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Abstract

In Bag-of-Words (BoW) based image retrieval, the SIFT
visual word has a low discriminative power, so false posi-
tive matches occur prevalently. Apart from the information
loss during quantization, another cause is that the SIFT
feature only describes the local gradient distribution. To
address this problem, this paper proposes a coupled Multi-
Index (c-MI) framework to perform feature fusion at index-
ing level. Basically, complementary features are coupled
into a multi-dimensional inverted index. Each dimension
of c-MI corresponds to one kind of feature, and the retrieval
process votes for images similar in both SIFT and other fea-
ture spaces. Specifically, we exploit the fusion of local col-
or feature into c-MI. While the precision of visual match is
greatly enhanced, we adopt Multiple Assignment to improve
recall. The joint cooperation of SIFT and color features sig-
nificantly reduces the impact of false positive matches.

Extensive experiments on several benchmark datasets
demonstrate that c-MI improves the retrieval accuracy sig-
nificantly, while consuming only half of the query time com-
pared to the baseline. Importantly, we show that c-MI is
well complementary to many prior techniques. Assembling
these methods, we have obtained an mAP of 85.8% and N-S
score of 3.85 on Holidays and Ukbench datasets, respec-
tively, which compare favorably with the state-of-the-arts.

1. Introduction
This paper considers the task of near duplicate image re-

trieval in large scale databases. Specifically, given a query
image, our goal is to find all images sharing similar appear-
ance in real time.

Many state-of-the-art image retrieval systems rely on the
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Figure 1. Three examples of image retrieval from Ukbench (Top
and Middle) and Holidays (Bottom) datasets. For each query
(left), results obtained by the baseline (the first row) and c-MI (the
second row) are demonstrated. The retrieval results start from the
second image in the rank list.

Bag-of-Words (BoW) representation. In this model, lo-
cal features such as the SIFT descriptor [10] are extract-
ed and quantized to visual words using a pre-trained code-
book. Typically, each visual word is weighted using the
tf-idf scheme [20, 28]. Then, an inverted index is leveraged
to reduce computational burden and memory requirements,
enabling fast online retrieval.

One crucial aspect in the BoW model concerns visual
matching between images based on visual words. Howev-
er, the reliance on the SIFT feature leads to an ignorance of
other characteristics, such as color, of an image. This prob-
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lem, together with the information loss during quantization,
leads to many false positive matches and thus compromises
the retrieval accuracy.

To enhance the discriminative power of SIFT visual
words, we present a coupled Multi-Index (c-MI) frame-
work to perform local feature fusion at indexing level. To
the best of our knowledge, it is the first time that a multi-
dimensional inverted index is employed in the field of im-
age retrieval. Particularly, this paper “couples” SIFT and
color features into a multi-index [1], so that efficient yet ef-
fective image retrieval can be achieved. The final system of
this paper consists of “packing” and “padding” modules.

In the “packing” step, we construct the coupled Multi-
Index by taking each of the SIFT and color features as one
dimension of the multi-index. Therefore, the multi-index
becomes a joint cooperation of two heterogeneous features.
Since each SIFT descriptor is coupled with a color feature,
its discriminative power is greatly enhanced. On the oth-
er hand, to improve recall, Multiple Assignment (MA) is
employed. Particularly, to make c-MI more robust to illu-
mination changes, we adopt a large MA value on the side of
color feature. Fig. 1 presents three sample retrieval results
of our method. We observe that c-MI improves the retrieval
accuracy and returns some challenging results.

Moreover, in the “padding” step, we further incorporate
some prior techniques to enhance retrieval performance. We
show in the experiments that c-MI is well compatible with
methods such as rootSIFT [17], Hamming Embedding [4],
burstiness weighting [5], graph fusion [25], etc. As another
major contribution, we have achieved new state-of-the-art
results on Holidays [4] and Ukbench [12] datasets. Namely,
we obtained an mAP of 85.8% and N-S score of 3.85 on
Holidays and Ukbench, respectively.

The remainder of this paper is organized as follows. Af-
ter an overview of related work in Section 2, we describe the
“packing” of c-MI framework in Section 3. In Section 4, the
“padding” methods and results are presented and discussed.
Finally, we conclude in Section 5.

2. Related Work
In the image retrieval community, a myriad of works

have been proposed to improve the accuracy of image re-
trieval. In this section, we provide a brief review of several
closely related aspects.

Matching Refinement In visual matching, a large code-
book [14] typically means a high precision but low recall,
while constructing a small codebook (e.g., 20K) [6] guar-
antees high recall. To improve precision given high recall,
some works explore contextual cues of visual words, such
as spatial information [14, 19, 31, 22, 2, 27]. To name a
few, Shen et al. [19] perform image retrieval and localiza-
tion simultaneously by a voting-based method. Alternative-
ly, Wang et al. [22] weight visual matching based on the

local spatial context similarity. Meanwhile, the precision
of visual matching can be also improved by embedding bi-
nary features [4, 23, 32, 9]. Specifically, methods such as
Hamming Embedding [4] rebuild the discriminative abili-
ty of visual words by projecting SIFT descriptor into bina-
ry features. Then, efficient xor operation between binary
signatures is employed, providing further check of visual
matching.

