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Abstract

This paper addresses the problem of clustering a very

large number of photos (i.e. hundreds of millions a day)

in a stream into millions of clusters. This is particularly

important as the popularity of photo sharing websites, such

as Facebook, Google, and Instagram. Given large number

of photos available online, how to efficiently organize them

is an open problem.

To address this problem, we propose to cluster the binary

hash codes of a large number of photos into binary cluster

centers. We present a fast binary k-means algorithm that

works directly on the similarity-preserving hashes of im-

ages and clusters them into binary centers on which we can

build hash indexes to speedup computation. The proposed

method is capable of clustering millions of photos on a sin-

gle machine in a few minutes. We show that this approach

is usually several magnitude faster than standard k-means

and produces comparable clustering accuracy. In addition,

we propose an online clustering method based on binary k-

means that is capable of clustering large photo stream on

a single machine, and show applications to spam detection

and trending photo discovery.

1. Introduction
Photo sharing websites are becoming extremely popu-

lar, hundreds of millions of photos are uploaded every day.
For example, Facebook announced it has about 300 mil-
lion photo uploads every day. However, how to efficiently
organize such huge online photo collections is becoming
a challenge. In this paper, we propose to study the prob-
lem of clustering large photo collections at the scale of hun-
dreds millions a day, This process has many practical ap-
plications. For example, clustering large photo collections
into near-duplicate image clusters can help find spam pho-
tos. Online clustering photos into semantic clusters can
be used to find time-sensitive photo clusters and trending
events. For these scenarios, we need online clustering meth-
ods which can handle hundreds of millions photos a day and
can store a very large number of centers in memory.

Image clustering is a well-studied problem in the litera-
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Figure 1. The problem setting of this paper. We are interested in
clustering a large amount of image hash codes into compact binary
centers.

ture [17, 24, 10, 37, 43, 35]. However, how to efficiently
cluster such huge collections of photos on a single machine
has received little attention. This problem is challenging be-
cause 1) it is hard to compactly represent such huge photo
collections; 2) it is computationally very inefficient to per-
form clustering on large datasets; and 3) it is very ineffi-
cient to store and index increasing large number of clus-
ter centers. The first problem has been addressed by recent
works on similarity preserving hashing [44, 12, 30], that try
to represent images as compact hash codes. For the second
challenge, there is work using kd-tree [32] to speed up the
clustering process, but it does not address the third chal-
lenge, as kd-tree needs to store all the real valued centers in
memory. Photo clustering will become infeasible when the
number of clusters accumulates to tens of millions or even
more.

In this paper, we try to address three challenges by devel-
oping a method that clusters image similarity binary codes
into a set of compact binary centers, which can be easily in-
dexed. The basic idea is illustrated in Figure 1. We first rep-
resent the photos using similarity preserving binary codes
[44, 12, 30], enabling us to store large number of photos in
memory. Then we propose a variant of the classic kmeans
algorithm denoted as Binary k-means (Bk-means) that con-
strains the centers to be binary. The centers also live on the
Hamming cube. This enables us to easily use a multi-index
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hash table [31] to index the centers so that the nearest cen-
ter lookup becomes extremely efficient. This can reduce the
time complexity of the traditional kmeans from O(nk) to
O(n), assuming we have n data points and k centers. This
also significantly reduces the storage space of the centers,
which we are representing as compact binary codes. In ad-
dition to the batch clustering method, to handle online photo
streaming, we also propose a simple online version of the
method, which is capable of handling hundreds of millions
of photos a day. Based on the online clustering method,
we show two applications of spam detection and trending
cluster detection.

In our experiments, we evaluated the proposed method
on the ILSVRC dataset [7] as well as several large Inter-
net datasets. On ILSVRC, we have found that our method
usually produces clusters whose quality is only slightly
worse (1-2% in terms of purity) than k-means but with a
much faster clustering speed. It usually improves the speed
for 10-100 times, depending on the dataset size and clus-
ter number. We also tested the online clustering method
on two large Internet photo stream datasets (flickr 100M
dataset [39] and a proprietary large photo stream dataset)
and demonstrated two applications for spam detection and
finding trending image clusters. We have found the pro-
posed method is efficient, can handle hundreds of millions
photos a day, and can produce high quality image clusters.

