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Abstract

Recent studies show that mental disorders change the
functional organization of the brain, which could be in-
vestigated via various imaging techniques. Analyzing
such changes is becoming critical as it could provide new
biomarkers for diagnosing and monitoring the progression
of the diseases. Functional connectivity analysis studies the
covary activity of neuronal populations in different brain
regions. The sparse inverse covariance estimation (SICE),
also known as graphical LASSO, is one of the most impor-
tant tools for functional connectivity analysis, which esti-
mates the interregional partial correlations of the brain. Al-
though being increasingly used for predicting mental disor-
ders, SICE is basically a generative method that may not
necessarily perform well on classifying neuroimaging data.
In this paper, we propose a learning framework to effec-
tively improve the discriminative power of SICEs by taking
advantage of the samples in the opposite class. We formu-
late our objective as convex optimization problems for both
one-class and two-class classifications. By analyzing these
optimization problems, we not only solve them efficiently in
their dual form, but also gain insights into this new learn-
ing framework. The proposed framework is applied to an-
alyzing the brain metabolic covariant networks built upon
FDG-PET images for the prediction of the Alzheimer’s dis-
ease, and shows significant improvement of classification
performance for both one-class and two-class scenarios.
Moreover, as SICE is a general method for learning undi-
rected Gaussian graphical models, this paper has broader
meanings beyond the scope of brain research.

1. Introduction

Modern neuroscience has greatly benefited from numer-
ous imaging techniques that enable non-invasive investiga-
tions into the anatomy and functions of the brain. In recent
years, we have witnessed an increasing interest and pace of
development in imaging-based brain connectivity analysis

([2, 3]), which aims at studying how anatomically segre-
gated brain regions are functionally connected for cognitive
or other tasks. In such analysis, brain images are partitioned
into “nodes” of interest and the connections between nodes
are estimated from imaging-based features. Brain connec-
tivity analysis has been extensively employed in analyzing
mental disorders, such as the Alzheimer’s disease [6, 12, 7]
and Schizophrenia [4], among others. When affected by
these diseases, some interregional brain connections may
be interrupted and the brain may be reorganized. Mining
such changes from neuroimaging data can provide crucial
biomarkers for the diagnosis of the diseases, and enrich our
knowledge about the disease mechanisms.

One important type of brain connectivity, known as
functional connectivity, studies the covary activity of neu-
ronal populations in different brain regions. A large body
of research work models the functional connectivity by
correlation-based statistics [12, 7, 6], and has been reported
in [10] to be relatively more sensitive for detecting net-
work connections than lag-based (such as Granger causality
or dynamic causal models) or higher-order statistic-based
methods. Early methods of correlation analysis use sample-
based convariance matrix to estimate the pair-wise regional
correlation, which cannot factor out the effects of other re-
gions and hence has been gradually replaced by partial cor-
relations. Partial correlations are usually estimated via the
inverse covariance matrix (ICOV), as they correspond to the
off-diagonal entries of the ICOV [8]. However, the accuracy
of the maximum-likelihood estimation (MLE) of ICOV is
notoriously sensitive to the number of available samples.
To deal with this problem, in [7] it is proposed to regular-
ize MLE with network sparsity by imposing a constraint to
the l-1 norm of the ICOV. This method is termed sparse
inverse covariance estimation (SICE), or called graphical
LASSO [5, 13] in pattern recognition. By controlling the
number of zero entries, SICE allows a reliable estimation of
inverse covariance matrix even when the number of samples
is small. This favorable property makes SICE the method of
choice to learn the structure of undirected Gaussian graph-
ical models. Incidentally, such models are required in the
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analysis of brain functional connectivity.
Although SICE is often used to investigate the predom-

inant functional connectivity patterns in the studied popu-
lations, there is an evident increase of applications that use
functional connectivity as an endophenotype for the predic-
tion / classification of mental disorders [12, 7]. Two kinds of
approaches have been employed for this purpose: i) extract-
ing graph-based features (such as the local clustering coef-
ficients) from SICE so that these features could be used by
classifiers such as Support Vector Machines (SVMs) [12];
and ii) directly using SICE for classification [7]. The suc-
cess of both approaches depends on whether the SICE con-
tains sufficient discriminative information. However, in its
original formulation SICE is a generative method that learns
the ICOV to model a single class rather than discriminating
between two classes. Therefore, some subtle but critical
network differences may be inappropriately ignored, lead-
ing to inferior classification performance.

