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Abstract

The task of estimating complex non-rigid 3D motion
through a monocular camera is of increasing interest to the
wider scientific community. Assuming one has the 2D point
tracks of the non-rigid object in question, the vision com-
munity refers to this problem as Non-Rigid Structure from
Motion (NRSfM). In this paper we make two contributions.
First, we demonstrate empirically that the current state of
the art approach to NRSfM (i.e. Dai et al. [5]) exhibits poor
reconstruction performance on complex motion (i.e motions
involving a sequence of primitive actions such as walk, sit
and stand involving a human object). Second, we propose
that this limitation can be circumvented by modeling com-
plex motion as a union of subspaces. This does not naturally
occur in Dai et al.’s approach which instead makes a less
compact summation of subspaces assumption. Experiments
on both synthetic and real videos illustrate the benefits of
our approach for the complex nonrigid motion analysis.

1. Introduction
Recovering non-rigid 3D motion from 2D point tracks

stemming from a monocular camera is a problem of con-
siderable interest in numerous disciplines and applications
throughout science and industry. This task is widely re-
ferred to as Non-Rigid Structure from Motion (NRSfM) in
the vision community. Dai et al. [5], recently proposed a
strategy for motion reconstruction that is now considered
state of the art in the field. The approach has close links with
approaches in the learning community, most notably Robust
PCA (RPCA) [4], for recovering low-rank subspaces in the
presence of noise.

In this paper we demonstrate empirically and character-
ize theoretically that the utility of Dai et al.’s [5] approach
for reconstructing 3D motion is highly dependent on the
complexity of the motion. We use the term “complex” qual-
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Figure 1. An example of complex non-rigid motion using a hu-
man body. (a) A video sequence from the UMPM dataset [1] in
which a subject sequentially performs actions such as: raise hand
(red), walk (green), sit (blue) and stand (magenta). 2D body joints
tracked in the videos are connected to form 2D skeletons in each
frame. (b) Reconstructed and clustered 3D skeletons using our
method. Different color represents different clusters/subspaces ob-
tained by our method. (c) Projection of the 3D-skeletons in the
local subspaces spanned by the three largest principal components
(PCs). Observe that the human poses stemming from different
actions adhere to separate local subspaces/clusters and the over-
all complex nonrigid motion lies in a union of subspaces. (Best
viewed in color).

itatively to describe motions with multiple “primitive” or
“simple” actions. For example, in the case of a human ob-
ject a motion sequence containing the subject raising their
hand, walking, sitting then standing would be considered
complex, whereas the individual actions themselves would
be considered simple (see Figure 1).

An obvious strategy, is to first group the sequence into
local clusters, and then apply Dai et al.’s approach to each

1



cluster. This approach is problematic from two perspec-
tives. First, one would have to perform cluster on the 2D
projected motion, rather than the preferred raw 3D motion
making the approach extremely sensitive to camera motion
and projection ambiguities. Second, one would need to also
solve the non-trivial problem of how many local clusters are
in the motion sequence.

It has been noted by Liu et al. [9], that when data is
drawn from a union of subspaces RPCA [4] actually treats
the data as being sampled from a single subspace. Since
the sum can be much larger than the union the specifics of
the individual subspaces are not well considered and so the
reconstruction may be inaccurate. We argue in this paper
that Dai et al.’s approach to NRSfM intrinsically makes this
same assumption and suffers from the same inaccuracies
when reconstructing complex motion. To address this prob-
lem we propose an approach to NRSfM aimed directly at
motion sequences stemming from the union of subspaces.
Our approach attempts to simultaneously learn the 3D re-
construction and the affinity matrix to cluster 3D nonrigid
motion into a union of subspaces The affinity matrix is
of great importance here as it naturally encodes the clus-
ter/subspace membership of each sample in the motion se-
quence.. We demonstrate impressive reconstruction and re-
sults over a series of 2D projected human action sequences.

2. Nonrigid Structure from Motion
In this section, we briefly review the methods on Non-

Rigid Structure from Motion (NRSfM), paying particularly
attention to the NRSfM method of Dai et al. [5] considered
by most in the vision community as state of art. Further-
more, we discuss the problems of Dai et al.’s approach on
complex nonrigid motion reconstruction.

