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Abstract

Recently, learning based hashing techniques have at-
tracted broad research interests because they can support
efficient storage and retrieval for high-dimensional data
such as images, videos, documents, etc. However, a ma-
jor difficulty of learning to hash lies in handling the dis-
crete constraints imposed on the pursued hash codes, which
typically makes hash optimizations very challenging (NP-
hard in general). In this work, we propose a new super-
vised hashing framework, where the learning objective is
to generate the optimal binary hash codes for linear clas-
sification. By introducing an auxiliary variable, we refor-
mulate the objective such that it can be solved substantially
efficiently by employing a regularization algorithm. One
of the key steps in this algorithm is to solve a regulariza-
tion sub-problem associated with the NP-hard binary op-
timization. We show that the sub-problem admits an ana-
lytical solution via cyclic coordinate descent. As such, a
high-quality discrete solution can eventually be obtained in
an efficient computing manner, therefore enabling to tack-
le massive datasets. We evaluate the proposed approach,
dubbed Supervised Discrete Hashing (SDH), on four large
image datasets and demonstrate its superiority to the state-
of-the-art hashing methods in large-scale image retrieval.

1. Introduction
Hashing has attracted considerable attention of re-

searchers in computer vision, machine learning, informa-

tion retrieval and related areas [8,10,16,20,21,31,34,38,40].

Hashing techniques encode documents, images, videos or

other sorts of data by a set of short binary codes, while pre-

serving the similarity of the original data. With the binary

codes, the task of nearest neighbour search can be easily

conducted on large-scale dataset, due to the high efficiency

of pairwise comparison with the Hamming distance.

Among various hashing techniques, Locality-Sensitive

Hashing (LSH) [8] is one of the most popular data-
independent methods, which generates hash functions by

random projections. In addition to traditional Euclidean dis-

tance, LSH has been generalized to accommodate other dis-

tance and similarity measures such as p-norm distance [4],

Mahalanobis metric [15], and kernel similarity [14, 27]. A

disadvantage of the LSH family is that LSH usually needs

long bit length (≥ 1000) to achieve both high precision and

recall. This leads to a huge storage overhead and thus limits

the sale at which an LSH algorithm may be applied.

Recently, learning-based data-dependent hashing meth-

ods have become increasingly popular because of the bene-

fit that learned compact binary codes can effectively and

highly efficiently index and organize massive data. In-

stead of constructing hash functions randomly like LSH,

data-dependent hashing methods aim to generate short hash

codes (typically ≤ 200) using available training data. Var-

ious hashing algorithms have been proposed in the litera-

ture, of which a large category focuses on linear hashing

algorithms which learn a set of hyperplanes as linear hash

functions. The representative algorithms in this category in-

clude unsupervised PCA Hashing [34], Iterative Quantiza-

tion (ITQ) [10], Isotropic Hashing [12], etc., and supervised

Minimal Loss Hashing (MLH) [24, 25], Semi-Supervised

Hashing (SSH) [34], LDA Hashing [2], Ranking-Based Su-

pervised Hashing [35], FastHash [17], etc. A bilinear form

of hash functions were introduced by [9, 22].

As an extension of linear hash functions, a variety of

algorithms have been proposed to generate nonlinear hash

functions in a kernel space, including Binary Reconstruc-

tive Embedding (BRE) [13], Random Maximum Margin

Hashing (RMMH) [11], Kernel-Based Supervised Hashing

(KSH) [20], the kernel variant of ITQ [10], etc. In parallel,

harnessing nonlinear manifold structures has been shown

effective in producing compact neighborhood-preserving

hash codes. The early algorithm in this fashion is Spectral

Hashing (SH) [37, 38], which produces hash codes through

solving a continuously relaxed mathematical program sim-

ilar to Laplacian Eigenmaps [1]. More recently, Anchor

Graph Hashing (AGH) [19, 21] leveraged anchor graphs

for solving the eigenfunctions of the resulting graph Lapla-

cians, making hash code training and out-of-sample exten-

sion to novel data both tractable and efficient for large-scale

datasets. Shen et al. [29, 30] proposed a general Inductive



Manifold Hashing (IMH) scheme that also generates non-

linear hash functions.