2. Related Work
Image clustering is one of the fundamental research ar-

eas in computer vision research. It has been widely used in
many different vision applications such as automatic dis-
covery of object categories [17, 24], finding trending or
iconic photos [33, 4, 10], reconstructing story lines from
photo streams [19, 18, 20], and 3D reconstruction from
photo collections [37, 1, 10].

One important application of image clustering in recent
years is to automatically organize Internet photo collec-
tions. Many very large-scale datasets have been proposed
to better study the problem of Internet computer vision. For
example, ImageNet dataset [7] contains more than 12 mil-
lion images and 22K classes, and all the images in it have
been manually annotated with ground truth labels. The 80
million tiny image dataset [40, 41], which contains 80 mil-
lion images with noisy labels, is another example. A con-
siderable amount of work has been devoted to how to bet-
ter organize such huge Internet photo collections. For ex-
ample, [9] proposed a very efficient algorithm to perform
semi-supervised learning on 80 million large photo collec-
tions. The work by Liu et al. [25] proposed to use mapre-
duce to cluster billions of photos offline. Chun et al. [6]
applied min-hash to perform large-scale clustering to find
near duplicate images. Image clustering has been applied
to discover iconic views of famous landmarks and recon-

structing 3D models for these landmarks [1, 10]. In partic-
ular, the work from [10] used k-medoids to discover iconic
image clusters from millions of photos and reconstruct 3D
models from the clusters. In addition, parallel kd-tree based
k-means [32] have been developed to cluster a large number
of local image patches.

Deep learning methods have been extremely success-
ful for visual recognition and retrieval in recent years.
In particular, training deep convolutional neural networks
on large Internet collections has achieved great success
[21, 23, 36]. Also, the activations from hidden layers have
also been shown to have very good generalization ability
as a generic image feature. For example, the activations
have been successfully applied to outdoor scene recogni-
tion [8, 38, 34, 45], indoor scene recognition [13, 34], and
image retrieval [13, 34]. In this work, we also use such deep
activation features as our basic image feature and build our
system on top of it. In particular, for large photo collections,
we directly hash these features when they are computed and
only store the hashes, which are compact representations of
the images.

There has been considerable amount of work on learning
similarity preserving binary hash codes for Internet images.
By representing the images as short binary codes, we are
able to store hundreds of millions or even billions of image
data points in the RAM of one single machine. In addition,
distance computation between these hash codes can be done
using fast Hamming distance. This can significantly im-
prove the scalability of analyzing image collections. Many
such hash algorithms have been proposed, such as spec-
tral hashing [44], iterative quantization [12], minimal loss
hashing [30], graph hashing [26, 27], and semi-supervised
hashing [42]. Also, quantization methods such as product
quantization [16], optimized product quantization [11], k-
means hashing [14], and Cartesian k-means [29] have been
proposed to better quantize the data into codes for fast dis-
tance computation. Based on the binary hash codes, one
significant advantage is that by building multi-index hash
tables [31] on top of the codes, we are able to perform near-
est neighbor lookup in constant time . However, in almost
all these works, the learned hash codes are only applied to
image retrieval and has not been applied to speedup other
learning algorithms. In this work, we build our clustering
method directly on top of the hashes and try to improve the
speed of the clustering algorithms by exploring the special
properties of hash codes.

