu-
larization to impose sparsity in convex settings, the Sparse
Kernel MTL problem can be formulated as

minimize
f∈H,A∈ST++

1

n

n∑
i=1

V (yi, f(xi)) +

λ(‖f‖2H + ε tr(A−1) + µ tr(A) + (1− µ) ‖A‖`1) (4)

where ‖A‖`1 =
∑
t,s |Ats|, V : Y × RT → R+ is a loss

function and λ > 0, ε > 0, and µ ∈ [0, 1] regularization
parameters. Here µ ∈ [0, 1] regulates the amount of de-
sired entry-wise sparsity of A with respect to the low-rank
prior tr(A) (indeed notice that for µ = 1 we recover the
low-rank inducing framework of [2, 28]). This prior was
empirically observed (see [2, 28]) to indeed encourage in-
formation transfer across tasks; the sparsity term can there-
fore be interpreted as enforcing such transfer to occur only
between tasks that are strongly correlated. Finally the term
ε tr(A−1) ensures the existence of a unique solution (mak-
ing the problem strictly convex), and can be interpreted as a
preconditioning of the problem (see Sec. 3.2).

Notice that the term ‖f‖2H depends on both f and A (see
Eq. 2), thus making problem (4) non-separable in the two
variables. However, it can be shown that the objective func-
tional is jointly convex in f andA (we refer the reader to the
supplementary material for a proof of convexity, which ex-
tends results in [2] to our setting). This will allow in Sec. 3
to derive an optimization strategy that is guaranteed to con-
verge to a global solution.

2.2.2 Previous Work on Learning the Relations among
Tasks

Several methods designed to recover the tasks relations
from the data can be formulated using our notation as joint
learning problems in f and A. Depending on the ex-
pected/desired tasks-structure a set of constraintsA ⊆ ST++

can be imposed onAwhen solving a joint problem as in (4):

• Multi-task Relation Learning [28]. In [28], the re-
laxation A = {A| tr(A) ≤ 1} of the low-rank con-
straint is imposed, enforcing the tasks ft to span a
low-dimensional subspace in Hk. This method can be
shown to be approximately equivalent to [2].

• Output Kernel Learning [8]. Rather than imposing a
hard constraint, the authors penalize the structure ma-
trix A with the squared Frobenius norm ‖A‖2F .



• Cluster Multi-task Learning [13]. Assuming tasks
to be organized into distinct clusters, in [13] a learning
scheme to recover such structure is proposed, which
consists of imposing a suitable set of spectral con-
straints A on A. We refer the reader to the supple-
mentary material for further details.

• Learning Graph Relations [3]. Following the inter-
pretation in [10] reviewed in Sec. 2.1.1 of imposing
similarity relations among tasks in the form of a graph,
in [3] the authors propose a setting where a (relaxed)
Graph Laplacian constraint is imposed on A.

3. Optimization

Due to the clear block variable structure of Eq. (4) with
respect to f and A, we propose an alternating minimiza-
tion approach (see Alg. 1) to iteratively solve the Sparse
Kernel MTL problem by keeping fixed one variable at the
time. This choice is motivated by the fact that for a fixed
A, problem (4) reduces to the standard multi-task learning
problem (1), for which several well-established optimiza-
tion strategies have already been considered [1, 20, 10, 21].
The alternating minimization procedure can be interpreted
as iterating between steps of supervised learning (finding
the f that best fits the input-output training observations)
and unsupervised learning (finding the best A describing
the tasks structure, which does not involve the output data).

3.1. Solving w.r.t. f (Supervised Step)

Let A ∈ ST++ be a fixed structure matrix. From the Rep-
resenter theorem (see Sec. 2.1) we know that the solution
of problem (1) is of the form f(·) =

∑n
i=1 k(·, xi)Aci

with ci ∈ RT . Depending on the specific loss V , dif-
ferent methods can be employed to find such coefficients
ci. In particular, for the least-square loss a closed form
solution can be derived by taking the coefficient vector
c = (c>1 , . . . , c

>
n )> ∈ RnT to be [1]:

c = (A⊗K + λInT )−1y (5)

where K ∈ Sn+ is the empirical kernel matrix associated to
k the scalar kernel, y ∈ RnT is the vector concatenating
the training outputs y1, . . . , yn ∈ RT and ⊗ denotes the
Kronecker product. A faster and more compact solution
was proposed in [21] by adopting Sylvester’s method.