In general, the discrete constraints imposed on the bi-

nary codes that the target hash functions generate lead to

mixed-integer optimization problems - which are generally

NP-hard. To simplify the optimization involved in a binary

code learning procedure, most of the aforementioned meth-

ods chose to first solve a relaxed problem through discard-

ing the discrete constraints, and then threshold (or quantize)

the solved continuous solution to achieve the approximate

binary solution. This relaxation scheme greatly simplifies

the original discrete optimization. Unfortunately, such an

approximate solution is typically of low quality and often

makes the resulting hash functions less effective possibly

due to the accumulated quantization error, which is espe-

cially the case when learning long-length codes.

Directly learning the binary codes without relaxations

would be preferable if (and only if) a tractable and scalable

solver is available. The importance of discrete optimization

in hashing has been rarely taken into account by most exist-

ing hashing methods. Iterative Quantization (ITQ) [10] is

an effective approach to decrease the quantization error by

applying an orthogonal rotation to projected training data.

One limitation of ITQ is that it learns orthogonal rotations

over pre-computed mappings (e.g., PCA or CCA). The sep-

arate learning procedure usually makes ITQ suboptimal.

In this work, we propose a novel supervised hashing

framework, which aims to directly optimize the binary hash

codes effectively and efficiently. To leverage supervised

label information, we formulate the hashing framework

in terms of linear classification, where the learned binary

codes are expected to be optimal for classification. More

specifically, the learned binary codes can be viewed as non-

linearly generated feature vectors of original data. The label

information is exploited so that these binary feature vectors

are easy to be classified. Similar to discrete boosting learn-

ing at the high level, we nonlinearly transform the original

data into a binary space, and then classify the original data

in this space.

To fulfill this idea, we propose a joint optimization pro-

cedure which jointly learns a binary embedding and a linear

classifier. In this formulation, a group of hash functions are

simultaneously optimized to fit the learned binary bits. To

better capture the nonlinear structure underlying input data,

those hash functions are learned in a kernel space. The en-

tire joint optimization is then executed in an iterative man-

ner with three associated sub-problems.

To solve the most critical sub-problem - binary code op-

timization, in our supervised hashing framework we pro-

pose a discrete cyclic coordinate descent (DCC) algorithm

to generate the hash codes bit by bit. By carefully choosing

loss functions for the linear classifier, the DCC algorithm

yields the optimal hash bits in a closed form, which conse-

quently makes the entire optimization procedure very effi-

cient and naturally scale to massive datasets. We name the

proposed supervised hashing approach employing discrete

cyclic coordinate descent as Supervised Discrete Hashing
(SDH). Our main contributions are summarized as follows:

1. We propose a novel supervised hashing approach

based on the assumption that good hash codes are opti-

mal for linear classification. Our key technique lies in

directly solving the corresponding discrete optimiza-

tion without any relaxations. First, by introducing an

auxiliary variable, we reformulate the optimization ob-

jective such that it can be solved efficiently using a reg-

ularization scheme. Second, a key step of our SDH

approach is to solve the NP-hard binary optimization

sub-problem. By means of discrete cyclic coordinate

descent, at each step SDH solves the associated binary

optimization and obtains an analytical solution, which

thus makes the whole optimization very efficient. We

show that direct optimization of the discrete bits with-

out relaxation plays critical roles in achieving high-

quality hash codes.

2. The proposed SDH is evaluated on four large-scale

benchmark datasets, and its efficacy is validated by the

superior experimental results over several state-of-the-

art hashing methods.