Online clustering [3, 5, 47] is another important problem
that has been extensively studied in machine learning. Usu-
ally, it assumes one has very large data stream, and is unable
to perform batch processing to such streams. For example,
[2] have proposed online k-means clustering algorithms to
cluster large data streams or very large datasets that can-
not easily fit into memory. However, their main concern is
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how to process huge datasets (i.e. n is large), but they did
not consider the scenario when k is large. When both n
and k are large, these algorithms are still computationally
very inefficient and cannot be easily applied. Also, differ-
ent from our online clustering setting that has an increasing
number of clusters, their online clustering has a fixed num-
ber of clusters. Several other works have investigated par-
allel clustering algorithms, such as parallel k-means [46].
These methods mostly rely on using multiple machines to
speedup batch clustering.

3. Fast Clustering on Binary Hash Codes

We introduce the methods for batch clustering on hashes
in this section and will introduce online clustering later in
Section 5. First, we show that traditional k-means and k-
medoids clustering methods can be adapted to this case to
cluster hashes efficiently. Then we introduce the Binary k-
means (Bk-means) algorithm. We assume we have a set of
binary data points X = {x1, . . . ,xn} 2 {�1,+1} and
want to cluster the data points to a set of k centers C =

{c1, . . . , ck}.

3.1. k-means on Hashes

We first briefly discuss how to perform standard k-means
clustering on hashes. The hash codes use a binary represen-
tation and lie on the vertices of the hypercube. Every hash
corresponds to one binary vector1 with values +1 and �1.
Thus it is natural to perform k-means clustering on these
vectors by treating them as floating binary vectors. In prac-
tice, we are not able to store large amount of such floating
vectors in memory but can only store the compact hashes.
Thus, we need to perform a decoding during the k-means
algorithm. We first construct a lookup table from compact
hash keys to floating vectors, and during the optimization
of k-means, we directly lookup the floating vectors for the
hash keys and perform updates. This method produces ex-
actly the same result as standard k-means and has the same
running time.

We can also use kd-tree [32, 28] to index the real val-
ued centers and perform fast lookup to speedup the clus-
tering process. However, note that the cluster centers may
not lie on vertices of the hypercube, so they are not binary.
This requires us to store all the floating value centers in the
memory, which might take a huge amount of storage when
the number of centers is large. Also, we will show that the
binary k-means method produces better clustering accuracy
with faster speed than kd-tree based k-means. We will refer
to the kd-tree version of k-means as KDk-means.

1For binary codes, since we use Hamming diastase, we can represent
them as 0/1 or 1/� 1 interchangeably.

3.2. k-medoids on Hashes

Another approach to explore the special properties of
hashes to speedup clustering is applying k-medoids cluster-
ing, as described in [10]. Specifically, k-medoids directly
picks original data points as centers, which guarantees that
the centers are binary. This enables us to use fast distance
computation to find the nearest center for every data point
during optimization. In [10], they proposed to directly ap-
ply Hamming distance to compute the distance between ev-
ery point to the centers.

Instead, since the centers are binary, we can directly
build a multi-index hash table [31] on the centers, so we
can perform 1NN lookup very efficiently in constant time.
When the nearest centers for every data point have been
found, we can then apply the standard k-medoids step
within each cluster to find its center point. Specifically, we
find each cluster’s center by finding the data point having
average distance to all the other points in the cluster that is
minimal. However, this step is computationally inefficient,
especially when there are many points in one cluster. The
time complexity of the k-medoids method described in [10]
is O(nk + n2/k). By using the hash lookup for finding the
nearest center, we are able to reduce it to O(n+n2/k). No-
tice that we will have a quadratic term on n for this method,
which is not favorable for large datasets.

3.3. Binary k-means on Hashes

We introduce a fast clustering algorithm on binary codes
in this section. For standard k-means, the computationally
most inefficient step is finding the nearest center for each
point in the dataset. This step needs to compute the distance
between every point to all the centers and pick the closest
center. The time complexity of this step is O(nk). This
will become extremely inefficient when n and k are both
large. However, if we can build a hash table to index all the
centers, it makes it possible to efficiently find the nearest
center for any point in O(1), ideally. This can potentially
reduce the time complexity of k-means to O(n).

