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Abstract

We propose a new approach to associate supervised
learning-based confidence prediction with the stereo match-
ing problem. First of all, we analyze the characteristics of
various confidence measures in the regression forest frame-
work to select effective confidence measures using training
data. We then train regression forests again to predict the
correctness (confidence) of a match by using selected confi-
dence measures. In addition, we present a confidence-based
matching cost modulation scheme based on the predicted
correctness for improving the robustness and accuracy of
various stereo matching algorithms. We apply the proposed
scheme to the semi-global matching algorithm to make it
robust under unexpected difficulties that can occur in out-
door environments. We verify the proposed confidence mea-
sure selection and cost modulation methods through exten-
sive experimentation with various aspects using KITTI and
challenging outdoor datasets.

1. Introduction
Stereo matching has long been an important topic in

computer vision, and its difficulties such as pixel indistinc-
tiveness [14] and occlusions [3] are thoroughly examined
in the literature. Based on those researches, several papers
[1, 7, 10, 12, 18, 25] confirm the feasibility of detecting mis-
matched pixels not only to improve the quality of disparity
maps [1, 12] but also to leverage a mid-level scene repre-
sentation (stixel) [18]. Hence, the problem of detecting mis-
matched pixels becomes more important as the degree of ill-
conditioning increases [7] because current solutions usually
fail to find correct answers. For example, Fig. 1(a) shows
a challenging stereo image captured in an uncontrolled out-
door environment [15]. The sun flare phenomenon severely
degrades the quality of the disparity map computed by the
semi-global matching (SGM) algorithm [8].

Regarding the detection of mismatched pixels, vari-
ous confidence measures have been studied and surveyed
[2, 3, 10]. A confidence measure is a function of matching
costs, disparity values, or image intensities, and it should as-

(a) Input image (sun flare) [15] (b) Predicted confidence map

(c) Original SGM [8] (d) SGM with our method

Figure 1. Stereo matching results in a challenging environment.
(b) shows the predicted confidence map. (c) and (d) show colored
disparity maps overlaid on the input image.

sign high values to correct matches and low values to false
matches so that false matches can be determined by exam-
ining the confidence value of a pixel. One commonly used
measure is the left-right consistency (LRC) measure [10],
assuming that the consistently matched pixels are correct
matches. This assumption is a necessary condition because
correct matches satisfy the left-right consistency. However,
this assumption is not a sufficient condition because con-
sistently matched pixels are not always correct. Thus, the
LRC measure does not detect all the incorrect matches, and
the detection performance depends on the quality of initial
disparity maps and a predefined threshold value.

On the other hand, several papers address the error de-
tection problem from a learning perspective [1, 7] since
learning-based approaches have distinct advantages. First,
multiple confidence measures can be used jointly to con-
struct a feature vector that demonstrates a better perfor-
mance than individual confidence measures [1, 7]. Sec-
ondly, learning-based approaches can identify which of the
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input variables (i.e., confidence measures) are important to
make the prediction or detection [7, 13] of unreliable pix-
els. For example, Haeusler et al. [7] analyzed the impor-
tance of various confidence measures for predicting the cor-
rectness of matches using Gini and permutation importance
measures.

In this paper, we consider how far a learning-based confi-
dence prediction approach can leverage stereo matching for
the practical use in general outdoor environments. The con-
tributions of this paper are twofold. First, we analyze the
characteristics of various confidence measures by estimat-
ing the permutation importance of each measure in order
to select effective confidence measures. Second, we incor-
porate the predicted confidence value of a pixel into stereo
matching algorithms by employing the confidence value in
modulating the initial matching cost. Because the match-
ing cost computation is typically the first step for stereo
matching, the matching cost modulation step improves the
performance of the following steps. We analyze the effect
of the cost modulation scheme by applying it to a widely
used algorithm for outdoor environments: the semi-global
matching method [8]1. As is shown in Fig. 1(d), the SGM
method with proposed measure selection and matching cost
modulation exhibits robust results even in a challenging en-
vironment.

