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Abstract

In this paper, we show that the seminal, biologically-

inspired saliency model by Itti et al. [21] is still compet-

itive with current state-of-the-art methods for salient ob-

ject segmentation if some important adaptions are made.

We show which changes are necessary to achieve high

performance, with special emphasis on the scale-space:

we introduce a twin pyramid for computing Difference-of-

Gaussians, which enables a flexible center-surround ratio.

The resulting system, called VOCUS2, is elegant and co-

herent in structure, fast, and computes saliency at the pixel

level. It is not only suitable for images with few objects, but

also for complex scenes as captured by mobile devices. Fur-

thermore, we integrate the saliency system into an object

proposal generation framework to obtain segment-based

saliency maps and boost the results for salient object seg-

mentation. We show that our system achieves state-of-the-

art performance on a large collection of benchmark data.

1. Introduction

More than 15 years ago, Laurent Itti and colleagues pub-

lished one of the first computational attention and saliency

systems: the iNVT (iLab Neuromorphic Vision Toolkit)

[21]. It was designed to simulate the mechanisms of hu-

man visual attention and thus to find regions of interest in

images. The approach is considered to be the origin of com-

putational saliency systems and has been cited more than

6000 times. Since then, the interest in the computer vision

community in saliency computation has increased strongly,

since it is a valuable method for tasks such as thumbnail-

ing, retargeting, or object recognition. Several databases

for evaluating systems have been created and many new so-

phisticated saliency systems are presented every year (see

[5, 7] for surveys). Many systems show now impressive re-

sults with precise saliency maps: obviously there has been

a huge progress in the field. But do these new methods

compute saliency in a better, or just in a different way? In

other words, did the original Itti model miss essential ideas

to compute saliency that newer approaches include?

In this paper, we show that the traditional structure

of saliency models based on multi-scale Difference-of-

Gaussians is still competitive with current salient object

detection methods. We present the new saliency system

VOCUS2 that follows in its basic structure the Itti-Koch

model [21]: feature channels are computed in parallel, pyra-

mids enable a multi-scale computation, contrasts are com-

puted by Difference-of-Gaussians. Since the original model

was designed to simulate eye movements, we need some

adaptations to achieve high performance for salient object

segmentation. Especially important is the scale-space struc-

ture (we use a new twin pyramid) and the center-surround

ratio, which has turned out to be the most crucial parameter

of saliency systems. Like the approach of Itti, the result-

ing system has a simple and elegant structure which follows

concepts from human perception. Furthermore, it is appli-

cable not only to web images with few prominent objects

but also especially well suited for applications on mobile

systems since it is fast and does not require center or back-

ground priors for good performance.

Our system produces pixel-precise saliency maps, in-

stead of segment-based ones. We believe that this is an im-

portant quality of a general saliency method, since pixels

actually do have different saliency. Even if they have ex-

actly the same color value, they might be perceived differ-

ently, due to their neighborhood: a pixel that differs strongly

from its neighbors, e.g., at an object border, is considered

more salient than one surrounded by similar pixels. How-

ever, for some tasks, segment-based saliency maps are ben-

eficial, especially if precise object boundaries are required.

To obtain these, we show how to integrate the presented

saliency method into an object proposal generation frame-

work [30]. The resulting object proposals are then com-

bined to form a segment-based saliency map, which gives

especially good results on several benchmark datasets for

1



salient object segmentation.

The contribution of this paper is thus not a new concept

for saliency, but to show that the traditional, biologically-

inspired concept is still valid and obtains competitive re-

sults for salient object segmentation if adapted accordingly.

We believe that this insight is very valuable for the com-

puter vision community and related fields since it shows

what is really essential for computing saliency: a measure

of a center-surround contrast on different scales. Since the

computation of this contrast with DoG filters is quick and

simple, this method is well suited for many applications,

especially for those requiring real-time performance.

2. Background and Related Work

Saliency computation has its roots in psychological theo-

ries about human attention, for example the feature integra-

tion theory (FIT) [34]. This theory states that in the human

brain, several features are processed in parallel in different

brain areas, and the location of these features are collected

in one “master map of locations”. From this map, “atten-

tion” selects the current region of interest. This map is sim-

ilar to what is nowadays called “saliency map”, and there is

strong evidence that such a map exists in the brain, presum-

ably in V1 [41].