In this paper, we propose a learning framework to
achieve SICE with improved discriminative power and ap-
ply it for brain network classification tasks. To the best of
our knowledge, this is the first time discriminative learning
has been incorporated into SICE. In a broader sense, our
work has significance beyond the scope of brain research,
because SICE is a widely used model in pattern recogni-
tion. This paper has the following contributions. First, we
propose a learning framework to improve the discrimina-
tive power of SICE by taking advantage of the availabil-
ity of samples in the opposite class. We formulate our
discriminative learning objectives as convex optimization
problems for both one-class (with negative samples avail-
able) and two-class classifications. Second, we carefully
study our optimization problems and demonstrate how to
efficiently solve them in their dual form. By converting
the primal problems to dual problems, we can take full
advantage of existing efficient SICE solvers for our dis-
criminative learning tasks. Moreover, formulating in dual
form also gives us more insights into our proposed learning
framework. Third, we apply our proposed framework to
analyzing brain metabolic covariant networks constructed
from FDG (fluorodeoxyglucose)-PET (Positron Emission
Tomography) images for the prediction of Alzheimer’s dis-
ease. Our learned SICEs show significant improvement
of discriminative power with better classification perfor-
mances in both one-class and two-class classification tasks,
indicating the effectiveness of our method.

2. Background

2.1. From image to brain connectivity

Decades of neuroimaging research shows that many
mental disorders are associated with subtle abnormalities
distributed over the brain rather than a damage of an indi-

vidual brain region, implying the alteration of interactions
between neuronal systems. The interactions of brain re-
gions (referred as brain connectivity or brain network) could
be studied by brain images at macroscopical level, such as
functional magnetic resonance imaging (fMRI) and PET,
with theoretical graphical models. The nodes of the network
model correspond to clustered imaging voxels that are de-
termined by predefined brain parcellations (atlas) or statis-
tical methods such as the independent component analysis,
etc. Each node is characterized by features extracted from
the corresponding voxels, for example the averaged radio-
tracer uptake for PET images. There could be three types
of connections between two nodes, namely the anatomical,
functional or effective connectivity. In this paper, we focus
on the functional connectivity, which is basically a statisti-
cal concept, measuring the covary patterns of brain regions.
In functional connectivity analysis, the connection between
two nodes is commonly determined by the correlation or
partial correlation of their imaging-based features. The lat-
ter is more advantageous because when the partial correla-
tion becomes zero, the corresponding two regions are con-
ditionally independent given all other regions considered.

2.2. Sparse inverse covariance estimation

Partial correlation corresponds to the off-diagonal en-
tries of ICOV. A reliable estimation of partial correlation
calls for a reliable estimation of ICOV. The latter however
often requires a sufficiently large number of training sam-
ples. Here we briefly review a representative work termed
as sparse inverse covariance estimation (SICE), or graphical
LASSO, which can circumvent this problem by introducing
l-1 norm regularization into the estimation of ICOV. SICE is
proposed as a general pattern recognition method [5], which
is introduced to analyze brain network in [7].

Let X denote a set of n samples composed of imaging-
based features from p brain regions, and Θ the inverse co-
variance matrix to be estimated from X. Assuming the sam-
ples following normal distribution, SICE solves

min
Θ�0

− log |Θ|+ tr(SΘ) + λ‖Θ‖1, (1)

where S is the sample-based covariance matrix estimated
from X. The symbols det(·) and tr(·) denote the determi-
nant and the trace of a matrix. The symbol ‖.‖1 denotes the
sum of the absolute values of all entries in a matrix, and λ is
a user-defined parameter. Minimizing − log |Θ| + tr(SΘ)
maximizes the log-likelihood of Θ, which is further regular-
ized by the sparseness requirement of Θ through minimiz-
ing ‖Θ‖1. The constraint Θ � 0 ensures Θ to be positive
semi-definite.

