
Web Scale Photo Hash Clustering on A Single Machine

Yunchao Gong, Marcin Pawlowski, Fei Yang, Louis Brandy, Lubomir Boundev, Rob Fergus

Facebook

1010010101001001001#
1011010001001001101#
1011010101001101001#
1011010101001001011#
#
0100101010100000110#
0110101110100000110#
0100111010100100110#
#
0010010000000011101#
0010010000000011011#
0010000000000001111#
0010010000000011010#
0010010000110011110#
#
#

#
1010010101001001001#
#
#
#
0100101010100000110#
#
#
#
#
0010010000000011101#
#
#
#
#
#
#
#

…#

…#

…#

Images#######################################binary#hashes###########################binary#cluster#centers#

Figure 1: The problem setting of this paper. We are interested in clustering
a large amount of image hash codes into compact binary centers.

Photo sharing websites are becoming extremely popular, hundreds of mil-
lions of photos are uploaded every day. For example, Facebook announced it
has about 300 million photo uploads every day. However, how to efficiently
organize such huge online photo collections is becoming a challenge. In this
paper, we propose to study the problem of clustering large photo collections
at the scale of hundreds millions a day.

In this paper, we develop a method that clusters image similarity binary
codes into a set of compact binary centers, which can be easily indexed. The
basic idea is illustrated in Figure 1. We first represent the photos using sim-
ilarity preserving binary codes [1, 3, 5], enabling us to store large number
of photos in memory. Then we propose a variant of the classic kmeans al-
gorithm denoted as Binary k-means (Bk-means) that constrains the centers
to be binary. The centers also live on the Hamming cube. This enables us to
easily use a multi-index hash table [4] to index the centers so that the nearest
center lookup becomes extremely efficient. This can reduce the time com-
plexity of the traditional kmeans from O(nk) to O(n), assuming we have n
data points and k centers. This also significantly reduces the storage space
of the centers, which we are representing as compact binary codes.

The binary hashing based k-means clustering mainly try to speedup the
nearest center lookup. To enable efficient lookup of the nearest center, we
use a constrained k-means formulation that constrains the mean to be binary.
Given the means are binary, we can directly build a multi-index hash table
[4] on the centers, and can efficiently find the exact nearest mean for any
binary data point in constant time. It also significantly saves storage of the
centers. We can have the following objective function:

minc j Ân
i Âk

j kxi � c jk2
2 (1)

s. t. c j 2 {�1,+1}.

Assuming c j has already been computed, the problem is reduced to the as-
signment step of k-means, which can be easily accomplished by assigning
each point xi to its nearest center c j. This can be done by building a multi-
index hash table [4] on c j and perform fast lookups for each xi. When all
the points have been assigned to its nearest center, the problem is how to
optimize c j with respect to the binary constrainss. By expanding Eq. (1),
and only consider one cluster c j and p points belonging to it, we have

minc j Âp
i kxi � c jk2

2 (2)

= Âp
i kxik2

2 +Âp
i kc jk2

2 �Âp
i xicT

j .

We notice that Âp
i kxik2

2 and Âp
i kc jk2

2 are both constants, because they are

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

k=50 k=5000

10

20

30

40

50

Number of clusters

Pu
rit

y
(%

)

Kmeans
BKmeans
KDKmeans
Kmedoids

(a) 50 classes

k=100 k=10000

5

10

15

20

25

30

35

40

Number of clusters

Pu
rit

y
(%

)

Kmeans
BKmeans
KDKmeans
Kmedoids

(b) 100 classes

k=500 k=50000

5

10

15

20

25

Number of clusters

Pu
rit

y
(%

)

Kmeans
BKmeans
KDKmeans
Kmedoids

(c) 500 classes

k=1000 k=100000

5

10

15

20

Number of clusters

Pu
rit

y
(%

)

Kmeans
BKmeans
KDKmeans
Kmedoids

(d) 1000 classes

Figure 2: Comparison of clustering purity on subsets of ILSVRC2012
dataset. Each subset contains different number of classes.

Independence'day'fireworks'(July'4th'2013)'

Burning'man'(Black'Rock'City,'Aug'31'2013)'

Ice'driving'(Alberta,'Canada,'Jan'13'2013)'

American'Hockey'League'(Mar'2014)'

Figure 3: Example trending clusters our method found.

both binary variables. Thus the optimization problem can be reduced to:

maxc j Âp
i xicT

j = maxc j (Â
p
i xi)cT

j (3)

s. t. c j 2 {�1,+1}.

The above problem can be solved by first computing the sum of all xi as
m j = Âp

i xi, and c j can be obtained by:

c jk = sign(m jk) =

⇢
+1 if m jk � 0
�1 if m jk < 0.

(4)

This gives an alternative optimization algorithm for solving Eq. (1), which
iteratively solves two subproblems.

We have compared the proposed method with kmeans, kdtree based
kmeans, and k-medoids, and some example results are shown in Figure 2.
We also applied the method to online event detection, and got event photo
clusters, as shown in Figure 3.

[1] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. Iterative quantiza-
tion: A Procrustean approach to learning binary codes for large-scale image retrieval. PAMI,
2012.

[2] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1988. ISBN 0-13-022278-X.

[3] M. Norouzi and D. J. Fleet. Minimal loss hashing for compact binary codes. ICML, 2011.
[4] Mohammad Norouzi, Ali Punjani, and David J. Fleet. Fast search in hamming space with

multi-index hashing. In CVPR. 2012.
[5] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. NIPS, 2008.

http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py