2. Related Work

Surveys regarding confidence measures are available:
Egnal and Wildes [3], Egnal et al., [2], and Hu and Modor-
hai [10]. Most confidence measures are designed to capture
well-known difficulties in stereo matching such as occlu-
sions, textureless regions, and depth discontinuities. We re-
view representative confidence measures as well as stereo
algorithms leveraged by the confidence information.

Manduchi and Tomasi [14] defined a pixel distinctive-
ness that is capable of detecting pixels in textureless re-
gions as well as in regions with repeated textures, prior to
the stereo matching. Yoon and Kweon [25] extended this
concept to the distinctive similarity measure, in which com-
puted matching costs are used for the semi-dense disparity
map computation. Sara [20] proposed a confidently stable
matching criterion, and this criterion is used for stratified
stereo matching [12]. Sabater et al. [19] introduced a sta-
tistical approach that eliminates unreliably matched pixels.
The self-aware matching measure, presented in [17], cre-
ates more distinctive matching costs. Gherardi [6] proposed
a cost modulation approach that employs the difference of
initially computed disparity values with neighboring pixels
as a confidence measure. These works primarily focus on
improving the quality of the initial or aggregated matching
costs.

1Note that our method can be easily applied to various stereo methods.

On the other hand, confidence measures are also fre-
quently used in the post-processing step, mainly to detect
occluded pixels. Hirschmuller [8] extended the LRC mea-
sure by separating the occluded pixels from mismatched
pixels based on a threshold value. Min and Sohn [16] pro-
posed an asymmetric criterion for detecting occluded pixels
using a single disparity map. Garcia et al. [4] defined the
credibility map for depth map upsampling in order to as-
sign a low confidence to pixels near the depth discontinuity.

From a machine learning perspective, stereo matching
errors can be learned from training data, and the mis-
matched pixels can be determined using the learned clas-
sifiers [1, 7, 11]. Kong and Tao [11] suggested the use of
nonparametric techniques to classify matches into three cat-
egories: correct, incorrect due to foreground fattening, and
the other. Two recent papers [1, 7] applied random decision
forests to learn stereo matching errors. They combined di-
verse confidence measures into a feature vector and demon-
strated a superior sparsification performance for Middle-
bury [22] and KITTI [5] datasets, respectively. In addition,
Spyropoulos and Modorhai [1] exhibited that confident pix-
els can be used as ground control points, and used confi-
dence information further to adjust the smoothing strength
in the Markov random field framework. Machine learning
techniques are also used to learn the parameters of condi-
tional random fields [21] and to select image features for
accurate stereo matching [13].

3. Proposed Method
In this section, we explain the proposed confidence mea-

sure selection strategy based on the permutation impor-
tance [24] of the random forest. We use random forests
because of their robustness against outliers, nonparamet-
ric properties, and their ability to rank the importance of
input variables [23]. Hence, we suggest upper and lower
bounds for the predicted confidence values according to the
expected performance of the trained forest. Finally, we pro-
pose a matching cost modulation scheme, with the aid of
predicted confidence values, that can be easily applied to
various stereo algorithms.

3.1. Regression forest-based measure selection

We associate a feature vector f to a confidence value Q
in [0, 1] in the regression forest framework. During training,
we build regression forests twice; one is on all confidence
measures for selecting influential and powerful measures,
and the other is on the selected confidence measures from
the first regression forest as shown in Fig. 2. Once the train-
ing is complete, we estimate the probability density func-
tion p(Q|f) using an ensemble of tree outputs [23] as

p(Q|f) = 1

|T |
∑
t∈T

pt(Q|f), (1)
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Figure 2. The overall framework with the proposed confidence measure selection and matching cost modulation.