The earliest computational attention models have been

built based on FIT, that means they compute several fea-

ture maps, usually with Difference-of-Gaussian and Gabor

filters, and fuse them to a saliency map. In chronological

order, systems based on this structure are [25, 31, 21, 12,

35, 16]. These models have been mainly designed to simu-

late eye movements, and it was recently shown that they still

obtain good results for such tasks [8]. However, on bench-

marks for salient object detection and segmentation these

models usually perform less well and it has been claimed

that other methods are required for such tasks.1

During the last decade, many saliency systems have been

presented that are less biologically inspired and that were

mainly designed for salient object segmentation. There are

approaches that are based on the spectral analysis of images

[17, 33], models that base on information theory [9, 23, 24],

Bayesian theory [20, 40], or on decision theory [15, 14],

and those that use machine learning techniques to learn a

combination of features [27, 3]. Because of the overwhelm-

ing number of different approaches, it is hard to keep an

overview and to see the differences, and, more importantly,

the similarities of the methods. When looking more closely

at the methods, it reveals that the underlying method that

exists in basically all saliency systems is a contrast compu-

tation. Since salient items are salient because of their dif-

ference to the surrounding, computing such a contrast is an

essential step.

1Discussion at the CVPR 2013 tutorial “A Crash Course on Visual

Saliency Modeling: Behavioral Findings and Computational Models”

The cognitive models based on FIT compute the center-

surround contrast usually by Difference-of-Gaussian (DoG)

filters since these model best the ganglion cells in the human

retina. Also other approaches such as the Bayesian surprise

model [20] or the decision-theoretic model of [15] use DoG

filters to compute contrasts. Some methods compute the

contrast not based on pixels but on patches [37, 6] or on su-

perpixels [32, 38, 42]. Instead of computing local contrasts,

some approaches compute global contrasts by considering

the whole image as surrounding region [1, 9].

While it has turned out during the last decade that there

are numerous ways to compute saliency (since there are nu-

merous ways to compute contrasts), it is less clear which of

these methods is favorable. The usefulness of a system for

an application will depend also on other aspects than AUC

values: is the system robust enough to deal with data differ-

ent from the benchmarks? Is the system comprehensible so

that it is possible to quickly understand how parameters af-

fect the performance? And last but not least: is the approach

fast enough to be applicable for real-time applications?

We believe that the traditional FIT-based structure ful-

fills these requirements: it is simple and elegant in struc-

ture, easy to implement, there are few parameters which are

easily adaptable, and the system can be implemented to be

very fast. We show in this paper how a FIT-based approach

can be implemented to achieve state-of-the-art performance

for salient object segmentation and that the resulting system

is thus suitable for many applications.

3. Saliency Computation with VOCUS2

In this section, we introduce our new implementation2

of the traditional FIT-based saliency approach by Itti et al.

[21] and outline in detail which adaptions have been made

to obtain state-of-the-art performance for salient object seg-

mentation. Our saliency system is called VOCUS2, indi-

cating that it is a successor of our previous VOCUS system

[12]. VOCUS had a bottom-up and a top-down part, and

the bottom-up part was also based on FIT. We are currently

working on a similar top-down part for VOCUS2.

Sec. 3.1 describes the basic saliency system, producing

pixel-precise saliency maps. In Sec. 3.2, we combine the

method with an optional location prior and in Sec. 3.3 with

a proposal detection method to obtain segment-based maps.

3.1. Basic Saliency System

Fig. 1 shows an overview of our new saliency system

VOCUS2. In a nutshell, the system works as follows.

The input image is converted into an opponent-color space

with channels for intensity, red-green, and blue-yellow col-

ors. For each channel, we compute two image pyramids

(one center and one surround pyramid), on which center-

2Code: http://www.iai.uni-bonn.de/∼frintrop/vocus2.html
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Figure 1. Overview of our saliency system VOCUS2

surround contrast is computed. Finally, the scales and fea-

ture channels are fused to one saliency map. This overall

structure is in correspondence to FIT and similar to other

FIT-based systems such as iNVT [21], VOCUS [12], or

STB [35]. The details of the methods and the differences

to the iNVT will be outlined in the following. Table 1 sum-

marizes the main differences.

3.1.1 Feature Channels

As in most other saliency systems, we base our computa-

tions mainly on intensity and color features. This is in cor-

respondence to human perception, since color is one of the

basic features that guide visual attention [36]. We imple-

mented also an orientation channel based on Gabor filters,

but it turned out that it is less useful for salient object seg-

mentation. The reason is that it assigns high saliency values

to object edges, which makes the segmentation of objects

difficult. Therefore, this feature is not used in the follow-

ing; it is however likely that it is useful for other applica-

tions such as modeling eye fixations.

