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Abstract

Detecting pedestrians at a distance from large-format
wide-area imagery is a challenging problem because of low
ground sampling distance (GSD) and low frame rate of the
imagery. In such a scenario, the approaches based on ap-
pearance cues alone mostly fail because pedestrians are
only a few pixels in size. Frame-differencing and optical
flow based approaches also give poor detection results due
to noise, camera jitter and parallax in aerial videos. To
overcome these challenges, we propose a novel approach to
extract Multi-scale Intrinsic Motion Structure features from
pedestrian’s motion patterns for pedestrian detection. The
MIMS feature encodes the intrinsic motion properties of an
object, which are location, velocity and trajectory-shape in-
variant. The extracted MIMS representation is robust to
noisy flow estimates. In this paper, we give a comparative
evaluation of the proposed method and demonstrate that
MIMS outperforms the state of the art approaches in iden-
tifying pedestrians from low resolution airborne videos.

1. Introduction

In recent years, large-format wide-area sensors are in-
creasingly being used for persistent surveillance tasks, in-
cluding border security, force protection and aerial surveil-
lance. The wide-area sensors are usually placed on high
towers, aero-states or unmanned aerial vehicles for these
applications. The goal of employing such sensors is to de-
tect targets and activities of interest, at the largest possible
distance while covering the greatest possible area (prefer-
ably in tens of square kilometers). Therefore, these sensors
have low ground sampling resolution, typically 0.3m-0.5m
Ground Sampling Distance (GSD), in order to cover a large
area and low frame-rate (2-5 Hz) due to large image size.
Automated analysis tools are critical for such sensors as the
size of the area monitored and the number of objects to track
are beyond continuous manual inspection.

Most of existing automated analysis tools for wide-
area sensors have focused on vehicle tracking/classification

Figure 1: (a) shows portion of a single frame from a wide-
area imagery. A pedestrian is a dark dot with a size of a few
pixels even in a zoomed-in view. (b) shows 50 frames fore-
grounds overlaid on the top of background, where the tra-
jectories of moving objects such as cars pedestrian (1), vehi-
cles (2,3,4,5) and parallax (6,7) become visible. It is worth
noting that this overlaid view is after stabilization. (c) shows
the residual pixels, i.e. the pixels that are different from the
background of the middle image. The residual pixels may
come from three categories: moving objects such as vehi-
cles, pedestrians and parallax that are static but cannot be
compensated by a global motion due to the structures above
the ground plane and registration errors. Among all resid-
ual pixels, only a very small portion belongs to pedestrians,
which has been marked as red pixels in the right image. Our
goal is to detect pedestrians by using their intrinsic motion
patterns.

[19,4,22]. There is very little existing work focussed on de-
tection and tracking of pedestrians from large format wide-
area imagers. This is because tracking pedestrians in wide
area surveillance has unique challenges (see Figure 1). The
main challenge for wide-area dismount detection is that ex-
tremely low resolution, i.e., GSD is around 0.3m to 0.5m
per pixel, therefore pedestrians cover only 4 - 9 pixels in the
image, please see Figure 1. At this scale the typical shape



or appearance based models for object detection, such as
HOG [5], deformable part models [6] and shape based mod-
els [2] no longer provide significant discrimination against
the background.

One viable solution of detecting pedestrian from wide
area aerial imagery is to exploit motion. Most existing mo-
tion based approaches [18, 21] use background subtraction,
frame difference and Histogram of Optical Flow (HOF) as
features for classification. These motion based features are
sensitive to the noise in image registration, and optical flow
estimation. Thus use of these features often results in high
false alarm rate when pedestrians comprise only a few pix-
els in the imagery.