where f is an input feature vector for testing, T is a set of
tree indices, and pt(Q|f) is an individual tree posterior that
is computed by running down the trained tree.
Feature vector: We define a high-dimensional feature vec-
tor for a pixel using a number of confidence measures:

fh = [f1, f2, f3, ..., f21, f22]
>, (2)

in which fi is the scalar value computed by the ith confi-
dence measure. For the sake of notational simplicity, we
omit the index of a pixel. f1 to f10 are calculated from con-
fidence measures that utilize the matching costs: the peak
ratio, naive peak ratio, matching score, maximum margin,
winner margin, maximum likelihood, perturbation, negative
entropy, left-right difference, and local curvature measures,
which are all explained in [2, 3, 7, 10]. f11 to f20 are calcu-
lated from confidence measures that use an initial disparity
map estimated by the winner-takes-all strategy. Here, the
variances of the disparity values in a local window for four
different scales are used for f11 to f14, the distance to dis-
continuity is used for f15, the median deviations of disparity
values in four different scales are used for f16 to f19, and
the left-right consistency measure is used for f20. For f21,
we use the magnitude of the image gradients. Lastly, the
distance to the border measure [1] is used for f22 because
pixels in the leftmost columns do not have correspondences
when the left image is the reference image.2 We exclude
the distinctiveness [14], self-aware matching [17], and the
distinctive similarity measures [25] because they are com-
putationally demanding when used to construct additional
matching costs from the reference image.
Selection of confidence measures: After constructing re-
gression forests for fh with all confidence measures, we

2Each confidence measure is explained in the supplementary material.

make a set of important confidence measures using the per-
mutation importance accuracy measure [23, 24]. This helps
not only to understand the importance of each confidence
measure but also to design better prediction models. When
OOBt denotes the set of out-of-bag sample indices for tree
t, which are not used for constructing the tree t, and |OOBt|
is the cardinality of OOBt, the variable (i.e., confidence
measure) importance for tree t is measured by

VIt(fj) = 1
|OOBt|

∑
i∈OOBt

(Qi − Q̂i)2

− 1
|OOBt|

∑
i∈OOBt

(Qi − Q̂i,πj )
2.

(3)

Here, the first term in Eq. (3) is the squared error between
the predicted confidence Q̂i and the ground truth confidence
Qi. Similarly, the latter term is the squared error between
Qi and Q̂i,πj that is the predicted confidence of the sample
generated by permuting the jth variable of sample i ran-
domly with the jth variable of the other out-of-bag sam-
ple. Therefore, Eq. (3) is the difference between the pre-
diction errors before and after permuting the jth variable.3

VIt(fj) = 0 implies that the jth variable does not help to
distinguish correct and false matches at all.

The importance of the jth variable is aggregated for all
trees and normalized using the number of trees or the stan-
dard deviation of the prediction errors. Then, we list confi-
dence measures in descending order according to their vari-
able importance values. Finally, we select the most impor-
tantN confidence measures and define a lower dimensional
feature vector f l as

f l = [f̂1, f̂2, ..., f̂N ]>, (4)

where f̂i indicates the value of the ith important confidence
measure. We then again construct the regression forest on

3For example, when j = 1, Eq. (3) evaluates the importance of the
peak ratio measure.
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the training data using f l. Here, the trained regression forest
using f l improves the prediction efficiency and accuracy as
follows. First, we just need to evaluate a smaller number of
confidence measures to construct feature vectors and to pre-
dict the correctness of a match, and a less number of trees
can be used to construct the regression forest. Second, since
unreliable confidence measures are excluded, it is possible
to design a better prediction model.
Confidence rescaling: The predicted confidence value,
computed from the regression forest, can be directly used
for stereo matching algorithms. However, we manipulate
the predicted confidence values as

Q̂(p) = Q(p)Q+ (1−Q(p))Q, (5)

where Q(p) is a raw predicted confidence value for pixel
p from the regression forest. We define the interval [Q,Q]
to be the range for the manipulated confidence value. The
upper and lower bounds, Q and Q, are defined by em-
ploying outlier probabilities of positive and negative pre-
dictions of learned forests as Q = 1− FP/(FP +TP) and
Q = FN/(FN + TN). Here, TP, FP, TN, and FN are
the numbers of true positive, false positive, true negative,
and false negative samples that are evaluated by using out-
of-bag samples in the training step. Then, if the predicted
confidence value is 0, the predicted value is increased to the
outlier probability of negative predictions.