The color computation is performed in an opponent color

space, which corresponds to the opponent theory of human

perception [19]. This theory states that there are three oppo-

nent channels in the human visual system: red versus green,

blue versus yellow, and black versus white. We have exper-

imented with the LAB color space, but obtained better re-

sults with the simple color space used in [24]: the intensity

channel is obtained by I =
(

R+G+B
3

)

, and the two color

channels by RG = R − G and BY = B − R+G
2

. We

can treat now all three channels I , RG, and BY equally to

determine feature-specific saliencies.

3.1.2 Scale Space with Twin Pyramids

The saliency computation is embedded in a scale-space

structure on which multi-scale center-surround contrasts are

computed. However, our scale space differs from the iNVT

in two ways: first, instead of a simple Gaussian pyramid,

we use a more sophisticated scale-space with scales and oc-

taves as in [28]. Second, instead of subtracting layers of the

pyramid to obtain Difference-of-Gaussian (DoG) contrasts,

we build twin pyramids, consisting of a center pyramid

C = (C0, ..., Ck) and a surround pyramid S = (S0, ..., Sk)
(we use k = 5). Here, every center image Ci has a corre-

sponding surround image Si, which is obtained from Ci by

smoothing with a sigma σx that corresponds to the desired

center-surround ratio (σx =
√

σ2
s − σ2

c , where σc is the

value used to obtain the center image Ci and σs is the effec-

tive smoothing factor for the surround image Si). This has

the advantage that we are not restricted to center-surround

ratios given by the pyramid but can vary this value flexi-

bly. Since the center-surround ratio has turned out to be the

most crucial parameter in a saliency system, this ability to

fine-tune the system is of special importance and justifies

the slightly higher computational effort.

To motivate our modified scale-space, let us briefly de-

scribe the original approach in iNVT and its limitations. In

iNVT, the center-surround contrast is computed by subtract-

ing images from different layers of the pyramid L(c, s) =
|Lc ⊖ Lc+δ|, where Li is layer i of one of the pyramids,

center c ∈ {2, 3, 4}, δ ∈ {3, 4}, and ⊖ denoting the

across-scale subtraction, obtained by interpolation to the

finer scale followed by point-by-point subtraction. This

corresponds to a Difference-of-Gaussian (DoG) approach,

since it is well known that subtracting two images which

have been obtained by smoothing image I with Gaussians

G1 and G2 respectively, is equivalent to directly applying

a Difference-of-Gaussian filter DoG = G1 − G2 to I, i.e.,

I ∗ G1 − I ∗ G2 = I ∗ (G1 − G2) = I ∗ DoG, where

’*’ denotes the convolution operator. There is however one

drawback of this method: processing is restricted to the

smoothing factors of the Gaussians used to create the pyra-

mid. In a standard Gaussian pyramid as used in [21], the ef-

fective smoothing factors with respect to the original image

are powers of 2: the k-th map in the pyramid is effectively

smoothed with σ = 2k. Thus, also the ratios of the center-

surround difference can only be powers of two (the iNVT

uses ratios of 1:8 and 1:16); other ratios, e.g., 1:3 or 1:10,

are not possible in this framework.

While a finer granularity can be obtained by using a



iNVT VOCUS2 (Ours)

Features intensity (I), color (C), orientation (O) intensity (I), color (C)

Pyramid structure one pyramid twin pyramids (main difference)

one scale per layer multiple scales per layer

Feature fusion down-sampling up-sampling

weighting by uniqueness arithmetic mean

fuse color channels first, then intensity treat all 3 channels equally
Table 1. Main differences between iNVT [21] and our VOCUS2 system.

scale-space with several scales per layer [28], the scale

maps used for subtraction still have to be chosen from the

available set of the pyramid and arbitrary center-surround

ratios cannot be chosen.

In our new structure, we obtain the surround image Si

instead directly from the center pyramid according to a de-

sired center-surround ratio. Thus, we are able to deter-

mine this ratio independently, which results in more flex-

ibility to adapt the system. This adaption has turned out to

be the most effective change to increase the performance

(cf. Sec. 4.1).

We compute center and surround pyramids for each

channel, denoted as Cf ,Sf , where f stands for one of the

feature channels {I, RG,BY }.