Factorization Methods: Factorization approaches, first
proposed for recovering rigid structures by Tomasi and
Kanade in [11], were extended to handle non-rigidity in
the seminal work by Bregler et al. [3]. As the name sug-
gests, factorization approaches to NRSfM assumes that the
3D non-rigid structure is of intrinsically low rank. A natural
way of discovering this low rank is through the employment
of either Singular Value Decomposition (SVD) or Principal
Component Analysis (PCA) on the projected 2D structure.

In reality the projection matrix is never low-rank due
to measurement and sample error. Fortunately, there ex-
ists a suite of SVD/PCA style algorithms for discovering
the “clean” low-rank matrix in the presence of noisy data.
Candès et al. [4] recently proposed Robust PCA (RPCA)
which assume that the “clean” data lies in a single low di-
mensional subspace. RPCA solves the following objective,

argmin
D,E

‖D‖∗ + λ‖E‖` (1)

s. t. X = D + E,

where D is the “cleaned” low-rank matrix that models a
single low dimensional subspace, E is the residual noise
and λ > 0 is the error penalty parameter. The use of the
nuclear norm ‖ · ‖∗ on D is a convex approximation to
rank, and ‖E‖` on E is the norm on the error where ` = 1
and ` = 1, 2 denotes the convex approximations to sparse
or group sparse error respectively. An inherent advantage
of the objective in Equation (1) is that it is convex and can
be efficiently solved using Augmented Lagrangian Meth-
ods (ALMs) [2] allowing it to handle large scale problems
in both learning and vision.

Dai et al.’s Approach: Dai et al. proposed an elegant
“prior-free” solution to NRSfM [5] which adopted a sin-
gle low dimensional subspace for modeling the nonrigid 3D
shapes. The authors claim the approach to be prior-free in
the sense that it does not make any prior assumption about
the non-rigid structure (other than low rank)

argmin
X,E

‖X‖∗ + λ‖E‖` (2)

s.t. W = RX# + E .

Similar to RPCA, the objective in Equation (2) is convex
and can be efficiently solved using ALMs. One thing in
particular to note in Dai et al’s approach is that the nuclear
norm of X is being minimized, rather than X#. This is done
because the rank of X is bound by min(F, 3N) whereas the
rank of X# is bound by min(3F,N). Minimizing the rank
of X is preferable as it attempts to directly learn redundan-
cies between frames. In Dai et al.’s original method the
norm on E was assumed to be ` = 2, although other error
norms ` = 1 or ` = 1, 2 are possible as in RPCA. Similar
to traditional SFM, the camera matrix R in this method is
pre-computed from the 2D sequence given the rank of X
a priori. In practice, we can alternatively track the points
of the rigid background in the video, and use the standard
Tomasi & Kanade rigid SFM to estimate the cameras. Dai
et al.’s [5] work was extended by Lee et al. [7] to estimate
a better rotation matrix R by a generalized Procrustes anal-
ysis. However, due to the least-square nature of Lee et al.s
cost function, the reconstructed 3D structures are still mod-
eled as a single mode Gaussian distribution, or geometri-
cally speaking a single subspace. In other word, theres no
fundamental difference between Lee et al. and Dai et al. on
modeling the non-rigid motion. Lee et al.s experiments on
single action sequences show, in some cases (not all cases),
improvements over Dai et al.’s.

Complex Nonrigid Motion: The focus of our work in this
paper is reconstructing complex nonrigid motion from pro-
jections on monocular camera image sequences. Complex
nonrigid motion contains multiple primitives or simple ac-
tions, which are shown empirically tend to adhere to a union
of subspaces in Fig. 1 . When data is drawn from a union



of K subspaces S1, . . . ,SK , Liu et al. [9] has noted that the
feasible region of the RPCA solution is a convex envelop
over the underling multi-subspaces, which is a summation
of multi-subspaces. In other words, RPCA only treats the
data as being sampled from a single summation of sub-
spaces,

K∑
k=1

Sk = {x : x =

K∑
k=1

xk, xi ∈ Si} . (3)

Since the sum
∑K

k=1 Sk can be much larger than the union

∪Kk=1 Sk = {x : x ∈ Sk, for some 1 ≤ k ≤ K}, (4)

the specifics of the individual subspaces are not well con-
sidered and so the reconstruction may be inaccurate.