Moreover, as the expected performance of the regression
forest decreases, the gap between the two bounds also de-
creases by definition, making correct and incorrect matches
have similar manipulated confidence values. On the other
hand, as the expected performance increases, the gap be-
tween the two bounds also increases, allowing correct and
incorrect matches to have distinct manipulated confidence
values. This simple modification makes the proposed confi-
dence prediction less sensitive to the quality of the learned
forests or classifiers.

3.2. Confidence-based matching cost modulation

We incorporate the predicted confidence value into
stereo matching by exploiting the confidence value for the
modulation of matching costs, mainly because the confi-
dence value represents the reliability of matching costs.
When C(p, d) denotes the matching cost of pixel p for a
disparity d, it is modulated as

Ĉ(p, d) = Q̂(p)C(p, d) + (1− Q̂(p))
∑
k∈D

C(p, k)

|D| . (6)

Here, the latter term is the mean of the matching costs com-
puted for all possible disparity hypotheses D. Therefore,
as the probability of correctness increases, the data term in-
creasingly depends on the original matching costs. Other-
wise, the data term becomes the mean value of matching
costs. We use the mean value instead of a uniform distribu-
tion, such as 1/|D|, in order to retain the sum of the original

(a) Modulated matching costs for highly confident pixels

(b) Modulated matching costs for unreliable pixels

Figure 3. Modulated matching costs. Matching costs of unreliable
pixels in (b), which are not likely to give correct solutions, are
flattened depending on the predicted confidence values whereas
highly confident pixels have similar costs to its original matching
costs.

matching costs. Figure 3 shows the result of the match-
ing cost modulation, in which matching costs of confident
pixels appear similar to the initial matching costs whereas
unreliable pixels are flattened. Therefore, unreliable pixels
can be easily dominated by more confident pixels in the op-
timization step. It should be noted that the proposed cost
modulation can be used for any stereo algorithm.
Robust outdoor stereo matching: We apply the proposed
confidence-based cost modulation scheme to the semi-
global matching (SGM) algorithm [8]. The SGM is popular
for outdoor environments because of its efficiency and accu-
racy. In essence, the stereo matching problem is considered
as the energy minimization problem as

E(D) =
∑
p

Ĉ(p, dp) +
∑

q∈Np

P1T [|dp − dq| = 1]

+
∑

q∈Np

P2T [|dp − dq| > 1],
(7)

in which the first term represents the pixel-wise matching
cost modulated by the proposed scheme, the second term
gives the penalty P1 for the pixels having small disparity
differences with neighboring pixels, and the third term gives
the large penalty P2 (in general, P2 > P1) for the pix-
els having disparity differences larger than 1 with neigh-
boring pixels. We compute per-pixel matching costs using
the truncated census-based Hamming distance and the trun-
cated gradient difference as

C(p, d) = α
|Np|min(

∑
q∈Np

XOR(BL(p,q), BR(pd,qd)), τc)

+ 1−α
255

min(|∇IL(p)−∇IR(pd)|, τg),
(8)
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where pd is the pixel in the right image corresponding to
p in the left image when the disparity of p is d, τg is the
truncation value for the gradient difference, and τc is trun-
cation value for the census-based cost. We use two robust
measures that are less prone to error under the change of
global illumination, which frequently happens in outdoor
environments. B(p,q) is a binary transform function. It re-
turns 1 if the intensity of p is larger than q and 0 otherwise.
The superscript L and R indicate the left and right image,
respectively. Here, we normalize the census-based cost by
the number of neighboring pixels and the input image by the
factor of 255 to handle the relative scale difference between
two terms.