3.2. Solving w.r.t the Tasks Structure (Unsupervised
Step)

Let f be known in terms of its coefficents c1, . . . , cn ∈
RT . Our goal is to find the structure matrix A ∈ ST++ that
minimizes problem (4). Notice that each task ft can be writ-
ten as ft(·) =

∑n
i=1 k(·, xi)〈At, ci〉RT =

∑n
i=1 k(·, xi)bi,t

Algorithm 1 ALTERNATING MINIMIZATION

Input: K empirical kernel matrix, y training outputs, δ
tolerance, V loss, λ, µ, ε hyperparameters, S objective
functional of problem (4).
Initialize: f0 = 0, A0 = IT and i = 0
repeat

fi+1 ← SUPERVISEDSTEP (V,K, y,Ai, λ)
Ai+1 ← SPARSEKERNELMTL(K, fi+1, µ, ε)
i← i+ 1

until |S(fi+1, Ai+1)− S(fi, Ai)| < δ

with bi,t = 〈At, ci〉RT . Therefore, from eq. (2) we have

‖f‖2H =

T∑
t,s

A−1ts 〈ft, fs〉Hk =

T∑
t,s

∑
i,j

A−1ts k(xi, xj)bitbjs

(6)
where we have used the reproducing property ofHk for the
last equality. Eq. (6) allows to write the norm induced by the
separable kernel kA in the more compact matrix notation
‖f‖2H = tr(B>KBA−1), where B ∈ Rn×T is the matrix
with (i, t)-th element Bit = bit.

Under this new notation, problem (4) with fixed f be-
comes

min.
A∈ST++

tr(A−1(B>KB+ εIT )) +µ tr(A) + (1−µ) ‖A‖`1
(7)

from which we can clearly see the effect of ε as a precondi-
tioning term for the tasks covariance matrix B>KB.

By employing recent results from the non-smooth con-
vex optimization literature, in the following we will de-
scribe an algorithm to optimize the Sparse Kernel MTL
problem.

3.2.1 Primal-dual Splitting Algorithm

First order proximal splitting algorithms have been success-
fully applied to solve convex composite optimization prob-
lems, that can be written as the sum of a smooth component
with nonsmooth ones [4]. They proceed by splitting, i.e. by
activating each term appearing in the sum individually. The
iteration usually consists of a gradient descent-like step de-
termined by the smooth component, and various proximal
steps induced by the nonsmooth terms [4]. In the following
we will describe one of such methods, derived in [26, 7],
to solve the Sparse Kernel MTL problem in eq. (7). The
proposed method is primal-dual, in the sense that it also
provides an additional dual sequence solving the associ-
ated dual optimization problem. We will rely on the sum
structure of the objective function, that can be written as
G(·)+H1(·)+H2(L(·)), withG(A) = λµ tr(A),H1(A) =
λ(1−µ)‖A‖`1 andH2(A) = λε tr(A−1)+iST++

(A), where



iST++
is the indicator function of a ST++ (0 on the set +∞

outside) and enforces the hard constraint A ∈ ST++. L is a
linear operator defined as L(A) = MAM , where we have
set M = (B>KB+ εIT )−1/2. We recall here that a square
root of a PSD matrix P ∈ ST+ is a PSD matrix M ∈ ST+
such that P = MM . Note that G is smooth with Lips-
chitz continuous gradient, L is a linear operator and both
H1 and H2 are functions for which the proximal operator
can be computed in closed form. We recall that the proxim-
ity operator at a point y ∈ Rm of a proper, convex and l.s.c.
function H : Rm → R ∪ {+∞}, is defined as

proxH(y) = argmin
x∈Rm

{
H(x) +

1

2
‖x− y‖2

}
. (8)

It is well known that for any η > 0, the proximal map
of the `1 norm η‖ · ‖`1 is the so-called soft-thresholding
operator Sη(·), which can be computed in closed form. The
following result provides an explicit closed-form solution
also for the proximal map of H2.