To enable efficient lookup of the nearest center, we use
a constrained k-means formulation that constrains the mean
to be binary. Given the means are binary, we can directly
build a multi-index hash table [31] on the centers, and can
efficiently find the exact nearest mean for any binary data
point in constant time. It also significantly saves storage of
the centers. We can have the following objective function:

mincj

Pn
i

Pk
j kxi � cjk22 (1)

s. t. cj 2 {�1,+1}.

The main difference between this formation to the standard
k-means is that we have added a binary constrains to the
centers c. This makes both the data points x and the means
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Algorithm 1: Binary k-means (Bk-means)
Data: X = {x1, . . . ,xn} and k

1 Randomly initialize centers as C = {ci, . . . , ck} where ci are
randomly selected from X .

2 for i = 1 . . . iter
3 // Step 1: Update nearest center index.
4 Build a multi-index hash table M on C.
5 for j = 1 . . . n
6 idx = M.Lookup1NN(xj ).
7 endfor
8 // Step 2: Update cluster centers.
9 for j = 1 . . . k

10 Compute mean mj for points in each cluster.
11 endfor
12 Update all cj as cj = sign(mj).
13 endfor

c binary, which enables us to perform fast hashing opera-
tions.

The question remained is how to solve Eq. (1) with inte-
ger constrains on c. We show below that it can be similarly
solved by an EM style alternative optimization algorithm.
Assuming cj has already been computed, the problem is
reduced to the assignment step of k-means, which can be
easily accomplished by assigning each point xi to its near-
est center cj . This can be done by building a multi-index
hash table [31] on cj and perform fast lookups for each xi.
When all the points have been assigned to its nearest center,
the problem is how to optimize cj with respect to the binary
constrainss. By expanding Eq. (1), and only consider one
cluster cj and p points belonging to it, we have

mincj

Pp
i kxi � cjk22 (2)

=

Pp
i kxik22 +

Pp
i kcjk22 �

Pp
i xic

T
j .

We notice that
Pp

i kxik22 and
Pp

i kcjk22 are both constants,
because they are both binary variables. Thus the optimiza-
tion problem can be reduced to:

maxcj

Pp
i xic

T
j = maxcj (

Pp
i xi)c

T
j (3)

s. t. cj 2 {�1,+1}.

The above problem can be solved by first computing the
sum of all xi as mj =

Pp
i xi, and cj can be obtained by:

cjk = sign(mjk) =

⇢
+1 if mjk � 0

�1 if mjk < 0. (4)

This gives an alternative optimization algorithm for solv-
ing Eq. (1), which iteratively solves two subproblems. The
solution of each sub-problem is exact and optimal, which
guarantees not to increase the objective function value.
Thus with a finite number of iterations, this optimization
problem will converge to a local minimum or a stationary
point. The full algorithm is described in Algorithm 1, which
we refer to as Bk-means. It is interesting to mention that this

k-means KDk-means k-medoids Bk-means
O(nk) O(n log(k)) O(n+ n2/k) O(n)

Table 1. Time complexity comparison between different methods.

method, is indeed the same as running a k-median cluster-
ing [15] on binary data (+1/ � 1). This is because when
we run k-median on binary data, computing the median is
equivalent to first computing mean and taking sign of it. In
particular, k-median is optimizing L1-norm, which is more
robust than L2-norm, suggesting our method might be more
robust to outliers.

3.4. Analysis and Discussion
We discuss the time complexity of different methods,

and it is shown in Table 1. First, k-means is probably the
slowest method since when both n and k are large, it will
be very inefficient, and it cannot take advantage of the fast
computation of binary codes. KDk-means is usually much
faster than k-means, since we used kd-tree to index the cen-
ters. k-medoids are also more efficient than k-means, be-
cause when the centers are also binary, we can build hash
tables on top of them and perform fast lookup very effi-
ciently. However, the main limitation of k-medoids is that
it is very inefficient to find the medoids within each cluster.
Thus, when k is large, the cost is affordable, and when k is
small, the cost becomes extremely inefficient. The proposed
Bk-means, which has linear time complexity with the num-
ber of data points n, is the most efficient method. This is
under the assumption that the hash lookup is constant time.