To solve the aforementioned challenges, let us first ob-
serve the residual motion image in Figure lc, which is the
motion after compensating the global camera motion. The
residual motion comes from moving objects ( e.g., pedes-
trian and vehicles ), parallax, and inevitable registration er-
rors. To distinguish the motion of pedestrian from that of
others, one may think of directly using the location, or ve-
locity, for detection, but these features are not discrimina-
tive because different types of objects or noise may have
similar location, speed or direction. We believe that, how-
ever, the motion that comes from the same type of ob-
ject (e.g., pedestrian) forms a manifold in a space such as
(x,y,vx,vy), and from which we can select a unique pattern
capturing the intrinsic properties of the object. One such in-
trinsic property is the local dimensionality of the topology
of the motion, which is location, speed and trajectory shape
invariant. Therefore, we propose a novel approach to dis-
cover the local dimensionality based on the local topology
of the motion manifold for pedestrian detection.

However, without specifying a scale of the local topol-
ogy, the dimensionality may not be meaningful. As an ex-
ample, a pedestrian can be regarded as a point when viewing
from afar, while it is a 3D object when looking at it closely.
As a result, we pair the dimensionality and scale to model
a pedestrian’s motion pattern. This leads to two questions:
1) How to robustly estimate the dimensionality and 2) how
to pick up the right scale. To answer these questions, we
propose a learning-based tensor voting[16] approach. Ba-
sically, tensor voting provides local dimensionality of mo-
tion patterns and its saliency at a specific scale. However,
in practice, it is hard to manually select the right scale(s).
Thus, in our work, we use tensor voting to generate a whole
spectrum of features at various sampled scales and employ
feature selection to form a compact discriminative represen-
tation. These extracted features encode the intrinsic prop-
erties of pedestrian’s motion pattern at various scales. We
refer to these features as Multi-scale Intrinsic Motion Struc-
ture (MIMYS) features.

In summary, our contributions include: (1) We propose
a novel approach to discover MIMS features for pedestrian
detection in aerial videos. The MIMS representation is ro-

bust to noise and invariant to location, velocity and shape of
trajectory. (2) We introduce a learning strategy for selection
of invariant features, and (3) present a thorough evaluation
of the proposed approach on WAAS videos along with a
comparison with the state of the art.

2. Related Work

Human detection in aerial surveillance videos has re-
ceived significant attention [18, 21]. Appearance based and
frame-by-frame motion based feature analysis are two main
pedestrian detection approaches reported in the literature.

Reilly et al. [20] uses background subtraction for detec-
tion and employs a geometric feature that measures the ratio
between a people’s height and the size of its corresponding
shadows to filter out non-human area. This ratio is within a
range if both camera and sun’s location are known. A vot-
ing method is proposed in [17] to recognize pedestrians by
measuring the appearance similarity between labeled sam-
ples and candidate locations. Candidate locations are pre-
dicted by a SVM classifier using HOG descriptors. Sokalski
etal. [23] developed a salient object detector based on color
information. Paper [10] detects human from thermal UAV
images using two methods. One is to classify human from
non-human from thermal signatures with respect to orienta-
tion, thermal contrast and size. The other is to extract and
match human silhouette using shape descriptors. A similar
technique, i.e., matching human thermal silhouettes, is also
applied in [7].

Unlike these appearance-based approaches that work
mainly on low-altitude UAV platforms, we are dealing with
lower resolution data with GSD around 0.3m to 0.5m per
pixel, therefore pedestrians cover only 4 - 9 pixels in the
image. At this scale the typical shape or appearance based
models mentioned above do not perform well.

Lee [12] uses motion to detect pedestrians in a cluttered
scene. The method consisted of extracting the silhouettes
of moving humans and using perceptual grouping to reduce
the impact of clutter and noise in the detection process. Yu
and Medioni [24] use motion structure analysis approach in
a 4D space for vehicle detection. They manually selected
a few scales of intrinsic structure and used segmentation to
extract the vehicle motion from a 4D motion space. Prokaj
et al. [19] use background subtraction for vehicle detection
in airborne videos and learn vehicle motion patterns from
initial tracklets to improve tracking. Zhao and Medioni [25]
propose another tensor voting based approach to learn di-
rectional motion patterns which can be used as a prior to
improve tracking.