Afterward, we modulate the matching costs by utiliz-
ing the confidence value of a pixel and minimize the en-
ergy function by aggregating matching cost to sixteen di-
rections in a recursive manner. In contrast to the original
paper [8], we do not apply post-processing algorithms, such
as left-right consistency checking and hole filling, in order
to clearly observe the improvement from the cost modula-
tion. In addition, we do not specially handle occluded pixels
since occluded pixels are likely to have flattened modulated
matching costs and, therefore, the quality degradation due
to occluded pixels is not significant.

4. Experimental Results
We evaluate various confidence prediction methods in-

cluding learning-based approaches [1, 7] and the proposed
method with various datasets [5, 15, 22]. In addition, we
evaluate the relative improvement of two stereo match-
ing algorithms, SGM [8] and fast cost volume filtering [9]
methods, by adopting the proposed modulation scheme. We
also show disparity maps computed from challenging out-
door environments [15] containing sun flares, rain blur, and
various weather conditions in order to verify the robustness
of the proposed method.
Parameter settings: To compute pixel-wise matching
costs, we used a 5×5 local window for census-based costs.
The truncation values τc and τg were set to 11 and 9, respec-
tively, which take the role of basic M-estimators to limit
the influence of mismatches during an aggregation or opti-
mization step [22]. Empirically, we recommend to set the
range of a truncation value between 9 and 15. α is set to
0.6. In addition, we aggregated initial matching costs with
a 5×5 box-filter to increase the accuracy of the initial dis-
parity map. To construct the regression forests, we set the
number of trees to 30. For the penalty terms in the SGM,
we set P1 = 0.008 and P2 = 0.126, which have different
scales when compared with the original paper because we
normalized the matching costs. For the cost volume filter-
ing approach, we used a 19×19 local window and set the
regularization parameter ε to 0.012 as recommended in the
paper [9]. For computing confidence measures in different

Figure 4. The importance of variables (i.e., confidence measures)
for KITTI and Middlebury datasets. Variable indices 1 to 10 are
computed from matching costs, 11 to 20 are from the initial dispar-
ity map, 21 is from the image, and 22 is from the prior knowledge.

scales such as median deviation values, we used four differ-
ent sizes of local windows, 5×5, 7×7, 9×9, and 11×11.
For training, we used eight stereo pairs, 43, 71, 82, 87,
94, 120, 122, and 180th frames, from the KITTI training
data as in [7]. Hence, trained forests are used for testing of
both KITTI and challenging datasets [15] because the lat-
ter does not provide ground truth information. In addition,
we used the half of Middlebury 2005 and 2006 datasets
for training, which are Aloe, Art, Baby1, Baby3, Bowl-
ing1, Cloth1, Cloth3, Dolls, Lampshade1, Laundry, Rein-
deer, Rocks2, and Wood2 datasets, and used four standard
datasets, Tsukuba, Venus, Teddy, and Cones, for testing.

4.1. Learning-based confidence analysis

We analyzed the characteristics of various confidence
measures as well as the detection performance of them.
Firstly, we compare the importance of variables in Fig. 4 to
examine which variables play the most significant roles in
determining the correctness of matches. We empirically set
the number of selected features N to 8 because the selected
measures performed similarly with 22 confidence measures
as long as the number of selected measures is greater than
or equal to 8. However, the use of fewer numbers than 8
demonstrated poor performance for some test frames (7%
of all frames when 7 confidence measures are selected), as
can be seen in Fig. 5(b). We presume that this is due to the
limited amount of training data (8 images are used for train-
ing out of 194 images) or overfitting, but this phenomenon
did not happen when using more than 7 measures.