In terms of space complexity, k-means and KDk-means
both need to store the floating valued centers in memory,
which is prohibitive when the number of centers becomes
large. k-medoids and Bk-means make the centers binary,
which makes storing the centers much more compact. We
will show quantitative comparison of memory consumption
in Table 3.

4. Experiments
4.1. Datasets, Features, and Protocols

We perform quantitative experiments on the
ILSVRC2012 dataset, which is a subset of ImageNet
[7]. It contains 1000 object categories and more than 1.2
million images. Each category roughly has more than 1000
images. We randomly pick 50, 100, 500, and 1000 classes
from all 1000 classes, and construct four different datasets.

To represent the images, we use the activations from a
deep neural network as the image features. The network is
trained using a similar architecture as the Krizhevsky et al.
[22]. We extract the 4096 dimensional activations from the
last hidden layer as our image feature and normalize them

4



k=50 k=5000

10

20

30

40

50

Number of clusters

Pu
rit

y 
(%

)

 

 
Kmeans
BKmeans
KDKmeans
Kmedoids

(a) 50 ground truth classes

k=100 k=10000

5

10

15

20

25

30

35

40

Number of clusters

Pu
rit

y 
(%

)

 

 
Kmeans
BKmeans
KDKmeans
Kmedoids

(b) 100 ground truth classes

k=500 k=50000

5

10

15

20

25

Number of clusters

Pu
rit

y 
(%

)

 

 
Kmeans
BKmeans
KDKmeans
Kmedoids

(c) 500 ground truth classes

k=1000 k=100000

5

10

15

20

Number of clusters

Pu
rit

y 
(%

)

 

 
Kmeans
BKmeans
KDKmeans
Kmedoids

(d) 1000 ground truth classes

Figure 2. Comparison of clustering purity on subsets of ILSVRC2012 dataset. Each subset contains different number of classes.

to have unit norm. Then we apply the Iterative Quantiza-
tion (ITQ) method [12] to quantize the features into 256-bit
binary codes. These binary codes are the input of all the
algorithms studied below.

We use purity to evaluate the clustering algorithms.
Given a dataset with c ground truth classes, we perform
clustering algorithms to cluster the images into k clusters.
Each cluster is assigned to the class, which is most frequent,
and then counting the number of correctly assigned docu-
ments and dividing by the number of points in this cluster
to measure the accuracy of this assignment. Then mean pu-
rity is computed by averaging the purities for all clusters. In
our experiments, given c ground truth classes, we will clus-
ter them into k = c, 10c centers and report purity for each of
them. We run different methods for three random trials and
report the mean purity and standard deviation. For all our
implementations, we have heavily used multithreading (16
cores) to speedup the computations. For all methods com-
pared here, we set the number of iterations to 5. For KDk-
means, we use the FLANN implementation [28], and tuned
the tree to have roughly the same running time as hashing.
We fixed the number of backtracking to 32, which means
each tree will check at most 32 different leaf nodes.

4.2. Clustering Accuracy
We first evaluate the clustering performance using pu-

rity on various datasets, and the results are shown in Fig-
ure 2. We can find k-means always performs the best, as
most other methods are approximating it or introduce cer-
tain constrainss. The Bk-means method is usually slightly
(1-2%) worse than k-means. KDk-means works well for
small number of centers, while its performance becomes
worse when the dataset size and number of centers become
large. Overall, Bk-means is still better than KDk-means,
and we will show later that it is also faster. k-medoids
works reasonably well, but is always worse than Bk-means.
This is probably because Bk-means is not restricted to using
data points as centers and allows more degrees of freedom.
Some sample image clusters on ILSVRC are shown in Fig-
ure 3.