Unlike our approach, the above mentioned approaches
neither attempt to detect very small moving objects nor an-
alyze the pattern at multiple scales to extract a complete
signature profile of the object of interest for detection.
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Figure 2: The overall framework of our approach. Modules
within the blue dashed line are the focus of this work. We
used a technology similar to [ 1] to stabilize the video an d
used Liu’s [ 13]’s optical flow code to generate dense optical
flow to feed our pedestrian detection algorithm.

3. Algorithm Overview

The overall algorithm framework is shown in 2. Given
a video clip of WAMI imagery, we first stabilize the video
using an approach similar to [11]. The stabilization pro-
cess compensates the camera motion and enforce the mo-
tion smoothness constraint. Then, we compute dense opti-
cal flows on the stabilized video clips for every two consec-
utive frames.

Given (z,y, vy, v,) from multiple frames, we use ten-
sor voting to group such 4D samples by selecting different
neighborhood size in both spatial and temporal domain in
the voting process. We then compute the principle axes of
the group and define (1) the index of the maximal eigen-
value difference as motion dimensionality d and (2) the
maximal eigenvalue difference as motion saliency s. Since
each group is estimated using a specific neighbor size, it
is straightforward to deem that the motion dimensionality
and saliency are extracted at a scale o and (d, s, o) is called
Intrinsic Motion Structure (IMS) which captures the intrin-
sic property of the motion. For each pixel of the imagery,
we extract multiple IMS at different scale, and concatenate
to represent the pixel. Such a compact Multi-scale IMS
(MIMS) representation is trained using an AdaBoost-like
method to detect pedestrians which is introduced in section
5.

4. Intrinsic Motion Structure Discovery

In this section, we describe how our approach discover
motion dimensionality and saliency of a pixel IMS in a 4D
space (z,y, vg, vy) at a specific scale.

When a 2D point (x,y) traverses continuously on a 2D
plane with a velocity (v, vy ), it actually produces a motion
shape in a 4D space of (z,y, vz, v,). The 2D point can be
referred to a pixel, a patch or an object on the image at a
certain scale. In 4D space, we call the temporal shape of
the motion as a fiber, which is different to the trajectory on
2D space of (x,y). See the pedestrian’s motion trajectory in
Figure 3 for an example the 2D trajectory corresponds to a
fiber in the 4D space. If a set of such 2D points (e.g. a set

Figure 3: Example of vehicle and pedestrian motion struc-
ture. The red trajectory represents pedestrian, which cor-
responds a fiber in the 4D space (x,y,vx,vy). The blue one
represents a vehicle, which corresponds to a fiber bundle in
the 4D space.

of points on the same object) are moving under the similar
motion pattern, they basically form a fiber bundle, which
presents a different shape to a fiber at a different scale. As
shown in 3, the trajectory of vehicle actually form a fiber
bundle at the current scale. Please note that at a different
scale, the fiber bundle may be a single fiber.

one may notice neither the fiber nor its individual com-
ponents (e.g., location, velocity) can be directly used to dif-
ferentiate pedestrians from other objects, because pedestri-
ans can be anywhere with different velocities, even their tra-
jectory shapes may be similar to that of other objects. How-
ever, features derived from a combination of location, speed
and motion trajectory from same sources or objects share in-
trinsic properties that can distinguish pedestrians from oth-
ers. This leads us to develop a novel feature that is indepen-
dent of object’s location, speed and motion trajectory. Such
an intrinsic representation captures the essential geometri-
cal properties of a pedestrian’s motion and therefore offers
considerable advantages when the pedestrians becomes tiny
and the background becomes more complex.