For the KITTI dataset, selected 8 confidence measures
are the median disparity deviation values in four different
scales (f19, f18, f17, f16), the left-right difference [10], the
maximum likelihood measure, the naive peak ratio mea-
sure, and the negative entropy measure. For the Middle-
bury dataset, the left-right consistency measure, the distance
to the border, the left-right difference, the median disparity
deviation values in three different scales (f19, f18, f17), the
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(a) Sparsification on KITTI Frame 21 (b) Sparsification on KITTI Frame 23 (c) Sparsification on KITTI Frame 30

(d) Sparsification on KITTI Frame 50 (e) Sparsification on KITTI Frame 121 (f) Sparsification on KITTI Frame 123

Figure 5. Comparison of sparsification curves for selected images. We drew sparsification curves for naive peak ratio (PRKN) [10], left
right difference (LRD) [10], and perturbation (PER) [7] measures that show superior performance among individual confidence measures.
The sparsification curve for an ideal confidence map is described as optimal. Proposed 7, 8, 22, where 7, 8, and 22 are the numbers of
selected confidence measures from 22 confidence measures, show similar tendency in spite of different numbers of confidence measures
except frame 23. Here, GCP [1] and Ensemble [7] use 8- and 7-dimensional feature vectors, respectively, but they show poorer performance
than ours.

maximum likelihood measure, and the matching score mea-
sure are selected as the best 8 measures. The image gra-
dient exhibited the least importance, meaning the correct-
ness of a match and the magnitude of an image gradient are
correlated weakly. Hence, the difference of selected con-
fidence measures implies that the detection performance of
each confidence measure can vary for different datasets 4. In
contrast to [7], the disparity variance showed a small impor-
tance value. In the KITTI dataset, the left-right consistency
showed a poor performance, because, many occluded pixels
do not have ground truth information.

To analyze the detection performance of various con-
fidence measures, we use the sparsification curve and its
area under curve (AUC) value as in [7, 10]. The sparsifi-
cation curve draws the change of bad pixel rates while re-
moving least confident pixels from the disparity map, there-
fore, it is possible to observe the tendency of prediction er-
rors. Sparsification curves for selected frames are shown in
Fig. 5, which confirm the superiority of the proposed ap-
proaches. This is because previous feature vectors [1, 7]
are designed for a specific similarity measure or a stereo

4It will be also valuable to see the difference of selected features for
various similarity measures and parameters.

algorithm. Therefore, prediction performance can vary de-
pending on used similarity measures, parameters, and char-
acteristics of the dataset. In addition, Fig. 6 describes the
AUC values using six different methods for all KITTI train-
ing frames. Here, the gap between an AUC value and the
optimal value describes the detection performance of the
method, and the gap tends to increase as the optimal AUC
value increases. It means that the detection problem be-
comes more difficult as the quality of estimated disparity
maps decreases. Nevertheless, the proposed methods show
consistently superior detection performance than others.

We also checked the running time for the prediction step
in Tab. 1. As the number of trees in the regression for-
est increases, the prediction time tends to increase linearly.
However, there was not a significant difference in predic-
tion performance as long as the number of trees is larger
than 10. In addition to the prediction time, the feature vec-
tor construction requires about 7 ms for the matching cost-
based measures and about 5 ms for the disparity map-based
confidence metrics. Therefore, for the 8-dimensional fea-
ture vector, feature construction time for the KITTI dataset
takes about 50 ms (using C++ with an i7 3.5GHz single core
CPU) in addition to the time required for the prediction.
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Figure 6. AUC values in the ascending order according to optimal AUC values. For clear comparison, we selected six methods that show
superior performance than others. Ensemble [7] and GCP [1] are based on a learning technique, and PKRN and LRD [10] are based on
matching cost information.

Figure 7. Relative performance improvement compared with the SGM algorithm: each bar indicates the performance improvement for the
modified SGM method, which results from the confidence-based matching cost modulation step (only difference between the algorithms),
and horizontal line indicates average improvement in terms of the bad pixel rate.