The sparseness regularization used in SICE correlates
with the fact that one brain region predominately interacts
with only a small number of other regions. SICE can better
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recover the zero entries in Θ than the maximum-likelihood,
and becomes a key tool for structure estimation of undi-
rected Gaussian graphical models. Eqn.(1) is a convex op-
timization problem. Various methods have been developed
to efficiently solve it, such as [13, 5, 1], just name a few.

3. Proposed methods
As mentioned above, although the inverse covariance

matrix has been increasingly used as an endophenotype for
predicting or classifying the patient group with mental dis-
orders, SICE is basically a generative method, focusing on
modeling instead of discriminating the data. Therefore it
may not perform satisfactorily in classification tasks, es-
pecially for subtle but critical group differences, which,
however, is often encountered in neuroimaging data. In
this paper, we propose a learning framework to improve
the discriminative power of SICEs for better classification.
Our framework covers the scenarios of both one-class (with
some negative samples) and two-class classifications, ex-
plained in the following sections, respectively.

Some symbols and notations that are often used in this
paper are defined as follows.

Let fSICE(Θa) = − log |Θa| + tr(SaΘa) + c1‖Θa‖1
denote the objective function to learn the sparse inverse co-
variance matrix Θa for class a. Sa is the sample-based co-
variance matrix defined as Sa = n−1a

∑na

i=1(xia−µa)(xia−
µa)>, where xia denotes the ith sample in class a and µa is
the sample-based class mean. Let (xia−µb)

>Θb(x
i
a−µb)

denote the Mahalanobis distance of xia from class b. This
distance can be written in a compact form as

tr(Ti
a,bΘb) = (xia − µb)

>Θb(x
i
a − µb), (2)

where Ti
a,b , (xia − µb)(x

i
a − µb)

>.

3.1. Discriminative learning of Θa (or Θb)

We consider the scenario of one-class classification first.
In this scenario, we are only interested in estimating the
SICE model for one class, and classify a new subject by
estimating its distance (or likelihood) to this class. When
some samples in the opposite class are also available, we
could improve the discriminative power of the one-class
SICE by taking advantage of these negative samples. One-
class classification may be preferred than two-class classifi-
cation when the following concerns arise: i) for one of the
two class, there are insufficient samples for estimating a re-
liable SICE; or ii) the patient group might be too divergent
to reasonably follow a Gaussian distribution. One potential
application of one-class classification is to detect abnormal
subjects from the model purely built upon a large number
of healthy subjects.

Without loss of generality, let’s assume class a is the
“normal” class and class b is the “abnormal” class. We are

only interested in estimating Θa for classification, but tak-
ing advantage of the samples in class b to improve the dis-
criminative power of Θa. Our discriminative learning em-
ploys the following criteria: i) the samples in class b should
be away from the distribution P (x|µa,Θa); ii) the samples
in class a should be close to P (x|µa,Θa); and iii) the esti-
mation of Θa should respect the distribution of class a. The
following objective function is therefore minimized:

min
ρ,ξ,η,Θa�0

fSICE(Θa) + c2

[
c3ξ
>1 + c4η

>1− ρ
]

(3)

s.t. tr(Ti
b,aΘa) ≥ ρ− ξi, i = 1, · · · , nb

tr(Ti
a,aΘa) ≤ ρ+ ηi, i = 1, · · · , na
ξi ≥ 0, i = 1, · · · , nb
ηi ≥ 0, i = 1, · · · , na.

As shown, we require the Mahalanobis distance of any
xib to class a, i.e., tr(Ti

b,aΘa), to be larger than a mar-
gin ρ, and the Mahalanobis distance of any xia to class
a, i.e., tr(Ti

a,aΘa), to be smaller than the margin ρ. To
deal with difficult separation, we employ a soft-margin ap-
proach that allows misclassification with the slack variables
ξ = [ξ1, · · · , ξnb

]> and η = [η1, · · · , ηna ]>. To improve
the classification performance, we minimize the misclassifi-
cation as well as maximizing the separation margin. Mean-
while, we also maximize the log-likelihood of Θa by min-
imizing fSICE(Θa). The user-defined parameters c2, c3
and c4 balance the corresponding terms in the objective
function, which are suggested to be set proportionally to