3.1.3 Center-surround Contrast

The color and intensity contrasts can be computed now eas-

ily by subtracting the center and the surround map. To

distinguish bright objects on dark background from dark

objects on bright background, the contrast computation is

separated into on-off and off-on contrasts, corresponding to

cells in the human visual system that respond only to one

type of contrast respectively.3 This gives us two contrast

maps for each layer i of the pyramids: X
f
i = C

f
i − S

f
i (for

on-off contrasts) and Y
f
i = S

f
i −C

f
i (for off-on contrasts),

with f ∈ {I, RG,BY }. In both cases, values below 0 are

set to 0. We call the resulting pyramids contrast pyramids.

3.1.4 Feature Fusion

Next, the images from each contrast pyramid are summed

up with across-scale addition to obtain the feature maps:

F
f
1 =

⊕

i

Xi, with i ∈ {1, .., k} (1)

and

F
f
2 =

⊕

i

Yi, with i ∈ {1, .., k}, (2)

3Note that it depends on the fusion operation whether this separation

has an effect. For the arithmetic mean, the separation results in the same

maps as without separation. But when applying a non-linear weighting

function as it is useful for eye movement simulation, the separation is im-

portant. To keep the model flexible for different fusion methods, we rec-

ommend the separation of channels.

with f ∈ {I, RG,BY }. In contrast to iNVT, our across-

scale addition ⊕ interpolates to the finest scale, not the

coarsest one, before adding the maps point-wise.

The two feature maps of each channel are then fused to

conspicuity maps,

Cf = f(F f
1 , F

f
2 ), with f ∈ {I,RG,BY }, (3)

and these are finally fused to a single saliency map S:

S = g(CI , CRG, CBY ), (4)

where g is a fusion operation. Different options are pos-

sible for this fusion, e.g., the arithmetic mean, a maximum

operation, or a non-linear weighting function that favors

maps with few peaks as in [21, 12]. The purpose of such

a weighting is to strengthen outliers which appear only in

one feature channel. This is especially important when sim-

ulating eye movements and prioritizing data processing, but

less so when performing salient object segmentation. Cor-

respondingly, we obtained the best results by the arithmetic

mean that treats all maps equally.

Note that this equal treatment of all three color channels

differs from the iNVT, which instead fuses first all color

feature maps to one conspicuity map before color is fused

with intensity. The latter approach overemphasizes inten-

sity, since the contribution in the saliency map originates

fifty-fifty from intensity respectively color. Instead, in our

approach, each channel contributes with one third to the

saliency map, which has increased the performance consid-

erably (cf. Sec. 4.1).

3.2. Location Prior (optional)

We believe that a general saliency system should not rely

on a location prior that prioritizes, for example, the image

center, in order to be able to compute saliency for arbi-

trary input. For applications on mobile systems like head-

mounted devices or robots, objects can have any position

and size and objects often intersect with the image borders.

Thus, a location or size prior does more harm than good.

However, for applications like analyzing photo collections,

a location prior can be beneficial and, since also most cur-

rent benchmarks are heavily biased, it helps to obtain good

results on these datasets. We include therefore an optional

location prior that can be applied to the saliency map by



multiplying the saliency values with a Gaussian centered at

the image center:

ŝ(x, y) = s(x, y) ∗ exp{−
||(x, y)− (xc, yc)||

2

2σ2
}, (5)

where s(x, y) is the saliency map, (xc, yc) the image

center, and σ determines the width of the Gaussian. σ has

to be chosen rather large to enable a strengthening of the

image center, but to still consider a reasonably large part of

the image (here we use σ = 79). Fig. 4 shows the large

effect this location prior has on current benchmarks, indi-

cating that these datasets are strongly biased towards the

center.

3.3. Segmentbased Saliency (optional)

While we believe that a general saliency system should

be able to compute pixel-precise saliency, it is for some

applications necessary to also segment the object(s) from

the background. Additionally, saliency maps with precise

object boundaries usually obtain better quantitative results,

since evaluation measures usually evaluate how precisely

the objects are segmented rather than how many objects

are detected. However, it is not necessary to use different

saliency methods to obtain segment-based saliency maps,

instead we propose a simple way to obtain a segment-based

saliency map from the pixel-precise one.