Proposition 3.1. Let Z ∈ ST with eigendecomposition
Z = UΣU> with U ∈ OT orthonormal matrix and
Σ ∈ ST diagonal. Then

proxH2
(Z) = argmin

A∈ST++

{
tr(A−1) +

1

2
‖A− Z‖2F

}
. (9)

can be computed in closed form as proxH2
(Z) = UΛU>

with Λ ∈ ST++ diagonal matrix with Λtt the only positive
root of the polynomial p(λ) = λ3 − λ2Σtt − 1 with λ ∈ R.

Proof. Note that H2 is convex and lsc. Therefore the prox-
imity operator is well-defined and the functional in (9) has a
unique minimizer. Its gradient is−A−2 +A−Z, therefore,
the first order condition for a matrix A to be a minimizer is

A3 −A2Z − IT = 0 (10)

We show that it is possible to find Λ ∈ ST++ diagonal such
that A∗ = UΛU> solves eq. (10). Indeed, for A with same
set of eigenvectors U as Z, we have that eq. (10) becomes
U(Λ3−Λ2Σ−IT )U> = 0, which is equivalent to the set of
T scalar equations λ3 − λ2Σtt − 1 = 0 for t ∈ {1, . . . , T}
and λ ∈ R. Descartes rule of sign [23] assures that for any
Σtt ∈ R each of these polynomials has exactly one positive
root, which can be clearly computed in closed form.

We have the following result as an immediate conse-
quence.

Theorem 3.2 (Convergence of Sparse Kernel MTL, [26,
7]). Let k be a scalar kernel over a space X , x1, . . . , xn ∈
X a set of points and f : X → RT a function charac-
terized by a set of coefficients b1, . . . , bn ∈ RT so that
f(·) =

∑n
i=1 k(·, xi)bi. Set K ∈ Sn+ to be the empirical

Algorithm 2 SPARSE KERNEL MTL
Input: K ∈ Sn+, B ∈ Rn×T , δ tolerance, 0 ≤ µ ≤
1, ε > 0 hyperparameter.
Initialize: A0, D0 ∈ ST++, M = (B>KB + εIT )−1/2,
σ = ‖M‖2 squared maximum eigenvalue of M . i = 0
repeat

Ai+1 ← prox 1−µ
σ ‖·‖`1

(Ai − 1
σ (µIT +MDiM))

P ← Di + 1
σM(2Ai+1 −Ai)M

Di+1 ← P − proxσH2
(σP )

i← i+ 1
until ‖Ai+1 −Ai‖F < δ and ‖Di+1 −Di‖F < δ

kernel matrix associated to k and the points {xi}ni=1 and
B ∈ Rn×T the matrix whose i-th row corresponds to the
(transposed) coefficient vector bi.

Then, any sequence of matrices At produced by Algo-
rithm (2) converges to a global minimizer of the Sparse Ker-
nel MTL problem (4) (or, equivalently, to (7)) for fixed f .
Furthermore, the sequence Dt converges to a solution of
the dual problem of (7).

3.3. Convergence of Alternating Minimization

We additionally exploit the sum structure and the regu-
larity properties of the objective functional in (4) to prove
convergence of the alternating minimization scheme to a
global minimum. We rely on the results in [25]. In par-
ticular, the following result is a direct application of Theo-
rem 4.1 in that paper.

Theorem 3.3. Under the same assumptions as in Theo-
rem 3.2, the sequence (fi, Ai)i∈N generated by Algorithm 1
is a minimizing sequence for Problem 4 and converges to its
unique solution.

Proof. Let S denote the objective function in (4). First note
that the level sets of S are compact due to the presence of the
term ε tr(A−1) + µ tr(A) and that S is continuous on each
level set. Moreover, since S is regular at each point in the
interior of the domain and is convex, [25, Theorem 4.1(c)]
implies that each cluster point of (fi, Ai)i∈N is the unique
minimizer of S. Then, the sequence itself is convergent and
is minimizing by continuity.