1√
na×nb

, 1
nb

and 1
na

, respectively.
It is not difficult to see that Eqn.(3) is a convex opti-

mization ( fSICE(Θa) is convex to Θa; tr(Ti
b,aΘa) and

tr(Ti
a,aΘa) in the constraints are linear functions of Θa),

which guarantees a global optimality. As is known, a con-
vex optimization could be solved either in its primal or dual
form. Here we choose to solve the dual form due to the
following reason. In the literature, efficient algorithms have
been proposed to minimize fSICE(Θ), the objective func-
tion of SICE. We find that when formulating Eqn.(3) into
its dual form, we only need to iteratively solve SICE with
modified empirical covariance matrices. This not only al-
lows us to take full advantage of those efficient algorithms,
but also gives us more insights into our optimization prob-
lem. The dual form of Eqn.(3) is derived as follows.

The Lagrangian L(ρ, ξ,η,Θa;α,β,γ,λ) is

fSICE(Θa) + c2

[
c3ξ
>1 + c4η

>1− ρ
]

(4)

+

nb∑
i=1

αi(ρ− ξi − tr(Ti
b,aΘa))−

nb∑
i=1

γiξi

+

na∑
i=1

βi(−ρ− ηi + tr(Ti
a,aΘa))−

na∑
i=1

λiηi,
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where the multipliers αi, βi, γi, λi ≥ 0,∀i. By manipula-
tion, the Lagrangian L can be rearranged as

− log |Θa|+ tr
[
S̄(α,β)Θa

]
+ c1‖Θa‖1 (5)

+

nb∑
i=1

(c2c3 − αi − γi)ξi +

na∑
i=1

(c2c4 − βi − λi)ηi

+

(
nb∑
i=1

αi −
na∑
i=1

βi − c2

)
ρ,

where

S̄(α,β) , Sa +

na∑
i=1

βiT
i
a,a −

nb∑
i=1

αiT
i
b,a. (6)

Computing the derivatives of the Lagrangian with respect
to the primal variables ξi, ηi and ρ and letting them vanish
gives

∂L

∂ξi
= c2c3 − αi − γi = 0, (7)

∂L

∂ηi
= c2c4 − βi − λi = 0,

∂L

∂ρ
=

nb∑
i=1

αi −
na∑
i=1

βi − c2 = 0.

Substituting Eqn.(7) into Eqn.(5) and with some ma-
nipulations, the Lagrange dual function g(α,β) ,
infρ,ξ,η,Θa�0 L(ρ, ξ,η,Θa;α,β,γ,λ) can be derived as

g(α,β) = inf
Θa�0

(
− log |Θa|+ tr[S̄(α,β)Θa] + λ1‖Θa‖1

)
,

(8)
such that α>1 − β>1 = c2, 0 ≤ αi ≤ c2c3 ∀i, and 0 ≤
βi ≤ c2c4 ∀i.

As the primal problem in Eqn.(3) is convex, it can be
equivalently solved by maximizing its dual in Eqn.(8) as

max
α,β

inf
Θa�0

(
− log |Θa|+ tr

[
S̄Θa

]
+ λ1‖Θa‖1

)
(9)

s.t. α>1− β>1 = c2

0 ≤ αi ≤ c2c3, i = 1, · · · , nb.
0 ≤ βi ≤ c2c4, i = 1, · · · , na.

It is not difficult to see that the inner minimization prob-
lem is just a SICE problem, with the mere difference that
Sa is now replaced with S̄. For any given α and β, the in-
ner minimization can be efficiently solved by off-the-shelf
packages for graphical LASSO.

Solving the dual problem has additional benefit that it
makes the discriminative learning of SICE easier to under-
stand. As shown, it can be regarded as optimizing the α,β
values to maximize the minimum of the inner SICE prob-
lem. The value of αi or βi indicates the importance of each

xib or xia in this optimization. Specifically, the KKT condi-
tions of Eqn.(9) are

αi
(
ρ− ξi − tr(Ti

b,aΘa)
)

= 0, (10)

βi
(
−ρ− ηi + tr(Ti

a,aΘa)
)

= 0,

γiξi = 0, i = 1, · · · , nb,
λiηi = 0, i = 1, · · · , na.

It can be seen that the samples xib with αi > 0 and the
samples xia with βi > 0 are “support samples”. Their Ma-
halanobis distances from class b are exactly at the boundary,
with the value of ρ− ξi or ρ+ ηi.