Most recently, the graph cuts algorithm was applied by

FastHash [17] and GCC [7] to solve binary hash codes. In

these two methods, each bit of the learned binary codes is

used as classification labels to train a classifier. The similar

idea was also adopted in [17,18,39]. One significant differ-

ence between our SDH and the graph-cut based methods is

that we treat all the hash bits (constituting a hash code vec-

tor) generated for each sample as an input feature vector for

the linear classifier. Concurrent to our work, Liu et al. [19]

also realized the importance of the quality of binary opti-

mization in hashing but focused on a completely different

problem, i.e., unsupervised discrete hashing.

The code for the proposed SDH has been released at

https://github.com/bd622/DiscretHashing.

2. Supervised Discrete Hashing

Suppose that we have n samples X = {xi}ni=1. We aim

to learn a set of binary codes B = {bi}ni=1 ∈ {−1, 1}L×n

to well preserve their semantic similarities, where the ith

column bi is the L-bits binary codes for xi.

To take advantage of the label information, here we con-

sider the binary codes learning problem in the framework of

linear classification. That is, we expect the learned binary

codes to be optimal for the jointly learned linear classifier.

In other words, our hypothesis is that good binary codes are

ideal for classification too.



We adopt the following multi-class classification formu-

lation

y = G(b) = W�b = [w�
1b, · · · ,w�

Cb]
� (1)

where wk ∈ R
L×1, k = 1, · · · , C is the classification vec-

tor for class k and y ∈ R
C×1 is the label vector, of which

the maximum item indicates the assigned class of x.

We choose to optimize the following problem:

min
B,W,F

n∑

i=1

L(yi,W
�bi) + λ||W||2 (2)

s.t. bi = sgn(F (xi)), i = 1, · · · , n.

Here L(·) is the loss function and λ is the regularization pa-

rameter; Y = {yi}ni=1 ∈ R
C×n is the ground truth label

matrix, where yki = 1 if xi belongs to class k and 0 oth-

erwise. The hash function H(x) = sgn(F (x)) encodes x
by L bits. Here sgn(·) is the sign function, which outputs

+1 for positive numbers and −1 otherwise. || · || is the �2
norm for vectors and Frobenius norm for matrices. We will

discuss the form of the hash functions in the next section.

Here we want to emphasize that it is essential to have

the discrete variable bi (i = 1, · · · ). At the first glance,

bi is not of interest because we are interested in learning

the hash functions F (·). In problem (2), one can simply

remove the constraints by eliminating the auxiliary vari-

ables bi. Doing so leads to an optimization problem similar

to BRE [13], which is very difficult and slow to optimize.

We propose a significantly more efficient and effective op-

timization method by re-parameterizing the problem.

The problem (2) is in general still NP hard and difficult

to solve with the discrete variable bi. One can always ob-

tain an approximate solution by simply relaxing the binary

constraint to be continuous bi = F (xi). With this relax-

ation, the continuous embeddings bi are first learned, which

are then thresholded to be binary codes. Most existing

hashing algorithms adopt this relaxation approach. Exam-

ples include Spectral Hashing [38], PCAH [34], AGH [21],

IMH [29], etc. This approach usually make the original

problem much easier to solve. However, clearly it is only

sub-optimal as mentioned before.

In order to achieve binary codes of better quality, here

we keep the binary constraints of bi in the optimization

problem and attempt to solve it much more efficiently. In-

spired by the regularization methods in large-scale opti-

mization [23]1, we rewrite problem (2) as

min
B,W,F

n∑

i=1

L(yi,W
�bi) + λ||W||2 + ν

n∑

i=1

||bi − F (xi)||2

(3)

s.t. bi ∈ {−1, 1}L.

The last term in (3) models the fitting error of the binary

codes bi by the continuous embedding F (xi) and ν is the

penalty parameter. In theory, with a sufficiently large ν,

problem (3) becomes arbitrarily close to (2). In practice,

small differences between bi and F (xi) are acceptable in

our applications. The recent work [36] applied a similar

formulation as (3). However, the former one did not impose

the binary constraints, which thus made the solution distinct

from the one presented in this paper.