4.1. IMS Extraction using Tensor Voting

Given samples in the 4D space (z, y, vz, vy ), We use ten-
sor Voting [16] to group 4D samples because of its robust-
ness to noise. Essentially, tensor voting can be regarded
as an unsupervised computational framework to recover the
intrinsic local geometric information, which is encoded in a
symmetric, non-negative definite matrix. This local geome-
try describes a moving object’s local motion structure ( i.e.,
motion dimensionality and saliency) which can be derived



by examining its eigen system as:
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where {)\;} are the eigenvalues arranged in descending or-
der, {e;} are the corresponding eigenvectors, and N is the
dimensionality of the input space which is 4 for our 4D
space. The decomposition in Eq.1 provides a way to in-
terpret the motion local geometry.

The motion dimensionality and saliency reveal the local
motion structure of a moving object. The motion dimen-
sionality d is the index number of the largest gap between
two consecutive eigenvalues,\;, \; 11, i.e.

d = argmax (\; —

Xit1) 2

The motion saliency is the largest difference of two consec-
utive eigenvalues Ay — A\g41. In other words, a local motion
structure, whose normal space and tangent space are d di-
mensional and (N-d) dimensional respectively, is the most
salient interpretation to T. The corresponding eigenvec-
tors ey, ...,eq span the normal space of the structure and
eq + 1, ...,en span the tangent space.

4.2. Multi-scale IMS (MIMS) Representation

When computing IMS, the only free parameter is o that
controls the neighborhood size in voting. The right neigh-
borhood size of o to be used in voting is often unknown
unless hand-crafted. Interestingly, previous work often ne-
glected o when describing motion dimensionality. In fact,
the motion dimensionality is meaningful only when o is
specified. For example, the 2D sheet of the vehicle motion
shown in Figure 3 may become an object with 3D volume
when its corresponding spatial scale increases (e.g. viewed
under a microscope) or it shrinks to a line when its corre-
sponding scale decreases (e.g. under a telescope).

Instead of using a hand-crafted single scale to represent
IMS, we pair up the scale and the dimensionality at multiple
scales,

{(di,si,gi),izl,...,k} (3)

where d; and s; are the intrinsic dimensionality and its cor-
responding saliency at scale o;. ||o|| is the total number of
scales. In this representation, one can avoid the scale selec-
tion in a hand crafting manner and improve the tolerance of
increased noisy. In addition, the multi-scale representation
is able to capture the changing of dimensionality when the
scale varies, such as shown in Figure 4.

5. Learning Pedestrians from MIMS

We regard pedestrians detection from airborne video as
a binary classification problem. In other words, we aim
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Figure 4: This example demonstrates the change of the mo-
tion dimensionality (left panel) and saliency (right panel)
with respect to scale o. We selected 20 uniformly sampled
o from 0.2 to 4 ( increasing from left to right) for dataset
I. Each row (A,B,C) shows the mean statistical values of
all instances from the same object type. Row A, B and C
represent pedestrian, vehicle, and background, respectively.
Obvious patterns can be observed, such as the motion di-
mensionality of pedestrians (row A) keep decreasing with
increased scales, while that of vehicle (row B) first increases
then decreases. The dimensionality of background ( Row C
) keeps increasing with scale.

to differentiate the pedestrians’ MIMS from other objects’
MIMS. We first introduce how we can derive features from
(d;, si,04) and then introduce feature selection using Ad-
aboost to speed up classification process.

5.1. MIMS Distribution

Given a scale o, the intrinsic feature is encoded into two
values (d, s) as shown in Eq.3, where d € NT,1 < d < N
and s € R*. These two values capture a 2D distribution
of the intrinsic structure at a certain scale. Suppose we nor-
malize s between [0, 1] and choose k bins to quantize the
normalized saliency value as $, we can build a 2D look-up
table to approximate the 2D distribution of intrinsic struc-
ture at this scale. In our case, d can only be [1,2, 3, 4] and
we quantize the saliency into 16 bins. This partition of the
feature space corresponds to a partition of the sample space.