3.3.1 A Note on Computational Complexity & Times

Regarding the computational costs/number of iterations re-
quired for the convergence of the whole Alg. 1, up to our
knowledge the only results available on rates for Alternat-
ing Minimization are in [5]. Unfortunately these results
hold only for smooth settings. Notice however that each
iteration of Alg 2 is of the order of O(T 3), (the eigende-
composition of A being the most expensive operation) and
its convergence rate is O(1/k) with k equal to the number



of iterations. Hence, Alg. 2 is not affected by the number n
of training samples. On the contrary, the supervised step in
Agl. 1 (e.g. RLS or SVM) typically requires the inversion of
the kernel matrix K (or some approximation of its inverse)
whose complexity heavily depends on n (order ofO(n3) for
inversion). Furthermore, the productBKB> costsO(n2T )
which, since n >> T , is more expensive than Alg. 1. Thus,
with respect to n SKMTL scales exactly as methods such as
[2,7,24].

4. Empirical Analysis

We report the empirical evaluation of SKMTL on artifi-
cial and real datasets. We have conducted experiments on
both artificially generated and real dataset to assess the ca-
pabilities of the proposed Sparse Kernel MTL method to
recover the most relevant relations among tasks and exploit
such knowledge to improve the prediction performance.

4.1. Synthetic Data

We considered an artificial setting that allows us to con-
trol the tasks structure and in particular the actual sparsity
of the tasks-relation matrix. We generated synthetic datasets
of input-output pairs (x, y) ∈ Rd × RT according to linear
models of the form y> = x>UA+ ε where U ∈ Rd×T is a
matrix with orthonormal columns,A ∈ ST+ is the task struc-
ture matrix and ε is zero-mean Gaussian noise with vari-
ance 0.1. The inputs x ∈ Rd were sampled according to
a Gaussian distribution with zero mean and identity covari-
ance matrix. We set the input space dimension d = 100 for
our experiments.

In order to quantitatively control the sparsity level of the
tasks-relation matrix, we randomly generated A so that the
ratio between its support (i.e. the number of non-zero en-
tries) and the total number of entries would vary between
0.1 (90% sparsity) and 1 (no sparsity). A Gaussian noise
with zero mean and variance 1/10 of the mean value of
the non-zero entries in A was sampled to corrupt the struc-
ture matrix entries (hence, the model A was never “really”
sparse). This was done to reproduce a more realistic sce-
nario.

We generated multiple models and corresponding
datasets for different sparsity ratios and number of tasks T
ranging from 5 to 20. For each dataset we generated re-
spectively 50 samples for training and 100 for test. We per-
formed multi-task regression using the following methods:
single task learning (STL) as baseline, Multi-task Relation
Learning [28] (MTRL), Output Kernel Learning [8] (OKL),
our Sparse Kernel MTL (SKMTL) and a fixed task-structure
multi-task regression algorithm solving problem (1) using
the ground truth (GT) matrix A (after noise corruption) for
regularization. We chose least-square loss and performed
model selection with five-fold cross validation.

Sparsity (%)
100 75 50 25 0

n
M

S
E

0.2

0.25
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SKMTL

Figure 1. Generalization performance (nMSE and standard devia-
tion) of different multi-task methods with respect to the sparsity of
the task structure matrix.

Figure 2. Structure matrix A. True (Left) and recovered by Sparse
Kernel MTL (Right). We report the absolute value of the entries
of the two matrices. The range of values goes from 0 (Blue) to 1
(Red)

In Figure 1 we report the normalized mean squared error
(nMSE) of tested method with respect to decreasing sparsity
ratios. It can be noticed that knowledge of the true A (GT)
is particularly beneficial when the tasks share few relations.
This advantage tends to decrease as the tasks structure be-
comes less sparse. Interestingly, both the MTRL and OKL
method do not provide any advantage with respect to the
STL baseline since we did not design A to be low-rank (or
have a fast eigenvalue decay). On the contrary, the SKMTL
method provides a remarkable improvement over the STL
baseline.