It is easy to see that, the above joint optimization prob-

lem is still highly non-convex and difficult to solve. We will

show that, however, it is tractable to solve the problem with

respect to one variable while keeping other two variables

fixed, given a proper loss function L(·). Naturally we can

iteratively solve each variable in problem (3) one by one.

Next let us first define the form of the embedding function

F (x).

2.1. Approximating bi by nonlinear embedding

In general, we can adopt any suitable embedding learn-

ing algorithms for F (x), linear or nonlinear. Here we use

the following simple yet powerful nonlinear form

F (x) = P�φ(x) (4)

where φ(x) is a m-dimensional column vector obtained

by the RBF kernel mapping: φ(x) = [exp(||x −
a1||2/σ), · · · , exp(||x−am||2/σ)]�, where {aj}mj=1 are the

randomly selected m anchor points from the training sam-

ples and σ is the kernel width. The matrix P ∈ R
m×L

projects the mapped data φ(x) onto the low dimensional s-

pace. Similar formulations as equation (4) are widely used

as the kernel hash function in, e.g., BRE [13] and KSH [20].

F-Step If we fix B in problem (3), the projection matrix

P can be easily computed by regression

P = (φ(X)φ(X)�)−1φ(X)B�. (5)

Note that this step is independent of the loss function L(·).
1At the high level, our method here shares similarities with [23] in the

sense that both introduce a set of auxiliary variables and apply the same

type of regularization. However, convex semidefinite programming is con-

sidered in [23] and we are more interested in nonconvex integer program-

ming.



2.2. Joint learning with �2 loss

The formulation (3) is flexible and we can choose any

proper loss function L(·) for the classification model. One

simple choice is the �2 loss, with which problem (3) writes

min
B,W,F

n∑

i=1

||yi −W�bi||2 + λ||W||2 + ν
n∑

i=1

||bi − F (xi)||2.

(6)

s.t. bi ∈ {−1, 1}L.

That is

min
B,W,F

||Y −W�B||2 + λ||W||2 + ν||B− F (X)||2 (7)

s.t. B ∈ {−1, 1}L×n.

G-Step For problem (7), by fixing B, it is easy to solve

W by the regularized least squares problem, which has a

closed-form solution:

W = (BB� + λI)−1BY�. (8)

B-Step It is challenging to solve for B due to the discrete

constraints. With all variables but B fixed, we write prob-

lem (7) as

min
B

||Y −W�B||2 + ν||B− F (X)||2 (9)

s.t. B ∈ {−1, 1}L×n.

The above problem is NP hard. Here an important observa-

tion is that for problem (9) a closed-form solution for one
row of B can be achieved by fixing all the other rows. It

means that we can iteratively learn one bit at a time. To see

this, let us rewrite (9):

min
B

||Y||2 − 2Tr(Y�W�B) + ||W�B||2+ (10)

ν(||B||2 − 2Tr(B�F (X)) + ||F (X)||2)
s.t. B ∈ {−1, 1}L×n,

which is equivalent to

min
B

||W�B||2 − 2Tr(B�Q) (11)

s.t. B ∈ {−1, 1}L×n.

where Q = WY + νF (X) and Tr(·) is the trace norm.

We choose to learn the binary codes B by the discrete
cyclic coordinate descent (DCC) method. In other words,

We learn B bit by bit. Let z� be the lth row of B, l =
1, · · · , L and B′ the matrix of B excluding z. Then z is one

bit for all n samples. Similarly, let q� be the lth row of Q,

Algorithm 1 Supervised Discrete Hashing (SDH)

Input: Training data {xi,yi}ni=1; code length L; number of

anchor points m; maximum iteration number t; parameters

λ and ν.

Output: Binary codes {bi}ni=1 ∈ {−1, 1}L×n;

hash function H(x) = sgn(F (x)).

1. Randomly select m samples {aj}mj=1 from the

training data and get the mapped training data φ(x)
via the RBF kernel function.