The approach we use here is based on a generic object

proposal detection method that generates and ranks object

candidates. The resulting candidates are finally overlaid to

obtain a segment-based saliency map. The proposal method

we chose is similar to [30]. We segment an input image

using Mean Shift [11], and in parallel, compute a saliency

map with VOCUS2. Then, local maxima are found in the

saliency map, and region growing is done seeded at the

maxima and limited by different thresholds (we use 33%
and 40% of the local maximum). As a result, a set of salient

blobs is obtained that roughly estimates the location and ex-

tent of the objects. Segmentation and saliency are combined

by selecting for each salient blob the segments which over-

lap more than k percent with the blob (we use k = 30%).

This set of segments per blob constitutes one object pro-

posal; the number of proposals per frame is thus the same

as the number of salient blobs, but the proposals have more

precise boundaries than the blobs. The proposals are then

ranked by average saliency and non-maxima suppression

removes duplicates; finally, we threshold to maintain only

proposals with at least p percent average saliency of the

best proposal (here: p = 33%). The final segment-based

saliency map is obtained by taking for each pixel the max-

imum value of all proposals covering this pixel, which cor-

responds to the highest average saliency obtained for this

pixel.

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MSRA

9. VOCUS2-Prop (0.85083)

8. VOCUS2-LP (0.83126)

6. VOCUS2-Basic (0.81521)

6. Intermediate (c-s Ratio) (0.80823)

5. Intermediate (Twin Pyramids + Layers 0-4) (0.66877)

4. Intermediate (Colorspace) (0.57399)

3. Intermediate (Fusion) (0.54612)

2. Our version of iNVT (0.49374)

1. iNVT (0.45113)

Figure 3. Stepwise improvements of Itti’s iNVT saliency system

[21], until finally obtaining our VOCUS2 system. Evaluation on

MSRA-1000 dataset, AUC values in parentheses.

4. Evaluation

Our evaluation consists of three parts: first, we evalu-

ate the changes that we made with respect to Itti’s iNVT by

stepwise adaptions of the method. Second, we compare the

performance of our saliency system with several other ap-

proaches on a large collection of benchmark datasets. And

finally, we show that our method is also especially suited for

applications on mobile devices. More results, e.g. an eval-

uation of the most important parameters of the VOCUS2

system, can be found in the supplementary material.

4.1. StepbyStep Comparison with iNVT

In this section, we show step by step which adaptations

of the original Itti system have which effects for the per-

formance for saliency object segmentation. The steps that

we compute are the following, where each step includes the

adaptations of the previous step:
1. Original Itti-Koch system iNVT [21], (Code from

http://ilab.usc.edu/toolkit)

2. Our re-implementation of iNVT (main differences: channels

for intensity and color, no orientation; fusion with arithmetic

mean (see Sec. 3.1 for details))

3. Equal treatment of all three channels I, RG, BY, instead of

first fusing color and then intensity (see Sec. 3.1.4)

4. Adaptation of the color space (see Sec. 3.1.1)

5. Using twin pyramids instead of one pyramid (see Sec. 3.1.2)

6. Adapting the center-surround ratio to 3:13 (see Sec. 3.1.2)

7. Using 2 scales per layer instead of 1 (see Sec. 3.1.2)

(version corresponds to VOCUS2-Basic saliency map, eq. 4)

8. added location prior

(version corresponds to VOCUS2-LP saliency map, eq. 5)

9. segment-based proposal map according to Sec. 3.3

(version corresponds to VOCUS2-Prop saliency map)

Fig. 3 shows the results of these steps on the MSRA-

1000 dataset [1]. It can be seen that the largest performance

boosts are obtained by the introduction of the twin pyramid,



Figure 2. Examples saliency maps. From left to right: original image, ground truth, saliency map for our VOCUS2-Basic, our VOCUS2-

Proposals, HSaliency, DRFI, Yang13, HZ08, iNVT

and the corresponding adaptation of the center-surround ra-

tio, which is only possible with twin pyramids. But also

minor changes as changing the color space or the order of

fusing color and intensity have surprisingly large effects.

4.2. Comparison with Other Saliency Methods

We have compared our approach with several other

saliency methods with two evaluation measures on a large

collection of benchmark images from several datasets. The

datasets we use are MSRA-10k [10], SED1 and SED2 [4],

ECSSD [38], and PASCAL-S [26]. All datasets together

consist of 12050 images. We did code optimization how-

ever only on the MSRA-1000 dataset, as described in the

previous section.