We can also compute the optimal value of the pri-
mal variable ρ by looking for the samples whose optimal
αi (i = 1, · · · , nb) does not reside at the boundaries (i.e.,
0 < αi < c2c3). According to Eqn.(7) and Eqn.(10), for
such an αi, we can infer that: i) ρ− ξi − tr(Ti

b,aΘa) = 0,
ii) γi 6= 0 and ξi = 0. Therefore, ρ can be worked out as
tr(Ti

b,aΘa) for each i. The similar result can be obtained
for βi (i = 1, · · · , nb). In practice, to obtain a reliable
estimate, the average of all the (na + nb) values of ρ is cal-
culated for use.

3.2. Joint learning of Θa and Θb

The scenario of two-class classification is more tradi-
tional in SICE-based applications. In this scenario, we
learn SICEs for both classes and assign a new subject to
the class with higher log likelihood. In traditional methods,
the SICEs Θa and Θb are learned separately for class a and
class b, respectively. As mentioned before, this may inad-
vertently ignore subtle but critical network structures that
distinguish the two classes. Therefore, we jointly learn Θa

and Θb to overcome this drawback. Similarly to the sce-
nario of one-class classification, we require i) for each sub-
ject in class a, its Mahalanobis distance to class a should
be smaller than its Mahalanobis distance to class b; ii) for
each subject in class b, its Mahalanobis distance to class a
should be larger than its Mahalanobis distance to class b;
and iii) the distribution of both class a and class b should be
respected. Specifically, we optimize the following objective
function:

min
ρ,ξ,η;Θa,Θb�0

fSICE(Θa) + fSICE(Θb) + c2
[
c3ξ
>1 + c4η

>1− ρ
]

(11)

tr(Ti
b,aΘa)− tr(Ti

b,bΘb) ≥ ρ− ξi, i = 1, · · · , nb,

tr(Ti
a,aΘa)− tr(Ti

a,bΘb) ≤ ρ+ ηi, i = 1, · · · , na,
ξi ≥ 0, i = 1, · · · , nb,
ηi ≥ 0, i = 1, · · · , na.

As before, the variable ρ is the margin and ξi and ηi are
the slack variables. Minimizing fSICE regularizes the solu-
tions so that they also reasonably represent the data. Again,
this is a convex optimization problem. Using the techniques
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described in the one-class scenario, we can obtain the dual
problem of this optimization problem as

max
α,β

inf
Θa,Θb�0

[ (
− log |Θa|+ tr[S̄aΘa] + λ1‖Θa‖1

)
(12)

+
(
− log |Θb|+ tr[S̄bΘb] + λ1‖Θb‖1

) ]
s.t. α>1− β>1 = c2

0 ≤ αi ≤ c2c3, i = 1, · · · , nb.
0 ≤ βi ≤ c2c4, i = 1, · · · , na.

where

S̄a , Sa +

na∑
i=1

βiT
i
a,a −

nb∑
i=1

αiT
i
b,a, (13)

S̄b , Sb −
na∑
i=1

βiT
i
a,b +

nb∑
i=1

αiT
i
b,b.

Note that in the inner minimization, the components for Θ1

and Θ2 are totally separable. This leads to two individual
SICE optimization problems, which can be readily solved
as previously noted.

There are two possible ways to extend our method to
multi-class: 1) for each class, treat all the samples in the
other classes as negative samples and learn the SICE using
our one-class formulation in Eqn.(3); and 2) Our two-class
formulation in Eqn.(11) naturally extends to multi-class by
including the SICE terms for all classes and adding corre-
sponding linear constraints similarly to those in Eqn.(11).