We argue that Dai et al.’s approach implicitly make a
similar summation subspace assumption as RPCA and suf-
fers from the same inaccuracy on reconstructing complex
nonrigid motion. Particularly, Dai et al.’s method seeks the
solutions on the boundary of the“loose” feasible region ( the
summation of individual subspaces) for modeling complex
nonrigid motion. Therefore, it gives inaccurate 3D recon-
struction as the combinations of the true 3D motion lying in
individual subspaces.

3. Clustering Subspaces: 2D vs. 3D

An obvious strategy is to apply Dai et al.’s approach in
conjunction with clustering 3D local subspaces. Specifi-
cally, one could apply a canonical clustering approach to
the 2D projected motion then apply Dai et al.’s approach to
each cluster. However, clustering nonrigid shapes into 3D
local subspaces using 2D projections is problematic due to
the inherent projection ambiguities. Further, if one wants to
successfully categorize whether two nonrigid shape frames
belong to the same 3D cluster/subspace, one first needs to
remove differences between these frames according to a 3D
rigid transform. This is trivial to do in 3D, but difficult to do
in 2D (with the exception of in plane 2D translation, rota-
tion and scale). We refer to this problem herein as relative
camera motion. Nonrigid shape registration requires sim-
ilar 3D nonrigid shapes to be as aligned as possible (zero
relative rigid camera motion). Unfortunately, 2D nonrigid
shape registration alone is unable to remove the 3D rigid
relative camera motion.

Experimental Setup: This section will highlight empiri-
cally the intrinsic difference of 2D and 3D nonrigid shape
clustering. We applied canonical subspace clustering [9]
on a human motion sequence taken from the CMU Mo-
Cap Dataset 1. The sequence we used (the 10th sequence

1More details can be found at http://mocap.cs.cmu.edu/

of subject 86) contains 3D points of the subject perform-
ing 4 different actions: walk, sit, stand and run (See Fig-
ure 2). We generated 2D projected sequences from the
3D points under an orthographic assumption W = RX#,
where X# ∈ R3F×N is the 3D coordinates of N points for
F frames, R ∈ R2F×3F is the block diagonal matrix of F
2 × 3 camera matrices, and W ∈ R2F×N are the 2D pro-
jections. We reserve X ∈ R3N×F as a reshaping of X#

(where the # has been omitted), the reasons for this distinc-
tion has been elucidated in Section 3. The 3D and 2D points
are respectively aligned by 3D and 2D affine transformation
with respect to the torso.

For clustering nonrigid shapes, we employed the Lo-
cal Rank Representation (LRR) [9] method to estimate the
affinity matrices for both 3D and 2D data (a full review of
subspace clustering is outside the scope of this paper, read-
ers are encouraged to inspect [9] for a full treatment). K-
means clustering was then applied to the affinity matrices
to obtain the final group/clusters [6].

To show the impact of camera motion on the 2D nonrigid
shape clustering results, we synthetically generated two se-
quences of 2D projected human motion using a static and
fast moving orthographic camera. The y-axis of the camera
was pointed to the center of the moving subject ensuring
that the camera was rotating around the subject.

Results: Clustering results can be seen in Fig. 2 with each
cluster denoted by different colors. We compared the 2D
cluster results of the static camera and moving camera to
the 3D cluster results (which we consider here as our ground
truth). The 2D clustering results show a substantial differ-
ence to 3D clustering in both the static and moving camera
cases. In Fig. 2 (b), the 2D LLR clustering for the static
camera depicts confusion between cluster 2 and cluster 4
possibly stemming from the projection ambiguity. In Fig. 2
(c) we see a larger departure from the 3D clustering result
due to the additional camera motion. This experiment vali-
dates our assumption that the 2D clustering is not effective
to build 3D local subspaces due to projection ambiguity and
relative 3D rigid camera motion.