We compare our method with the following saliency

methods: Itti’s iNVT [21], the SaliencyToolbox (STB) [35],

HZ08 [18], AIM [9], AC09 [1], AC10 [2], CoDi [24],

HSaliency [38], Yang 2013 [39], and DRFI [22]. They have

been chosen due to their popularity and frequency of cita-

tions [21, 35, 9, 18] or due to their recency and very good

results on similar tasks [2, 24, 38, 39, 22]. Code of all meth-

ods was obtained from the authors’ webpages. Fig. 2 shows

several examples saliency maps.

We evaluated the systems with two measures: first, with

the popular precision-recall method from [1]: saliency maps

are thresholded with an increasing k ∈ [0, 255]. This results

in binarized maps which are matched against the ground

truth to obtain precision and recall values. This measure

is the most common comparison measure for salient ob-

ject segmentation. However, it was recently shown that this

measure has several limitations and ranks saliency maps dif-

ferently than humans would [29]. The authors proposed in-

stead a new measure, called the weighted f-measure Fw
β ,

that overcomes these limitations. We use Fw
β as our second

evaluation measure.

Fig. 4 (left) shows Fw
β , averaged over all datasets. It

shows that our segment-based VOCUS2 saliency method

(V2-Prop) outperforms all other methods, and the pixel-

precise VOCUS2 method (V2-LP) outperforms all methods

that compute pixel-precise saliency maps (right part of fig-

ure). On these datasets, we use the location prior, since

most of the data has a strong center bias. On the right of

Fig. 4 we show the precision-recall plots averaged over all

datasets. While the measure is flawed according to [29], it

is still the most common evaluation method and we include

the evaluation for completeness. Here, our segment-based
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denoted as V2-Basic (pixel-precise), V2-LP (with location prior), and V2-Prop (segment-based).

method is ranked third, together with the method of Yang et

al. [39]. Our pixel-precise method VOCUS2-LP clearly out-

performs all other pixel-precise methods. Individual plots

for each dataset can be found in the supplementary material

accompanying this paper.

In summary, the results show that our approach clearly

achieves state-of-the-art performance: with the weighted f-

measure, it outperforms all other methods, according to the

precision-recall measure it is on rank three of the segment-

based methods and outperforms all pixel-precise methods.

Additionally, we show in the next section, that the method

is perfectly suited for more complex real-world data as ob-

tained from mobile devices.

4.3. Saliency on Mobile Devices

Here, we show that our method is not only applicable

to photos and web images, but also to data from mobile

devices such as robots or wearable cameras. This is not

self-evident, since many methods rely heavily on center or

background bias as well as size priors to obtain good per-

formance. Our VOCUS2 method instead is able to per-

form well without such priors and produces precise saliency

maps also for complex scenes. These maps are well suited

for subsequent object detection on mobile systems, as we

show in [30].

For evaluation in such settings, we use the Coffee Ma-

chine Sequence (CMS) [13]4. It is a video sequence of an

office scene with 600 frames, and contains up to 43 objects

per frame. Object ground truth is available for every 30-th

frame.

The results on the CMS dataset are shown in Fig. 5

(Fw
β measure on the left, and precision-recall curves on the

4CMS dataset: http://www.iai.uni-bonn.de/∼martin/datasets.html

right). Both measures show that our methods clearly out-

perform all the other methods. Fig. 2 shows in the last row

an example image and saliency maps of this sequence.

For mobile devices, it is also important that a system is

real-time capable. Our system is able to compute saliency

maps in about 10ms for an input image of 300 × 400 pix-

els on a standard machine (8 × i7-3632QM, 2.2GHz), and

it could be further speeded up by code optimizations and

parallelization.

5. Conclusion

Plenty of saliency systems have been introduced dur-

ing the last decade and it is amazing and interesting in

how many different ways it is possible to compute saliency.

However, when looking closely at the methods, it turns out

that the basic essence of all of them is a contrast measure

that determines the difference of a pixel, segment, or patch

to its local or global surround. We believe that the old ap-

proach by Itti and colleagues that based on the psycholog-

ical feature integration theory is still valid, and that it can

be used equally well as other methods to find salient objects

in images. We have shown in this paper how this model

has to be adapted to obtain state-of-the-art performance and

believe that such a system has due to its clear and elegant

structure and due to its real-time capabilities a high benefit

for many applications, especially on mobile systems.
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Figure 5. Results on the CMS dataset. Left: weighted F-measure [29]. Right: precision-recall curves. AUC values in parentheses. Our

approach is denoted as V2-Basic (pixel-precise), V2-LP (with location prior), and V2-Prop (segment-based).
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