For the binary pedestrians classification problem, a sam-
ple is represented as a tuple {x, y}, where x is one residual
pixel and y is class label whose value can be +1 (pedes-
trian) or —1 (non-pedestrian). The feature value at a certain
scale o can be represented as

f(xa U) - (dv §) 4

where the feature value can be regarded as a 2D indices of
the 2D look-up table. Suppose we use f to represent the 2D
indices, then

W§¢ = P(f(x,0) € bing,y =c),c==£1 5)

encodes the 2D distribution of intrinsic features among the
positive and negative training samples.

5.2. Boosting MIMS Feature

According to the real-valued version of AdaBoost algo-
rithm [9], the weak classifier h(x) based on MIMS can be



defined as a piece-wise function

1
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where Wf'*' ! and VVf_1 are defined in Eq.5.

Given the characteristic function,

|1 wuebing c .
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the weak classifier based on MIMS can be formulated as:

1 Wi+
h(x,0) = 3 zf:ln (W:_l_i_i)Bf(f(Xaa)) ®)

For each intrinsic feature at a certain scale, one weak classi-
fier is built. Then the real AdaBoost algorithm [8] is used to
learn strong classifiers, called layers, from the weak classi-
fier pool. The strong classifier H (x) is a linear combination
of a series of weak classifiers selected

T
H(x) = aih(x,01) +b 9)
=1

where where T is the number of weak classifiers in H (x),
o; 1s the scale in the 7th selected weak classifier and b is a
threshold.

6. Experiments

We performed both qualitative and quantitative evalu-
ation of the algorithm on two datasets (see section 6.1).
Dataset I is in house imagery. Dataset II is a publicly avail-
able aerial video dataset [20].

6.1. Experimental Datasets

Dataset I consists of aerial imagery at a frame rate of
approximately 2.0Hz. Image size is 512x512 at a GSD of
0.25m. Figure 1 (b) shows an example of the imagery cap-
tured. This dataset is very challenging since a pedestrian
usually occupies only a few pixels and the shadow cast by
pedestrian is not visible at all. Thus, the appearance based
approaches, such as HOG human detector [5] and the ap-
proach in [20] that is relying on shadow cannot work on
this dataset.

Our algorithm works not only for the scenario with
pedestrians in wide area aerial videos but also for the case
with regular aerial videos with high resolution of pedes-
trians. To verify this, we tested our approach on a public
dataset [20] (dataset II in this paper), where pedestrians of-
ten occupy 20-40 pixels compared with 5-10 in dataset L.
The image resolution of Dataset II is 640x480.

Both datasets consist of three sequences. We use two
sequences for training and leave one sequence out for test-
ing. We report the average performance of the three runs.

Ground truth labels of pedestrians in these two datasets are
manually generated.

In these two datasets, we consider following three main
types of residual motion pixels as non-pedestrians:

e Pixels from parallax motion. This mainly includes
high-rise buildings, trees and background noise.

e Pixels from slowly moving vehicles. When vehicles
are about to stop or start, their motion magnitudes are
similar to that of pedestrians.

e Pixels from shadows. Motion inside shadows are not
robust because all pixels appear to be dark and it is
hard to localize their corresponds in the next frame.

6.2. Evaluation Metric and Baseline Features

Since our ground truth labels is pixel-wise, the accuracy
in ROC curve is reported pixel-wise. Following [20], we do
not use the PASCAL measure of 50% bounding box overlap
because the pedestrians in our datasets are very small, and
make up a very small percentage (< 0.1%) of the scene.
Under these circumstances, pixel-wise results provides bet-
ter measure than box overlap based measures. In addition,
we report the false alarm per minute per square kilometer.