4. Our Approach

Reconstructing 3D complex nonrigid motion from
2D projections on image sequences requires three inter-
dependent sub-tasks: (i) registration in 3D by removing
3D rigid relative camera motion; (ii) clustering 3D non-
rigid motion into a union of local subspaces; (iii) recon-
structing 3D nonrigid motion in each local subspaces. For-
tunately, task (i) is naturally accounted for in the NRSfM
formulation. As shown in Equation 2, camera rotation ma-
trix R “absorbs” all the 3D rigid relative camera motion.
In other words, NRSfM is able to align the 2D projections
in 3D space automatically.The problem of simultaneously

http://mocap.cs.cmu.edu/
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Figure 2. 3D LRR subspace clustering vs. 2D LRR subspace
clustering on complex nonrigid motion. The 2D projections are
generated by different camera motion. We show the 3D LRR sub-
space clustering and 2D LRR subspace clustering results from an
stationary camera and fast moving camera. In case of stationary
camera, there is no camera motion, the only difference is the pro-
jection ambiguity between 2D and 3D nonrigid shapes. In case
of fast moving camera, the 2D subspace clustering is corrupted by
camera motion. (Best viewed in color)

addressing tasks (ii) and task (iii) will now be described.

Drawing Inspiration from LRR: To recover the affinity
matrix associated with a union of subspaces model in the
presence of noise, Liu et al. proposed an alternative to
RPCA which they referred to as Low Rank Representation
(LLR) [9]. In this method the authors advocated solving for
the affinity matrix Z directly,

argmin
Z,E

‖Z‖∗ + λ‖E‖` (5)

s.t. X = XZ + E .

Affinity matrices are important when one wants to ascertain
if a dataset belongs to a union of subspaces as it encodes
the subspace/cluster membership of each sample in the en-
semble. The power of this approach stems from the fact that
it is directly estimating the affinity matrix Z from X in the
presence of noise, as opposed to the canonical approach of

first obtaining a cleaned version of X (through a procedure
like RPCA) from which the affinity matrix is then found
indirectly.

NRSfM in Union of Subspaces : Inspired by LRR, we
propose a NRSfM strategy for simultaneously solving for
the 3D structure X and the affinity matrix Z

arg min
X,Z,E

‖Z‖∗ + γ‖X‖∗ + λ‖E‖` (6)

s.t. X = XZ

W = RX# + E,

where γ and λ are penalty parameters for ‖X‖∗ and ‖E‖`
respectively. Equation (6) has two constraints: (i) X = XZ
(which we shall refer to as the subspace clustering con-
straint), and (ii) W = RX# + E (which we shall refer
to as the NRSfM constraint). The subspace clustering con-
straint automatically enforces the union of subspaces struc-
ture of X with a low-rank coefficients matrix Z, while the
NRSfM constraint performs 3D reconstruction and registra-
tion from the 2D projections W to the 3D points X. We are
simultaneously reconstructing and clustering the 3D com-
plex nonrigid motion X in a union of subspaces through the
low rank coefficients/affinity matrix Z.

Solving Equation 6: Equation (6) can be efficiently opti-
mized using Augmented Lagrangian Methods (ALMs) [2].
In equation 6, matrices X and X# contain the same ele-
ments but with different organization. We introduced ma-
trix H = X to connect X# and X, and (H = X) subse-
quently is used as the 3rd constraint appended to equation
6. The complete cost function becomes

min
X,Z,E,H

L = ‖Z‖∗ + γ‖X‖∗ + λ‖E‖1

+ < Γ1,X−XZ > +
µ1

2
‖X−XZ‖2F

+ < Γ2,W −RH# −E >

+
µ2

2
‖W −RH# −E‖2F

+ < Γ3,X−H > +
µ3

2
‖X−H‖2F . (7)

where Γ1 ∈ R3N×F ,Γ2 ∈ R3F×N are the Lagrange multi-
plier matrices and µ1, µ2 are the penalty parameters,X# ∈
R3F×N is a reshape matrix of X ∈ Re3N×F .