4.3. Clustering Speed
We report the running time for different clustering meth-

ods on different dataset sizes in Table 2. All methods
have achieved a faster speed than k-means. Overall, Bk-
means and k-medoids are fastest and are slightly faster than
KDk-means. In particular, Bk-means method has achieved
a significant speedup over k-means. For relatively small
datasets, such as those with 50 classes and 50 clusters,
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method / c/k 50/50 50/500 100/100 100/1000 500/500 500/5000 1000/1000 1000/10000
k-means 3.6 18.0 11.4 64.6 188.5 1492.9 640.9 5721.1

Bk-means 4.0 4.1 8.3 8.4 41.4 41.8 85.4 86.9
k-medoids 5.8 3.5 12.6 7.1 71.7 37.1 149.6 75.6

KDk-means 4.5 4.8 9.5 9.6 48.7 49.2 95.8 96.3

Table 2. Timing (seconds) for clustering (one iteration) on subset of ILSVRC with different number of classes c and clusters k.

Figure 3. Sample clusters from the ILSVRC2012 dataset. Each
line shows images in one cluster.

method / center size 10000 1M 100M
k-means / kd-kmeans 9.7 976 97600

Bk-means / k-medoids 0.31 30.5 3000.5

Table 3. Memory consumption (Mbytes) for storing centers for
different methods, assuming 256-bit hash code.

Bk-means achieved comparable speed to k-means. This
is mainly because the number of centers is small, which
limits the speedup factor of hashing. When we use more
centers, the speedup becomes more significant. For exam-
ple, with 1000 classes and 10,000 centers, we are able to
achieve about 60-70 times speedup. We have also tested k-
means and bk-measuring 20M images and 1M centers, and
bk-means can achieve over 400 times speedup than k-means
(5.5 hours vs. 2444 hours for one iteration).

In terms of memory consumption, the proposed hash-
ing approach and k-medoids always saves 32 times more
storage than k-means or kdtree based methods. This is be-
cause they can directly work with binary centers, while oth-
ers need to store the floating valued cluster centers. This is
especially important when we work with millions of even
more centers. We show quantitative comparison in Table 3.

5. Online Clustering of Large Photo Streams
In this section, we introduce an online clustering algo-

rithm that performs clustering on large photo stream. This
has real world applications since photos are always up-
loaded as a stream. Our work is similar to previous works
on online k-means clustering, but the main difference is we
do not know the number of clusters and the number of clus-
ters will continue to increase.

We describe the online clustering algorithm in Algorithm
2. The algorithm works as follows. We have an online
photo stream coming in every second, and we use a fixed
size Least Recently Used (LRU) cache to store the data.
When the size of the cache grows to n, we run our Bk-
means clustering method on this batch of data ˆXand clus-
ter them into n/10 centers. Then we filter out images that
are not visually consistent in each cluster. For every point
in each cluster, we filter out images that having distance r
away from its center. After filtering, all the clusters smaller
than size t will be removed. In the meantime of clustering,
the LRU cache collects another set of data, and when the
clustering is done, we perform clustering to the new batch.
For this new batch, we first assign its points to all the ex-
isting clusters when they are within r Hamming distance to
the cluster centers. Then we run Bk-means to the rest and
repeat the above steps. In the following experiments, we
will set n = 1000000, t = 10, and r depends on particular
application. This online clustering setting makes the need
of compact cluster centers a even more desirable property,
as the number of centers will grow significantly after run-
ning it for years. It enables us to process large online photo
streams, and we will show two applications for it. Clus-
tering 1 million images into 100,000 clusters usually only
takes 4 minutes. This system enables us to cluster about
360 million photos in a day on a single machine.