2. Initialize bi as a {−1, 1}L vector randomly, ∀i.
3. Loop until converge or reach maximum iterations:

- G-Step: Calculate W using equation (8) or

multi-class SVM.
- F-Step: Compute P using (5) to form F (x).
- B-Step: For the �2 loss, iteratively learn {bi}ni=1 bit

by bit using the DCC method with equation

(15); for the hinge loss, compute bi by (22).

Q′ the matrix of Q excluding q, v� the lth row of W and

W′ the matrix of W excluding v. Then we have

||W�B||2 = Tr(B�WW�B) (12)

= const+ ||zv�||2 + 2v�W′�B′z

= const+ 2v�W′�B′z.

Here ||zv�||2 = Tr(vz�zv�) = nv�v = const.
Similarly, we have

Tr(B�Q) = const+ q�z. (13)

Putting equations (12), (13), and (11) altogether, we have

the following problem w.r.t. z:

min
z

(v�W′�B′ − q�)z (14)

s.t. z ∈ {−1, 1}n.

This problem has the optimal solution

z = sgn(q−B′�W′v). (15)

It is easy to see form (15) that, each bit z is computed

based on the pre-learned L−1 bits B′. This is expected be-

cause, one can iteratively update each bit till the procedure

converges with a set of better codes B. In our experiments,

the whole L bits for X can be iteratively learned in tL times

by (15), where usually t = 2 ∼ 5.

2.3. Joint learning with hinge loss

The hinge loss is usually used in SVM as the cost func-

tion. With L the hinge loss, problem (3) can be formulated



as

min
B,W,F,ξ

λ||W||2 +
n∑

i=1

ξi + ν

n∑

i=1

||bi − F (xi)||2 (16)

s.t. ∀i, k w�
cibi + yki −w�

kbi ≥ 1− ξi,

bi ∈ {−1, 1}L.
where ci is the label of xi and ξi ≥ 0 is the slack variable.

It is not difficult to see that this formulation is the standard

multi-class SVM [3] except that it is regularized by the ap-

proximation loss of learning codes. The multi-class Boost-

ing method [28] also applies similar formulation.

G-Step With B fixed, the classification matrix W in

problem (16) can be easily solved by the multi-class SVM

solver, like LIBLINEAR [6].

B-Step With all variables but bi fixed, problem (16)

writes

min
bi

||bi − F (xi)||2 (17)

s.t. ∀k w�
cibi + yki −w�

kbi ≥ 1− ξi. (18)

bi ∈ {−1, 1}L.
Constraints (18) can be written as

∀k w(ki)�bi + y(ki) ≥ 0, (19)

w(ki) = wci −wk,

y(ki) = yki − 1 + ξi.

Take (19) into problem (17), we have

min
bi

||bi − F (xi)||2 − δ

C∑

k=1

(w(ki)�bi + y(ki)) (20)

s.t. bi ∈ {−1, 1}L.
Here the regularization parameter δ is fixed to 1/ν in our

experiments.

Problem (20) can be easily written to

max
bi

b�i
(
F (xi) +

δ

2

C∑

k=1

w(ki)
)

(21)

s.t. bi ∈ {−1, 1}L,
which has the optimal solution

bi = sgn(F (xi) +
δ

2

C∑

k=1

w(ki)). (22)

The proposed Supervised Discrete Hashing (SDH)

method is summarized in Algorithm 1.

3. Experiments
In this section, extensive experiments are conducted to

evaluate the proposed hashing method in both computa-

tional efficiency and retrieval performance. We test our

method on four large-scale image datasets: CIFAR-102, M-

NIST3, NUS-WIDE and ImageNet. All the data samples

are normalized to have unit length. The proposed method is

compared against several state-of-the-art supervised hash-

ing methods including BRE [13], MLH [24], SSH [34],

CCA-ITQ [10], KSH [20], FastHash [17] and unsupervised

methods including PCA-ITQ [10], AGH [21] and IMH [29]

with t-SNE [33]. We use the public codes and suggested pa-

rameters of these methods from the corresponding authors.