We point out that the large error bars in the plot are due to
the high variability of the nMSE with respect to the differ-
ent (random) linear models A and number of tasks T . The
actual improvement of the SKMTL over the other methods
is however significant.

The results above suggest that, as desired, our SKMTL
method is actually recovering the most relevant relations
among tasks. In support of this statement we report in Fig-
ure 2 an example of the true (uncorrupted) and recovered
structure matrix A in the case of T = 10 and 50% sparsity.
As can be noticed, while the actual values in the entries of



Accuracy (%) per
# tr. samples per class
50 100 150

STL 72.23 76.61 79.23

±0.04 ±0.02 ±0.01

MTFL [2] 73.23 77.24 80.11

±0.08 ±0.05 ±0.03

MTRL [28] 73.13 77.53 80.21

±0.08 ±0.04 ±0.05

OKL [8] 72.25 77.06 80.03

±0.03 ±0.01 ±0.01

SKMTL 73.50 78.23 81.32

±0.11 ±0.06 ±0.08

Table 1. Classification results on the 15-scene dataset. Four multi-
task methods and the single-task baseline are compared.

the two matrices are not exactly the same, their supports al-
most coincide, showing that SKMTL was able to recover
the correct tasks structure.

4.2. 15-Scenes

We tested SKMTL in a multi-class classification sce-
nario for visual scene categorization, the 15-scenes dataset1.
The dataset contains images depicting natural or urban
scenes that have been organized in 15 distinct groups and
the goal is to assign each image to the correct scene cate-
gory. It is natural to expect that categories will share similar
visual features. Our aim was to investigate whether these
relations would be recovered by the SKMTL method and
result beneficial to the actual classification process.

We represented images in the dataset with LLC cod-
ing [27], trained multi-class classifiers on 50, 100 and 150
examples per class and tested them on 500 samples per
class. We repeated these classification experiments 20 times
to account for statistical variability.

In Table 1 we report the classification accuracy of the
multi-class learning methods tested: STL (baseline), Multi-
task Feature Learning (MTFL) [2], MTRL, OKL and our
SKMTL. For all methods we used a linear kernel and least-
squares loss as plug-in classifier. Model selection was per-
formed by five-fold cross-validation.

As it can be noticed, the SKMTL consistently outper-
forms all other methods. A possible motivation for this
behavior, similarly to the synthetic scenario, is that the al-
gorithm is actually recovering the most relevant relations
among tasks and using this information to improve predic-
tion. In support of this interpretation, in Figure 3 we re-

1http://www-cvr.ai.uiuc.edu/ponce grp/data/
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Figure 3. Tasks structure graph recovered by the Sparse Kernel
MTL (SKMTL) proposed in this work on the 15-scenes dataset.

port the relations recovered by SKMTL in graph form. An
edge between two scene categories t and swas drawn when-
ever the value of the corresponding entry Ats of the recov-
ered structure matrix was different from zero. Noticeably
SKMTL seems to identify a clear group separation between
natural and urban scenes. Furthermore, also within these
two main clusters, not all tasks are connected: for instance
office scenes are not related to scenes depicting the exterior
of buildings or mountain scenes are not connected to images
featuring mostly flat scenes such as highways or coastal re-
gions.

4.3. Animals with Attributes

Animals with Attributes2 (AwA) is a dataset designed to
benchmark detection algorithms in computer vision. The
dataset comprises 50 different animal classes each anno-
tated with 85 binary labels denoting the presence/absence of
different attributes. These attributes can be of different na-
ture such as color (white, black, etc.), texture (stripes, dots),
type of limbs (hands, flippers, etc.), diet and so on. The
standard challenge is to perform attribute detection by train-
ing the system on a predefined set of 40 animal classes and
testing on the remaining 10. In the following we will first
discuss the performance of multi-task approaches in this
setting and then investigate how the benefits of multi-task
approaches can sometime be dulled by the so-called “neg-
ative transfer” and how our Sparse Kernel MTL method
seems to be less sensitive to such an issue. For the ex-
periments described in the following we used the DECAF

2http://attributes.kyb.tuebingen.mpg.de/



AUC (%) per #tr. samples per class
50 100 150

STL 57.26± 1.71 60.73± 1.12 64.37± 1.29

MTFL 58.11± 1.23 61.21± 1.14 64.22± 1.10

MTRL 58.24± 1.84 61.18± 1.23 64.56± 1.41

OKL 58.81± 1.18 62.07± 1.05 64.26± 1.18

SKMTL 58.63± 1.73 63.21± 1.43 64.51± 1.83

Table 2. Attribute detection results on the Animals with Attributes
dataset.

features [9] recently made available on the Animals With
Attribute website.