3.3. Implementation Issues

Both the one-class and two-class discriminative learning
methods can be formulated as

max
α,β

J(Θ;α,β) (14)

s.t. α>1− β>1 = c2

0 ≤ αi ≤ c2c3, i = 1, · · · , nb.
0 ≤ βi ≤ c2c4, i = 1, · · · , na,

where J(Θ;α,β)) = min
Θa

fSICE(Θa; S̄(α,β)) for the

one-class case, and J(Θ) = min
Θa

fSICE(Θa; S̄a(α,β)) +

min
Θb

fSICE(Θb; S̄b(α,β)) for the two-class case. We use

matlab “fmincon”-sqp (sequential quadratic programming)
as our solver to find the optimal α and β. For each func-
tion evaluation of J(Θ;α,β)) within “fmincon”, we solve
either one SICE or two SICE optimization problems with
the modified S. Multiple efficient algorithms have been
proposed to solve SICE (or Graphical LASSO). In this pa-
per, we use alternating directions method of multipliers
(ADMM) [1] for the solution. ADMM has recently received
a lot of attentions due to its fast convergence of optimiza-
tion. We use the ADMM based graphical-LASSO solver

in [1], which usually converges within 20 iterations and in
each iteration we only need to compute the analytical solu-
tions of two sub-optimization problems (please refer to [1]
for more details). Typically, it takes a desktop computer
with 3.0GHz CPU and 8.0G RAM only 0.04s to estimate a
40× 40 SICE from 50 samples by ADMM. The whole dis-
criminative learning process usually takes less than 2 min-
utes for the one-class case, and 6 minutes for the two-class
case. Note that, increasing the network dimension leads
to solving a larger SICE (which can be well-handled by
the ADMM solver), but does not introduce additional con-
straints into Eqn.(14). In this way, we can efficiently solve
our discriminative learning problems.

4. Experiment

In our experiment, the proposed discriminative SICE
methods (both the one-class and the two-class formula-
tions) are tested by classifying brain metabolic networks
constructed from FDG-PET images for the prediction of
Alzheimer’s disease (AD). AD is the most prevalent demen-
tia, characterized by cognitive and intellectual deficits.

4.1. Data Preparation

We download 163 FDG-PET images from the open-
accessible database of Alzheimer’s Disease Neuroimaging
Initiative (ADNI)1, and form them as two data sets for our
experiment: i) PET-AD data set including 51 AD patients
and 53 normal controls (NC); and ii) PET-MCI data set in-
cluding 60 mild cognitive impairment (MCI) patients and
52 NCs. MCI is an intermediate stage of brain cognitive de-
cline between normal ageing and AD. In addition to the PET
images, we also download their accompanying T1-weighted
MR images for spatial normalization described below. We
conduct experiments to predict AD and MCI from NC.

Before the brain functional networks could be con-
structed, the PET images have to be spatially normalized for
atlas-based brain parcellation. The normalization includes:
i) an affine registration (using FSL package) of each PET
image to its accompanying T1-weighted MR image, and ii)
a deformable registration (using HAMMER package 2) of
each T1-weighted MR image to a given template MR im-
age, for which predefined brain ROI parcellation is avail-
able. After normalization, each PET image is brought to
the common space of the template image, and thus can be
parcellated into ROIs according the ROI atlas in that space.

After parcellation, each ROI is characterized by the av-
eraged uptake of radiotracer in that area. We select 40 brain
ROIs whose radiotracer uptakes have the highest correla-
tions with the class labels to build the graphical model of

1http://www.adni-info.org/
2http://www.med.unc.edu/bric/ideagroup/tools/projects-1/brain/pages-

1/hammer
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the functional brain network. Each node corresponds to a
brain ROI, and each edge corresponds to the partial correla-
tion of the two nodes, ie., an entry in the learned sparse in-
verse covariance matrix. Note that, slightly different ROIs
are used for the PET-AD and PET-MCI data sets.

For each data set, we randomly partition it into 30
training-test groups, with about 60% for training and 40%
for test. The classification performance is measured by both
the averaged AUC (area under curve) of the ROC curves
and the averaged test accuracies. For clarity, in the follow-
ing we call the original SICE method without discriminative
learning “orig-SICE”, our one-class discriminative learn-
ing method “1-disc-SICE”, and our two-class discrimina-
tive learning method “2-disc-SICE”.