For SDH, we empirically set λ to 1 and ν to 1e-5; the max-

imum iteration number t is set to 5. For AGH, IMH and

SDH, we use randomly sampled 1,000 anchor points.

For CIFAR-10 and MNIST, we report the compared re-

sults in terms of both hash lookup (precision of Hamming

radius 2) and Hamming ranking (mean of average precision,

MAP). Note that we treat a query a false case if no point is

returned when calculating precisions. Ground truths are de-

fined by the category information from the datasets.

The MNIST dataset consists of 70, 000 images, each of

784 dimensions, of handwritten digits from ‘0’ to ‘9’. As

a subset of the well-known 80M tiny image collection [32],

CIFAR-10 consists of 60,000 images which are manually

labelled as 10 classes with 6, 000 samples for each class.

We represent each image in this dataset by a GIST feature

vector [26] of dimension 512. For MNIST and CIFAR-10,

the whole dataset is split into a test set with 1, 000 samples

and a training set with all remaining samples. We will de-

scribe the dataset of NUS-WIDE and ImageNet in the cor-

responding subsection.

3.1. Comparison between the �2 loss and hinge loss

In this experiment, we compare the two loss functions we

have discussed for the linear classifier in the proposed SDH

framework: the �2 loss and the hinge loss. The comparative

results are reported in Table 1. It is interesting to see that

these two loss functions achieve close results in both preci-

sion and MAP. In all the following experiments, we use the

�2 loss for evaluation of our method.

3.2. Discrete or not?

To see how much the discrete optimization will bene-

fit the hash code learning, in this subsection, we perform

a comparison of our hash formulation (3) with or without

the discrete constraints. The comparative results on CIFAR

are shown in Table 2. As can be seen, our discrete hashing

framework SDH consistently yields better hash codes than

2http://www.cs.toronto.edu/˜kriz/cifar.html
3http://yann.lecun.com/exdb/mnist/



Table 1: Comparative results for the �2 loss and hinge loss used

in the proposed SDH method.

Loss 32 bits 64 bits 96 bits

Precision
�2 0.5090 0.4229 0.3515

Hinge 0.5143 0.4328 0.3322

MAP
�2 0.4307 0.4555 0.4582

Hinge 0.4449 0.4635 0.4581

Table 2: Comparative results of our method with discrete con-

straints or relaxation.

Constraint 32 bits 64 bits 96 bits

Precision
Discrete 0.5090 0.4229 0.3515

Relaxed 0.4718 0.3354 0.1685

MAP
Discrete 0.4307 0.4555 0.4582

Relaxed 0.3777 0.4150 0.4244

the relaxed one by removing the sign function. In particu-

lar for precision, the performance gaps between these two

methods are increased with longer hash bits.

3.3. Retrieval on tiny natural images

First let us test the impact of the number of anchor points

used in our method on the retrieval performance. We take

CIFAR-10 as the test database in this experiment. The re-

sults are shown in Table 3. All the results of SDH in Table 2

are average results based on 10 independent runs. We did-

n’t report the standard deviations since they are very small

(e.g., 0.0015 of Precision and 0.0026 of MAP with 59000

training images and 1000 anchors). We are not surprising to

see that for our method, the more anchor points yield better

performance in both precision and MAP. The training and

testing time with varying anchor points are also shown. We

can also see that higher computation cost will be taken with

more anchors. We set the number of anchors to 1,000 in the

following experiments for test efficiency.

From the last two columns in Table 3, we can see that

the training time cost of our method is very low, which al-

low the method to be applied on the whole training data.

The proposed method needs only about 1 minute to train

on all the 59,000 training images. In contrast, BRE, MLH

and FastHash needs from about 40 minutes to more than a

few hours to train on only 5,000 samples. CCA-ITQ, SSH

and all the three unsupervised hashing methods PCA-ITQ,

AGH and IMH are also very efficient, however, they perfor-

m much worse than our method in both precision and MAP.

For fair comparisons and evaluation efficiency, in the fol-

lowing experiments we use 5,000 training samples for all

the methods unless otherwise specified.