4.3.1 Attribute Detection

We considered the multi-task problem of attribute detection
which consists in 85 classification (binary) tasks. For each
attribute, we randomly sampled 50, 100 and 150 examples
for training, 500 for validation and 500 for test. Results
were averaged over 10 trials. In Table 2 we report the Aver-
age Precision (area under the precision/recall curve) of the
multi-task classifiers tested. As can be noticed for all multi-
task approaches, the effect of sharing information across
classifiers seems to have a remarkable impact when few
training examples are available (the 50 or 100 columns in
Table 2). As expected, such benefit decreases as the role of
regularization becomes less crucial (150).

4.3.2 Attribute Prediction - Color Vs Limb Shape

Multi-task learning approaches ground on the assumption
that tasks are strongly related one to the other and that
such structure can be exploited to improve overall predic-
tion. When this assumption doesn’t hold, or holds only
partially (e.g. only some tasks have common structure),
such methods could even result disadvantageous (“negative
transfer” [22]).

The AwA dataset offers the possibility to observe this
effect since attributes are organized into multiple semantic
groups [18, 14]. We focused on a smaller setting by select-
ing only two group of tasks, namely color and limb shape,
and tested the effect of training multi-task methods jointly
or independently across such two groups. For all the exper-
iments we randomly sampled for each class 100 examples
for training, 500 for validation and 500 for test, averaging
the system performance over 10 trials. Table 3 reports the
average precision separately for the color and limb shape
groups.

Interestingly, methods relying on the assumption that all
tasks share a common structure, such as MTFL, MTRL or

Area under PR Curve (%)
Independent Joint

Color Limb Color Limb

STL 74.33 68.13 74.33 68.15

±0.81 ±0.93 ±0.81 ±0.91

MTFL 75.21 69.41 74.98 69.71

±0.73 ±1.01 ±1.18 ±0.81

MTRL 75.17 69.18 74.92 69.73

±0.53 ±0.64 ±0.78 ±0.75

OKL 74.52 68.54 74.31 68.44

±0.44 ±0.61 ±0.54 ±0.22

SKMTL 75.14 69.21 75.23 69.57

±0.97 ±0.83 ±0.77 ±0.76

Table 3. Attribute detection on two subsets of AwA. Comparison
between methods trained independently or jointly on the two sets
show the effects of negative transfer.

OKL, experience a slight drop in performance when trained
on all attribute detection tasks together (right columns)
rather than separately (left column). On the contrary,
SKMTL remains stable since it correctly separates the two
groups.

5. Conclusions
We proposed a learning framework designed to solve

multiple related tasks while simultaneously recovering their
structure. We considered the setting of Reproducing Kernel
Hilbert Spaces for vector-valued functions [20] and formu-
lated the Sparse Kernel MTL as an output kernel learning
problem where both a multi-task predictor and a matrix en-
coding the tasks relations are inferred from empirical data.
We imposed a sparsity penalty on the set of possible rela-
tions among tasks in order to recover only those that are
more relevant to the learning problem.

Adopting an alternating minimization strategy we were
able to devise an optimization algorithm that provably con-
verges to the global solution of the proposed learning prob-
lem. Empirical evaluation on both synthetic and real dataset
confirmed the validity of the model proposed, which suc-
cessfully recovered interpretable structures while at the
same time outperformed previous methods.

Future research directions will focus mainly on model-
ing aspects: it will be interesting to investigate the possibil-
ity to combine our framework, which identifies sparse rela-
tions among the tasks, with recent multi-task linear models
that take a different perspective and enforce tasks relations
in the form of structured sparsity penalties on the feature
space [14, 29].
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