The variables {X,Z,E,H} are solved by the following
subproblems:

Xk+1 = argmin
X
L(Xk,Z,E,H), (8)

Zk+1 = argmin
Z
L(X,Zk,E,H), (9)

Ek+1 = argmin
E
L(X,Z,Ek,H), (10)

Hk+1 = argmin
H
L(X,Z,E,Hk) (11)



where k is the index of iterations. The reader can refer to
the supplementary material for the detailed algorithm.

5. Experiments
We evaluated our method for complex nonrigid motion

using: (i) synthetic camera 2D projections generated from
the 3D CMU Motion Capture (MoCap) dataset 2, and (ii)
real-world 2D projections stemming from 2D point-tracks
of videos in the Utrecht Multi-Person Motion (UMPM)
benchmark [1], where the 3D ground-truth joints location
is available through the mounted motion sensors.

On both datasets, we performed two sets of experiments:
(i) subspace clustering: assessing the ability of our ap-
proach to build the union of 3D subspaces, this is the key
indicator of the accuracy of the estimated affinity matrix;
(ii) 3D reconstruction: qualitatively and quantitatively eval-
uation of our approach against Dai et al.’ summation of
subspaces approach on the ground truth.

Subspace Clustering: Subspace clustering splits the
frames in a sequence into several subsets where the non-
rigid shapes in each subset form a local subspace. Testing
the clustering accuracy is the simplest way to test if our ap-
proach produces the union of subspace as the 3D ground
truth.

To evaluate the robustness to camera motion, we first
performed a synthetic experiment using the 10th sequence
of subject 86 from the CMU MoCap dataset. This is the
longest sequence that simultaneously includes several dif-
ferent actions: walking, running, jumping and sitting and
the continuous transition among the actions. We generated
several 2D projections of the true 3D joint sequences using
synthetic camera sequences under different moving speed.
The synthetic camera is an orthographic camera with the y-
axis points to the center of the moving object. The angle
speed (the relative projection direction with respect to the
subject) of the camera varies from 0.1◦/frame to 8.0◦/frame.

We compared our approach against the LRR subspace
clustering results on the synthesized 2D sequences, and on
the ground truth 3D clustering. In each case, the cluster-
ing results are obtained from the affinity matrix Z ∈ Rn×n,
where the element zij = 0 if the ith and the jth samples are
not belong to the same subspace, and if zij > 0, the same
subspace. The success method for clustering the motion
subspace should produces the similar Z to the LLR on the
true 3D shapes. To measure the clustering accuracy, we per-
form K-means clustering on the affinity matrix Z obtained
by both LLR on 2D projections and our method on 2D pro-
jections to get the final cluster. We followed [8] to estimate
the subspace number K (cluster number) using the soft-
thresholding approach. By tuning K, each cluster/subspace

2http://mocap.cs.cmu.edu
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Figure 3. Frame-based clustering accuracies on the same sequence
(the 10th sequence of subject 86 in CMU Mocap database) under
different camera angle speeds:0.1◦/frame - 8.0◦/frame. The blue
bars are direct clustering on the projected 2D data. The red bars
are results of our method, which is robust to camera motion as the
direct 3D clustering(Best viewed in color).

contain different granularity of the actions. However, the
effect of K on the 3D reconstruction accuracy is not notice-
able. The clustering accuracy is computed as the ratio of
correct clustered nonrigid shapes (use the 3D clustering re-
sults as ground truth). The higher the better subspace clus-
tering performance.

Fig. 3 shows the variation of clustering accuracy for 2D
LRR clustering and our method versus the camera motion
speeds. Observe that in Fig. 3, the clustering accuracy of
the 2D clustering (blue bars in Fig. 3) not only is lower than
the our method on clustering (blue bars in Fig. 3), but also
decreases when the camera speed increases. In other word,
the 2D subspace clustering is very sensitive to camera mo-
tion, more involved camera motion leads to less accurate
2D subspace clustering. Our method, by building the 3D
clusters on the reconstructed 3D motion, (the red bars in
Fig. 3) produces similar clustering results as the direct 3D
LLR subspace clustering based solely on the 2D projected
sequence.