We further show the precision and MAP scores of the

compared methods with different code lengths in Figure 1.

We can clearly see that the proposed SDH achieves the best

precisions and MAPs for all code lengths. CCA-ITQ and

FastHash perform well in Hamming distance 2 precision

with short codes while outperformed by SSH and MLH with

96 bits. In terms of MAP, FastHash performs the second

best, however it is still much worse than SDH.

3.4. MNIST: retrieval with hand-written digits

The comparative results on MNIST in precision and re-

call of Hamming distance 2 are reported in Figure 2. It is

clear that our method outperforms all other methods with

almost all code lengths in both precision and recall. For

precision, BRE, MLH, SSH and CCA-ITQ suffer rapid

performance deteriorations with increasing code lengths.

FastHash and KSH achieve better results than these meth-

ods with more than 64 bits. However the performance of

FastHash and KSH is still inferior to that of our method by

large margins. As a matter of recall, our SDH consistently

outperforms all other methods. Among all other compared

algorithms, FastHash and KSH achieves the best results.

3.5. NUS-WIDE: retrieval with multiple labels

The NUS-WIDE4 database contains about 270,000 im-

ages collected from Flickr. NUS-WIDE is associated with

81 ground truth concept labels, with each image contain-

ing multiple semantic labels. We define the true neighbors

of a query as the images sharing at least one labels with

the query image. The provided 500-dimensional Bag-of-

Words features are used. As in [20], we collect the 21 most

frequent label for test. For each label, 100 images are uni-

formly sampled for the query set and the remaining images

are for the training set. For this large dataset, we use all the

training samples for the efficient SDH and CCA-ITQ. For

BRE, MLH and KSH, we sample 5,000 images for training.

The precisions and MAPs obtained by the compared

methods with varying code lengths are shown in Figure 3.

We can see from Figure 3 that with short code lengths CCA-

ITQ achieves the best results in precision, however its per-

formance deteriorates rapidly with increasing code lengths.

The proposed SDH achieves achieves the highest precision

when code length is longer than 32. In terms of MAP, SDH

performs the best with almost all code lengths. KSH and

CCA-ITQ also achieve promising results. The superior re-

sults of SDH demonstrate the effectiveness of our method

on the retrieval task of data with multiple semantic labels.

3.6. ImageNet: retrieval with high dimensional fea-
tures

As a subset of ImageNet [5], the large dataset ILSVRC

2012 contains over 1.2 million images of totally 1,000 cat-

egories. We use the provided training set as the retrieval

database and 50,000 images from the validation set as the

4http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm



Table 3: Results in precision of Hamming distance within radius 2, MAP, training time and testing time on CIFAR-10. Results with

64 bits are reported. For our method, the number of anchors varies from 300 to 3000. For SSH, we use 5,000 labelled data points for

similarity matrix construction. The training and testing time are in seconds. We The experiments are conducted on a desktop PC with an

Intel quad-core 3.4GHZ CPU and 32G RAM.

Method # training # anchor Precision MAP Training time Test time

SDH

5000 300 0.3092 0.3400 10.3 1.7e-6

5000 500 0.3494 0.3707 11.3 2.2e-6

5000 1000 0.3585 0.4026 12.6 2.6e-6

5000 3000 0.3780 0.4361 26.8 8.7e-6

59000 1000 0.4229 0.4555 62.6 2.6e-6

BRE 5000 - 0.1299 0.1156 12042.0 6.4e-5

MLH 5000 - 0.2251 0.1730 2297.5 3.2e-5

KSH 5000 1000 0.1656 0.3822 2625.0 3.1e-6

SSH 59000 - 0.2860 0.2091 96.9 3.6e-6

CCA-ITQ 59000 - 0.3524 0.3379 4.3 1.7e-6

FastHash 59000 - 0.1880 0.4187 1340.7 7.1e-4

PCA-ITQ 59000 - 0.0160 0.1763 119.3 1.6e-6

AGH 59000 1000 0.3462 0.1513 67.3 3.9e-6

IMH 59000 1000 0.2879 0.2055 125.7 2.8e-6
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Figure 1: Results of the compared methods in precision of Hamming distance 2 and MAP on CIFAR-10 with code length from 16 to 128.