5.1. Detecting Spam Photo Clusters
One direct application of this online photo stream clus-

tering algorithm is spam photo detection. Spam photo sare
usually near duplicate to each other. Once we have clustered
these near-duplicate images into one cluster, as long as one
of them is detected as spam, we can find the whole cluster
of images. For this particular case, since we are interested
in finding near duplicate images, we set the radius thresh-
old for each cluster to a small value r = 7. We have found
this produced reasonably good clusters in which images are
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Algorithm 2: Online Binary k-means
1 Initialize centers as C = {}.
2 for every data batch i = 1 . . .
3 // Step 1: Update nearest center index.
4 Build a multi-index hash table M on C.
5 // Step 2: Assign points to nearest center.
6 for j = 1 . . . n
7 z = M.Lookup1NN(xj ).
8 if (kxj � czkH < r)
9 Assign xj to cz .

10 endif
11 endfor
12 // Step 3: Update cluster centers.
13 for j = 1 . . . k
14 Compute mean mj for points in each cluster.
15 endfor
16 Update all cj as cj = sign(mj).
17 // Step 4: Perform batch Bk-means to rest points not assigned.
18 Get new clusters Cn using Bk-means for points not assigned.
19 Prune each new cluster based on its radius and size.
20 // Step 5: Merge clusters.
21 C = {C,Cn}
22 endfor
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Figure 4. Number of clusters with respect to running time.

very similar but not identical.

We run this algorithm on a large photo stream with hun-
dreds of millions of photos every day. We show the number
of discovered clusters over 6 days in Figure 4. By running
the system over 6 days, it has scanned over 2 billion pho-
tos. We can clearly find that when we continue aggregating
new clusters, the growth speed becomes slightly slower. It
is also clear that we will accumulate a very large number
of centers after running this method for years. This empha-
sizes the importance of having binary hashes as centers. We
also show some sample clusters we have discovered during
the process in Figure 5. This clearly shows we are able to
find very consistent near-duplicate clusters, but images in it
are not identical.

Figure 5. Some near-duplicate clusters we have found. Each line
corresponds to one cluster. We show a few examples in each clus-
ter.

5.2. Online Semantic Clustering
The second problem we consider is finding trending

photo clusters or events from online photo streams. Our on-
line clustering method fits naturally to this problem, since
all the new images will first match against existing old clus-
ters, and then we cluster images that do not have a match.
Thus, whatever new clusters we have found do not comply
with the old distribution of the clusters and can be consid-
ered as trending new clusters.

To study this application, we used 10 million images
from Flickr [39]2 and sorted them by their upload time.
Then we split these images into 10 splits, and each split
contains 1 million images. We ran our method on these 10
splits, and show some example clusters in Figure 6 and Fig-
ure 7. For Figure 6, we selected clusters that are found in
very early batches. We can find most clusters contain regu-
lar objects, and they are the non-trending clusters. In Figure
7, we show some clusters our method found in later batches,
which clearly corresponds to some trending events. For ex-
ample, one photo cluster found on July 4th, 2013, directly
corresponds to the fireworks on Independence day. Please
note that most photos do not belong to the same person.
Our current results indicate that we are able to find trend-
ing events using this online clustering method. However,
it is still preliminary, and in the future, we will incorporate
other information such as location and other text meta data
to improve the results.

6. Discussions
This paper studies very large-scale photo clustering us-

ing hashes. In particular, we propose to cluster image binary
codes into a set of binary cluster centers so we can perform
clustering efficiently and store and index huge number of
cluster centers easily. The proposed binary k-means algo-

2They are public photo albums uploaded to Flickr, and all photos have
Creative Commons Attributions License.
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Figure 6. Example clusters (one cluster per line) that are found in
older batches. These clusters are very common in the dataset.

rithm is able to perform clustering in linear time O(n), and
significantly improved the scalability of the clustering pro-
cess. This makes clustering large photo collections on a
single machine possible.

We have also proposed an online binary k-means method
to handle hundreds of millions of online photo uploads ev-
ery day. We show that this method can handle more than
300 million photos in a day, on a single machine. We show
two applications of the online clustering algorithm: finding
near duplicate photos for spam detection, and finding trend-
ing photo clusters from photo streams.
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