The above evaluation is consistent with the results on
real 2D sequences from video. As a simple qualitative il-
lustration, we take the “p1 grab 3” video from the UMPM
Benchmark Dataset. This video shows a person performs 3
actions around a table: walk, grab and stand. The data con-
tains both the 2D joints from the video and and 3D joints
sequence from the motion sensors. Similar to the synthetic
experiment above, in Fig. 4, we compared the affinity ma-
trix learned by our approach with the LLR subspace clus-
tering on both 2D points (denoted by “2D Clustering”), and
3D joints (denoted by “3D Clustering”). Fig. 4 (a) shows
the affinity matrix and the temporal relation of the frames
by ”3D Clustering” (ground truth). The “2D Clustering” (b)
produce poor cluster assignment of the frames in compari-
son to ”3D Clustering”. Our approach (c) achieves similar
results to the 3D subspace clustering, but only employs the
2D point projections during clustering.

For quantitative explantation, we used all complex

http://mocap.cs.cmu.edu
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Figure 4. Comparison of human poses clustering bar and affinity
matrix on the human action sequence”p1 grab 3” from the UMPM
database [1]. This sequence includes 3 actions: walk (blue), grab
(green), stand (red). (a) shows the 3D subspace clustering bar and
affinity matrix. (b) and (c) show the clustering bar and affinity
matrix by applying LLR subspace clustering and our method to
2D data. Our approach (c) get similar results as the 3D subspace
clustering (a) but only using 2D points tracked in the videos. (Best
viewed in color)
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Figure 5. Clustering accuracy on the selected complex nonrigid
motion sequences from UMPM database (using 3D clustering re-
sults as ground truth) [1]. The blue bars are direct clustering on the
projected 2D data. The red bars are results of our method, which
is similar to the direct 3D clustering(Best viewed in color).

nonrigid motion sequences from the UMPM bench-
mark dataset. Those sequences include 8 sequences
(“p1 table 2”, “p1 grab 3”, “p1 chair 2”, “p1 staticsyn 1”,
“p4 free 11”, “p1 orthosyn 1”, “p3 ball 1”, “p4 meet 2”),
which cover a large variety of daily human actions with

strong changes in human poses. Fig 5 shows the quantita-
tive results on clustering accuracy (3D LRR subspace clus-
tering as ground truth) for all sequences. As the qualitative
evaluation above, we use 3D LRR subspace clustering re-
sults as the ground truth to compute the clustering accuracy.
For all sequences in Fig 5, the 2D LRR subspace clustering
results (blue bars) is strongly different to the 3D LRR sub-
space clustering results due to the projection ambiguities
and relative 3D rigid camera motion. Our approach (red
bars) achieves similar clustering performance to 3D LLR
subspace clustering for clustering nonrigid motion into lo-
cal 3D subspaces solely on 2D

Remarks: An interesting observation from our approach
shows that, the 3D shapes reconstructed and clustered in
each subspace generally form meaningful action primitives.
In Fig. 4 (c), the bar segments labeled as blue are walk,
the green segments are grab, the red segment is stand. The
impressive thing to note here, is that this unsupervised se-
mantic segmentation is coming from 2D projected motion
rather than raw 3D motion.

3D Reconstruction: Reconstructing 3D complex nonrigid
motion from 2D projections is the final goal of our work.
We evaluate the performance of our method on 3D com-
plex nonrigid motion reconstruction against the Dai et al.’s
method on two sets of data from CMU Mocap and UMPM
benchmark quantitatively.

We first select 8 complex nonrigid motion sequences per-
formed by subject #86 in CMU Mocap data. Each of these
sequences consists of different types of nonrigid motions.
As either 2D videos or projections are not available in the
CMU Mocap data, we generated several 2D sequences by
synthesizing a slow moving orthographic camera. The syn-
thetic camera circled the body at the the camera angle speed
0.75π/sec with the y-axis of the camera pointing at the
center of the body. At each time instance, 2D points are
produced by projecting the original 3D nonrigid motion se-
quence to the synthetic camera.