Table 4: Comparative results in precision of Hamming distance

within radius 2 for various methods on the ILSVRC 2012 dataset.

For this large dataset, 10,000 samples are used for training.

Method 64 bits 128 bits

BRE 0.3780 0.0235

SSH 0.0229 0.0005

CCA-ITQ 0.1786 0.0215

KSH 0.4850 0.2901

FastHash 0.3121 0.3564

SDH 0.6495 0.5863

query set. As in [17], we use the 4096-dimensional fea-

tures extracted by the convolution neural networks (CNN)

model. For this large dataset, we only report the compared

precisions within Hamming radius 2 due to the high com-

putational cost of MAP evaluation. The results are shown

in Table 4. It is clear that on this large dataset the proposed

method significantly outperforms all other approaches by

even larger gaps. For precision with 64 bits, our method

achieves a precision of 64.95%, which is higher than the

second best result (obtained by KSH) by over 16%. With

128 bits, BRE, SSH and CCA-ITQ obtain very low preci-

sions for the sparse data distribution in the Hamming space,

while SDH, FasHash and KSH still achieve promising re-

sults.

3.7. Classification with binary codes

In this subsection, we use the CIFAR-10 dataset for ex-

ample to test the performance of the learned binary codes

by various hashing algorithms on classification problem-

s. In this experiment, we compare SDH with several oth-

er supervised hashing methods including BRE, CCA-ITQ,

SSH, KSH and FastHash. With the binary codes obtained
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Figure 2: Results of the compared methods in precision and recall of Hamming distance 2 on MNIST with code length from 16 to 128.
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Figure 3: Compared precision and MAP results on NUS-WIDE with different code lengths.

Table 5: Classification accuracies on CIFAR-10 obtained by vari-

ous hash codes. Linear SVM is used.

Method 64 bits 128 bits

BRE 0.332 0.335

CCA-ITQ 0.564 0.570

SSH 0.432 0.460

KSH 0.590 0.598

FastHash 0.578 0.603

SDH 0.636 0.651
GIST 0.580

by these methods, we apply linear SVM for classification.

The LIBLINEAR [6] solver is used. We report the results in

Table 5. From Table 5, we can see that the proposed SDH

achieves the best classification accuracies with both 64 bit-

s and 128 bits, as SDH has explicitly considered the linear

classification performance in its learning objective. We also

test the 512-dim GIST features. We can see that the binary

codes obtained by SDH (also FastHash and KSH) are even

more discriminant than the continuous features. This is ex-

pected because the hash codes can be viewed as nonlinearly

transformed feature vectors of the original GIST vectors.

Hence linear classification on hash codes is equivalent to

learn a nonlinear classifier on the original data.

4. Conclusions
In this paper, we revisited the supervised hashing prob-

lem. To leverage semantic label information, we formu-

lated a joint learning objective which integrates hash code

generation and linear classifier training. When optimizing

this objective, the generated hash codes are expected to be

optimal to the jointly trained classifier. By the design of

the objective, we decomposed the supervised hashing prob-

lem into three sub-problems. To solve the most critical sub-

problem - discrete optimization for binary hash bits, we pro-

posed a discrete cyclic coordinate descent (DCC) algorithm.

Coupled with carefully chosen loss functions for the target

classifier, the DCC algorithm yields the optimal hash bits in

a closed form. As such, the entire optimization procedure

remains very efficient and thereby enables our approach,

called Supervised Discrete Hashing (SDH), to deal with

practical massive data. The experimental results on four

public image datasets demonstrated the efficacy of SDH for

large-scale image retrieval. We further showed that the bi-

nary codes generated by SDH can also achieve promising

classification performance.
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