4.2. Discrimination by One-Class Formulation

As noted previously that, one-class classification can be
used to detect abnormal subjects, which are the AD or MCI
patients in our application. Specifically, we learn the SICE
of the normal controls in the training data, and compute
the likelihood of a test subject belonging to that distribu-
tion. If the value of the likelihood is lower than a threshold,
the test subject is declared as an AD or MCI patient. Be-
cause classification accuracy depends on the threshold set-
ting, we compute the ROC curve for each of the training-test
group, and compare the AUCs between our one-class-SICE
and the orig-SICE method. To build the ROC curve, we
use the likelihood of test subjects to the NC class as scores.
The lower the score, the more likely abnormal the subject.
Fig. 1 shows the averaged ROC curves of the 30 training-
test groups for both PET-AD (shown in red) and PET-MCI
(shown in blue) datasets. It can be seen that the averaged
ROC curve of our 1-disc-SICE (solid lines) always resides
beyond that of the orig-SICE (dashed lines), indicating a
clear advantage of the discriminatively learned SICE for
classification: regardless of the threshold, 1-disc-SICE con-
sistently has lower false positive ratio (misclassifying AD
as NC) than the orig-SICE when the true positive ratio (cor-
rectly classifying NC) is controlled. Consequently, in Ta-
ble 1, we observe significantly larger AUC values averaged
over all the training-test groups for both classification tasks,
as indicated by the small p-values in paired-t-tests.

Table 1. AUC for ROC curves Averaged over 30 Training-Test
Groups in One-class Case

orig-SICE 1-disc-SICE p-value
NC vs AD 0.8243 0.8818 0
NC vs MCI 0.7176 0.7683 0

To fully demonstrate the necessity of one-class classi-
fication, we also test the situation when there are much
less training samples for one class than the other. For that
purpose, the number of AD or MCI subjects for training
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1−disc−SICE (PET−AD)
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1−disc−SICE (PET−MCI)

Figure 1. One class classification: averaged ROC curves using
likelihood to NC class as scores. The proposed 1-dist-SICE (solid
lines) outperforms the orig-SICE (dashed lines) on both PET-AD
(in red color) and PET-MCI (in blue color) datasets, respectively.

is reudced to 30%, while the number of NC subjects for
training and all the test subjects remain the same. We com-
pare the one-class classification with the more traditional
two-class classification (in Section 4.3) in this situation.
The averaged ROC curves are given in Fig. 2 for PET-AD
dataset and Fig. 3 for PET-MCI dataset, whose correspond-
ing AUCs are given in Table 2. It can be seen that the
orig-SICE performs better in one-class setting (solid blue
line) than in two-class setting (dashed blue line). While
our discriminative learning (1-disc-SICE or 2-disc-SICE,
red lines) can significantly improve the AUC of the orig-
SICE (blue lines) in both settings, the overall best classi-
fication performance is achieved by our 1-disc-SICE (red
solid line). This demonstrates when our 1-disc-SICE will
be preferred than two-class classification.
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Figure 2. Comparison of averaged ROC curves between one-class
(solid lines) and two-class (dashed lines) classifications on the
PET-AD dataset when only 30% of the training AD subjects are
used (test subjects remained the same).
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Figure 3. Comparison of averaged ROC curves between one-class
(solid lines) and two-class (dashed lines) classifications on the
PET-MCI dataset when only 30% of the training MCI subjects are
used (test subjects remained the same).

Table 2. Comparison of Averaged AUC when only 30% AD or
MCI training subjects are used (“disc” is our proposed method).

AUC One Class Two Class
orig disc orig disc

PET-AD-DATA 0.8243 0.8460 0.7458 0.8247
PET-MCI-DATA 0.7081 0.7445 0.6299 0.7219

4.3. Discrimination by Two-Class Formulation

We follow the common practice to employ SICE for
two-class classification: training SICE for each of the two
classes in comparison, and assigning the new subject to the
class with higher log likelihood. The classification perfor-
mance is measured in both AUCs (Fig. 4 and Table 3) and
the test accuracies (Table 4), which are further compared
between our proposed and the original SICE methods by
paired-t-tests. For AUC, the ROC curves are computed with
respect to the scores of the log likelihood difference be-
tween the two classes. Similar to the one-class case, our 2-
disc-SICE produces ROC curves beyond those of the orig-
SICE for both the PET-AD (shown in red) and the PET-MCI
(shown in blue) data sets. The proposed two-class discrimi-
native learning brings significant improvements to the orig-
SICE in both AUCs and test accuracies as evidenced by the
small p-values (< 0.05). This improvement remains salient
even when the training number of AD or MCI patients is
reduced as shown in Fig. 2 and Fig. 3 (comparing the red
and the blue dashed lines).