This is a slow camera motion case. We adopted this slow
camera motion for two reasons: Firstly, in most real world
applications, the camera are slowly and smoothly moving;
Secondly, 3D motion reconstruction from 2D projection
generated by slow moving camera is very challenging for
the very limited view. Reviewers are encouraged to read the
literature [10, 12] for more details on explanation of poor
reconstruction in slow moving camera case.

Fig. 6 shows the normalized 3D reconstruction error of
Dai et al.’s method and our method 6 on the synthetic 2D
data. As expected, our method performs inherently better
than Dai et al.’s approach for those complex nonrigid mo-
tion sequences by employing a union of subspaces.

The above evaluation is also consistent with the results
on real world 2D sequences. We test our method against
Dai et al.’s approach on the 2D sequences in real world
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Figure 6. Comparison on the normalized 3D reconstruction error
by single subspace approach (Dai et al. 2012) and our proposed
union of subspace approach on the synthetic 2D data from CMU
Mocap data. We generated the 2D points by a slow moving or-
thographic camera, the 3D points are reconstructed by Dai et al.’s
approach and our approach with assuming known the ground truth
camera projection matrix. The 3D reconstruction error is normal-
ized by the 3D ground truth data (Best viewed in color).
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Figure 7. Comparison of normalized 3D reconstruction error be-
tween our approach (red bars) and Dai et al. [5] (blue bars) on com-
plex nonrigid motion sequences which has several human actions
and interactions with objects from the UMPM database [1].(Best
viewed in color)

data: UMPM Benchmark. We use the same sequences as
the subspace clustering experiments from the real world
data set UMPM benchmark [1]. There are 8 sequences
(“p1 table 2”, “p1 grab 3”, “p1 chair 2”, “p1 staticsyn 1”,
“p4 free 11”, “p1 orthosyn 1”, “p3 ball 1”, “p4 meet 2”)
selected to evaluate our method. Those sequences are con-
sidered as complex nonrigid motion for containing multi-
ple daily human actions and human object interactions with
strong changes in poses/shapes. The camera relative motion
in those real world sequence are all slow and smooth, which
is more challenging for NRSfM methods. Fig. 7 shows the
comparison of our method against Dai et al.’s approach on
reconstructing those selected complex nonrigid motion se-
quences. As expected, our method performs substantially
better than Dai et al.’s approach for reconstructing those
complex nonrigid motion sequences with slow camera mo-
tion.

To illustrate the performance of our method against
Dai et al.’s method, we visualize the 3D reconstruction

and subspace clustering results in Fig. 8( “p1 chair 2” and
“p1 table 2” ). For both sequences, we visualized the skele-
tons in the sub-sequences (a) and (b) respectfully. The col-
ors of the skeletons are correspond to the same cluster in
the clustering bars. The ground-truth 3D skeletons are in
gray, and respectively overlapped with the reconstructed 3D
skeletons (cyan ) using Dai et al. and our method. As shown
in Fig. 8, “2D Clustering” is heavily affected by relative
camera motion of the same human action. Our approach,
however, not only reconstructs the most accurate 3D non-
rigid motion but also achieves camera-view-invariant 3D
subspace clustering similar to the subspace clustering on
ground truth 3D data (See more video visualizations in the
supplementary materials). It is also interesting to notice
in Fig. 8 that different actions are clustered into local sub-
spaces in 3D. These results could potentially be applied to
unsupervised 3D action segmentation using 2D projections
in the future work.

Discussion:
Similar to the previous work on NRSfM, our method is

also limited by the reconstructability problem [10]. When
the relatively motion between camera and human body is
extremely small, Eq. 6 is an ill-posed problem. In those
cases, robust 3D reconstruction requires more prior infor-
mation, such as articulated length, connections, pre-learned
shape basis or trajectory basis.

6. Conclusion
We proposed a novel strategy for simultaneously per-

forming estimating the 3D structure, and subspace/cluster
affinity matrix from an ensemble of 2D projections. We
have motivated our approach based on the insight that com-
plex nonrigid motion, such as sequences contains different
types of human actions, can be modeled as a union of sub-
spaces. We demonstrated the superiority of our approach in
comparison to Dai et al.’s state of the art NRSfM approach
for reconstructing complex nonrigid motion on both syn-
thetic data and real-world data.
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