Table 1. The prediction time w.r.t. the number of trees.
# of trees 10 15 20 25 30 50
Time (ms) 358 562 801 1050 1262 2213

4.2. Stereo performance improvement analysis
We evaluate the relative performance improvement of

stereo algorithms, SGM [8] and fast cost volume filter-
ing [9], leveraged by our cost modulation scheme. We
used the KITTI dataset for evaluating the SGM method;
the modified SGM method–which uses modulated match-
ing costs–improved the disparity map’s accuracy by 1.22%
for the 186 images on average. The overall improvement
is shown in Fig. 7, in which we see the proposed approach
consistently improves the SGM. The average initial error
was 10.61% (in our implementation) including occluded
regions and the modified version showed 9.38% of errors
without post-processing. Figure 8 shows computed confi-
dence maps and disparity maps for a few images. More-
over, we evaluated the fast cost volume filtering algorithm
to show that the proposed method is not limited to a partic-
ular algorithm or a dataset. The modified fast cost volume
filtering approach reduced bad pixel rates from 5.05% to
4.38% in non-occluded regions for four standard datasets
without post-processing. Here, we used same parameters
with the SGM setting. The proposed method improves the
local algorithm moderately compared to the SGM, which
is because that the Middlebury dataset contains a smaller

number of unreliable pixels than the KITTI dataset.

4.3. Stereo evaluation in challenging environments

The application of a confidence-based matching cost
modulation to a stereo algorithm not only improves the
stereo matching’s accuracy but also enhances robustness
under a variety of difficulties presented in outdoor environ-
ments. Therefore, we evaluated the proposed method us-
ing challenging datasets [15] where 11 selected video se-
quences are posted on the website 5 with the SGM results.
The challenging datasets were captured by different cam-
eras and settings–the image resolution is 656×541, and the
baseline is about 30 cm which is smaller than that of the
KITTI dataset, though we used the KITTI training dataset
to construct the regression forest while ignoring these dif-
ferences due to the absence of ground truth data.

The selected images were captured under a substantial
variety of different weather conditions, motions, and depth
layers, as shown in Fig. 9(a). The input image in the first
row is captured under rain blur where pixels are blurred dif-
ferently for left and right images. The image in the second
row is captured on a snowy night where the light sources
are limited to street lamps and car headlights. The third row
shows the reflecting car dataset, which contains a couple
of cars in the scene with highly reflective surfaces. Figure

5http://hci.iwr.uni-heidelberg.de//Benchmarks/document/Challenging
Data for Stereo and Optical Flow/
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(a) Input images (b) Predicted confidence maps (c) SGM with our methods

Figure 8. Selected results for the KITTI dataset.

(a) Left input images (b) Predicted confidence (c) SGM results [8] (d) SGM with our methods

Figure 9. Results of the proposed method under various challenging circumstances [15]. Images overlaid with disparity maps are encoded
by the toolbox [15]: top row–blur due to raindrops on the windshield, second row–snowy night, third row–reflecting cars in the shadow.
More results are given in the supplementary material.

9(b) shows the predicted confidence maps of three images,
in which the intensity value is proportional to the pixel’s
confidence level. Figure 9(c) and 9(d) show the SGM re-
sults and the proposed results for these input images, re-
spectively. Compared to the SGM, the proposed method
demonstrates robust results despite aforementioned difficul-
ties. The main reason for this improvement is that challeng-
ing datasets contain a large amount of unreliable pixels that
violate underlying assumptions of binocular stereo match-
ing such as brightness constancy. The experimental results
verify that the detection of unreliable pixels becomes par-
ticularly important for these kinds of input images.

5. Conclusion
We established the relationship between learning-based

confidence measures and stereo matching algorithms. First,
we demonstrated the selection of powerful confidence mea-
sures based on the permutation importance in the regression
forest framework. Second, we presented a generalized ap-
proach for improving the accuracy and robustness of stereo
algorithms with the confidence-based matching cost modu-
lation scheme. The stereo algorithms leveraged by the pro-
posed methods exhibited accurate and robust results in pub-
lic datasets as well as challenging outdoor environments.
We share our code at http://cvl.gist.ac.kr/project.
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