For comparison, we implemented two types of baseline
features: appearance based and flow based features. Both
are widely used in pedestrian detection. Here are our im-
plementation details for each of the baselines:

e Laplacian of Gaussian (LoG) Filter [1]: at every single
pixel, we compute its Laplacian of Gaussian response
to measure how different it is as comparing to its sur-
roundings. We sample various sizes of Gaussian stan-
dard deviation (e.g., inner filters are sized from [1,1]
pixels to [6,6] and outer filters are sized from [2,2] to
[7,7]). Pair of inner and outer filter combination pro-
duces a response as a feature value.

e Histogram of Oriented Gradient (HOG) [5]: HOG is
computed at every 5x5 image patch sampled every 2
pixels. The empirical patch size and sample rate give
better results on our datasets.

e Frame-by-Frame Flow: we compute per-pixel flow
from two consecutive frames , and the features of each
pixel are the concatenation of the horizontal flow, the
vertical flow and the flow magnitude.

In addition to report results on MIMS, we also report re-
sults for intermediate features, such as motion dimensional-
ity and saliency. We also compute features using alternative
manifold estimation methods for comparison. Here are the
implementation details:

e Motion Dimensionality and Saliency: given current
frame f;, we form a 9-frame 3D volume of flow
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(a) reference image (b) color-coded flow (c) flow velocity (d) Laplacian Gaussian filter
Figure 5: This example shows the flows computed from two consecutive frames. (a) shows the original image, (b) shows the
color coded flow for the same image. Hue indicates the flow direction and the saturation indicates the flow magnitude. (c)
optical flows shown as vectors on the same image. Due to the occlusion and shadows, the surround flows of (3) are noisy (see
red small arrows overlapped with yellow arrows on the vehicle. (d) shows an example of LoG filter response on the image.

The inset images show that shape of a pedestrian’s response is closer to a circle while that of the building, where parallax

motion can cause false detection, is closer to a line.

from the previous and next 4 frames of f;. To com-
pute the motion dimensionality and saliency at a cer-
tain pixel pf, we apply the tensor voting on a group
of pixels, which are the neighbors of p! in the 4D
space (, y, vz, Uy ), to compute the dimensionality and
saliency of p! as described in section 4.

e MIMS: we compute motion dimensionality and
saliency at scale o = (0.4,0.6..,4) and combine them
by quantizing the saliency into 16 bins and dimension-
ality to 4 bins (maximal 4 dimensions). This gives us
a 2D histogram with 16 x 4 bins. For each sample at
a scale, its index in this 2D histogram will be regarded
as features.

e Diffusion Map [15]: we construct a graph to include
multiple frame features (x,y,v,,v,). The intrinsic
structure of co-occurrence feature is computed by clus-
tering similar feature from multiple Gaussian kernels
to define the neighborhood size. For each Gaussian
kernel, a bag of word (BoW) descriptor is created and
each feature is represented using this BoW. We con-
catenate all BoWs into feature vector and train a clas-
sifier using the method introduced in 5 .

6.3. Results and Discussion

Table 1 summarizes the detection rate and False Alarm
per km per minute from Dataset I. To verify that both
appearance-based and flow-based features are not discrimi-
native enough for pedestrian detection in aerial videos with
low resolution, we performed a set of experiments on de-
tecting pedestrians using HOG, LoG, and Frame-2-Frame
flow features. Both HOG and flow features are widely used
in object and pedestrian detection. The results are shown

Figure 6: Examples of super-pixel from dataset I for a
pedestrian (the left two panels) and a vehicle (the right two
panels) from low contrast and low resolution aerial video.
We used watershed segmentation with gradient magnitude
at fine level to segment the objects.

in Table 1. We can see HOG and LoG obtain similar re-
sults, and both of them are much worse than that of ID and
MIMS. This illustrates that pedestrians from aerial images
in Dataset I have less discriminative appearance features
which are unable to differentiate the pedestrians from other
moving objects and noise. Although the flow feature works
better than appearance based feature, it does not achieve ac-
ceptable detection rate either. We believe this is because the
motion from only two frames is often noisy.