4.4. Functional Connectivity

In addition to testing discrimination, we also explore the
alteration of brain network structures between the patients
and the healthy population. Our learned SICEs from dif-
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Figure 4. Two class classification: averaged ROC curves using log
likelihood difference as scores. The proposed 2-dist-SICE (solid
lines) outperforms the orig-SICE (dashed lines) on both PET-AD
(in red color) and PET-MCI (in blue color) datasets, respectively.

Table 3. AUC for ROC curves Averaged over 30 Training-Test
Groups in Two-class Case

orig-SICE 2-disc-SICE p-value
NC vs AD 0.8833 0.9060 2.3e-3
NC vs MCI 0.7755 0.8164 1e-8

Table 4. Test Accuracy (%) Averaged over 30 Training-Test
Groups in Two-class Case

orig-SICE 2-disc-SICE p-value
NC vs AD 78.60 83.18 3.8e-4
NC vs MCI 70.58 74.87 3.4e-5

ferent training-test groups are normalized to have a unit
trace and binarized with a threshold of 0.005. They are
then added up within the NC or the AD/MCI classes and
visualized in Fig. 5. Each (i, j)-th entry represents an edge
(connection) between node i and node j. The color code
indicates the occurrence frequency of an edge in different
training-test groups. Note that, due to the slightly different
ROIs and the different (random) training-test partitions used
in our PET-AD and PET-MCI data sets, the learned connec-
tivity of NC (Fig. 5 (a) and (c)) is not identical. Neverthe-
less, similar patterns can be seen for the two data sets. When
comparing Fig. 5 (a) with Fig. 5 (b), significant decrease of
connectivity could be found in the temporal lobe (indicated
by the brown box) and the subcortical region (indicated by
the purple box) for AD. Such phenomenon is also observed
for MCI, whose connectivity loss is less than that of AD.
This trend has been extensively reported in AD-related re-
search works using different imaging modalities [12, 7, 6],
including FDG-PET [9, 7]. Interestingly, when looking into
the temporal lobe, we find that many inter-hemispherical
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connections between the same regions in the left and right
hemispheres are lost in AD, but not in MCI. This coincides
with the findings in [7].
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(a) PET-AD-DATA: NC (b) PET-AD-DATA: AD
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(c) PET-MCI-DATA: NC (d) PET-MCI-DATA: MCI
Figure 5. Comparison of functional connectivity between AD/MCI
and NC. The brown box indicates the temporal lobe and the purple
box indicates the subcortical region).

The orig-SICE method produces similar SICE patterns
as our methods. In order to conduct a detailed compari-
son, we compute the LCC (local clustering coefficient) for
each node. LCC measures the level of local neighborhood
clustering in the brain network. The changes of LCC in
AD from NC are visualized in Fig. 6. The results of our
method (the bottom row) are more reasonable than those
of the orig-SICE (the top row). For example, our LCC
changes in the temporal lobe (Fig. 6 (a)) are mostly neg-
ative and much smaller than those of orig-SICE, showing a
loss of local efficiency in AD temporal lobe, aligning well
with the literature. In addition, in Fig. 6 (b), node 3 and
node 10 are left and right hippocampus respectively, whose
loss of local clustering has been extensively reported [7, 6].
Our method again produces much smaller LCCs for these
two nodes, with more loss for the left hippocampus than
the right. This correlates with the findings that the left hip-
pocampus is on average more severely affected by AD when
AD has reached a moderate stage [11].

(a) Temporal Cortex (b) Subcortical Region
Figure 6. Averaged LCC for nodes in (a) temporal cortex and (b)
subcortical region for the PET-AD-data (Top: orig-SICE, Bottom:
2-disc-SICE).

5. Conclusion
SICE is a key technique for constructing undirected

graphical models of brain imaging connectomics. In this
paper, we propose a learning-based framework to improve
the discriminative power of SICE. Our discriminative learn-
ing problems are formulated as convex optimizations that
can be solved effectively and efficiently. Compared with
the existing SICE, our methods demonstrate superior clas-
sification performance and probably more reasonable dis-
criminative patterns for AD classification. Moreover, our
framework contributes to the general discriminative learn-
ing of SICE, which has broader meanings beyond the scope
of brain research.
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