Interestingly, combining MIMS and appearance features
further improves the performance, as shown in Per-pixel
LoG+MIMS row of Table 1. It seems to tell us that, al-
though the pedestrians are small, the contrast sensitive fil-
ter may still be helpful in detection. However, MIMS still
provides the key contribution since the improvement is not
much as compared to that of MIMS.

Other manifold learning approaches may be able to dis-
cover the intrinsic geometric structure of the data. For ex-
ample, diffusion maps is able to perform multi-scale data
analysis too and has shown good results [15]. However, un-
like tensor voting, diffusion maps is not able to dig out the
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Figure 7: ROC curves from the experiment of Laplacian
of Gaussian Filter, per-pixel MIMS and super-pixel MIMS.
Overall, super-pixel based approach outperforms the per-
pixel based approach and the Laplacian of Gaussian Filter
has the lowest accuracy.

intrinsic local dimensionality and motion saliency. As we
can see the results in Table 1, our approach performs much
better than diffusion maps on this problem.

To further improve the system performance in terms of
efficiency and accuracy, we also show results on super-
pixels. The result is listed in Table 1, which outperforms
all other approaches. One reason that accounts for this is
that super-pixel leverages tensor voting by explicitly group-
ing spatial pixels in a frame-by-frame basis. This reduces
the effect of noise to tensor voting at pixel level. An exam-
ple of super-pixel representation of pedestrian and vehicle
is shown in Figure 6. Figure 7 compares the ROC curve of
pixel based and super-pixel based approach. We show two
examples of our qualitative results from dataset I in Figure
9.

In order to compare with a public available aerial video
pedestrian detection work in the literature, we compared our
approach with the geometric approach in [20]. We achieved
(in green) comparable result to their best performance se-
quence (see Figure 8 in red). It is worth noting that our
approach does not rely on any shadow information, which
is not reliable for pedestrian detection from low-contrast
and/or low resolution aerial videos.

7. Conclusion

In this paper, we proposed a novel feature for detect-
ing pedestrians in WAAS surveillance imagery. Our MIMS
feature encodes the local structure of the motion pattern by
computing the intrinsic dimensionality and saliency of the
motion manifold at a number of scales . The discrimina-
tive scales are selected via a learning based approach. The
local dimensionality and structure estimates enable us to
differentiate background clutter, parallax and vehicles from
pedestrians from noisy optical flow estimates. Our evalua-
tion shows that the MIMS feature outperforms the state of
art appearance and motion based features for pedestrian de-
tection.

Table 1:

Quantitative results from Dataset 1. Coverage

shows the detection rate and FPS shows the false positive
score that is measured in a 60 seconds (120 frames) video

within a square kilometer area.

Features Coverage | FAPkmPmin

HOG 62% 1378

Laplacian of Gaussian (LoG) 63% 889

Frame-2-Frame Flow 67% 668

Intrinsic Dimensionality (ID) 69% 568

Structure Saliency (SS) 66% 1023

ID+SS (MIMS) 72% 493

Diffusion Map 70% 536

Per-pixel LoG+MIMS 78% 367

Super-pixel LoG+MIMS 80% 115
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Figure 8: Comparison with Reilly’s approach [20] using
shadows. Note that our approach does not rely on shadow-
cue which may not be available in all the aerial videos.
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Figure 9: Qualitative results from two video clips (best viewed by zooming in 4x). The left image is captured at a shopping
mall where many pedestrians are working out/into buildings. The right image is captured at a location near a restaurant,
where few pedestrians appeared. The detected pedestrians are labeled using a red circle. Their corresponding tracks within
20 frames are shown in green color. In the left example, there are altogether four pedestrians detected but one is false alarms
when a dark vehicle is about to stop. In the right example, there are two pedestrians. One is walking on the pavement, and the
other is crossing a road. A false detection is also showed up when the vehicle is about to stop. We believe these false alarms
can be successfully removed by vehicle tracking which is relatively more mature than pedestrian detection approaches.
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