Feature Fusion The fusion of multiple cues has been
proven to be effective in many tasks [18, 30, 13]. Since the
SIFT descriptor used in most image retrieval systems only
describes the local gradient distribution, feature fusion can
be performed to capture complementary information. For
example, Wengert et al. [23] embed local color feature in-
to the inverted index to provide local color information. To
perform feature fusion between global and local features,
Zhang et al. [25] combine BoW and global features by
graph fusion and maximizing weighted density, while co-
indexing [26] expands the inverted index according to glob-
al attribute consistency.

Indexing Strategy The inverted index [20] significant-
ly promotes the efficiency of BoW based image retrieval.
Motivated from text retrieval framework, each entry in the
inverted index stores information associated with each in-
dexed feature, such as image IDs [14, 26], binary features
[4, 23], etc. Recent state-of-the-art works include joint in-
verted index [24] which jointly optimizes all visual words
in all codebooks. The closest inspiring work to ours in-
cludes the inverted multi-index [1] which addresses NN
search problem by “de-composing” the SIFT vector into d-
ifferent dimensions of the multi-index. Our work departs
from [1] in two aspects. First, the problem considered in
this paper consists in the indexing level feature fusion, ap-
plied in the task of large scale image retrieval. Second, we
actually “couple” different features into a multi-index, after
which the “coupled Multi-Index (c-MI)” is named.

3. Proposed Approach
This section gives a formal description of the proposed

c-MI framework.

3.1. Conventional Inverted Index Revisit

A majority of works in the BoW based image retrieval
community employ a ONE-dimensional inverted Index [28,
14, 12], in which each entry corresponds to a visual word
defined in the codebook of SIFT descriptor. Assume that
a total of N images are contained in an image database,
denoted as D = {Ii}Ni=1. Each image Ii has a set of local
features {xj}di

j=1, where di is the number of local features.
Given a codebook {wi}Ki=1 of size K, a conventional 1-D
inverted index is represented as W = {W1,W2, ...,WK}.
In W , each entry Wi contains a list of indexed features, in
which image ID, TF score, or other metadata [4, 31, 22] are
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Figure 2. Conventional 1-D inverted Index. Only one kind of fea-
ture (typically the SIFT feature) is used to build the inverted Index.

stored. An example of the conventional inverted Index is
illustrated in Fig. 2.

Given a query feature, an entry Wi in the inverted index
is identified after feature quantization. Then, the indexed
features are taken as the candidate nearest neighbors of the
query feature. In this scenario, the matching function fq(·)
of two local features x and y is defined as

fq(x, y) = δq(x),q(y), (1)

where q(·) is the quantization function maping a local fea-
ture to its nearest centroid in the codebook, and δ is the
Kronecker delta response.

The 1-D inverted index votes for candidate images sim-
ilar to the query in one feature space, typically the SIFT
descriptor space. However, the intensity-based features are
unable to capture other characteristics of a local region.
Moreover, due to the quantization artifacts, the SIFT visu-
al word is prone to producing false positive matches: local
patches, similar or not, may be mapped to the same visual
word. Therefore, it is undesirable to take visual word as the
only ticket to feature matching. While many previous work-
s use spatial contexts [31, 22] or binary features [4] to filter
out false matches, our work, instead, proposes to incorpo-
rate local color feature to provide additional discriminative
power via the coupled Multi-Index (c-MI).

3.2. Feature Extraction and Quantization

This paper considers the coupling of SIFT and color fea-
tures. The primary reason lies in that feature fusion work-
s better for features with low correlation, such as SIFT
and color. In feature matching, complementary informa-
tion may be of vital importance. For example, given two
keypoints quantized to the same SIFT visual word, if the
coupled color features are largely different, they may be
considered to be a false match (see Fig. 3 for an illustra-
tion). To this end, SIFT and color features are extracted and
subsequently quantized as follows.

SIFT extraction: Scale-invariant keypoints are detect-
ed with detectors, e.g. DoG [10], Hessian-affine [14], etc.
Then, a 16×16 patch around each keypoint is considered,
from which a 128-dimensional SIFT vector is calculated.

Figure 3. An example of visual match. Top: A matched SIFT pair
between two images. The Hamming distance between their 64-D
SIFT Hamming signatures is 12. The 11-D color name descriptors
of the two keypoints in the left (middle) and right (bottom) im-
ages are presented below. Also shown are the prototypes of the 11
basic colors (colored discs). In this example, the two local features
are considered as a good match both by visual word equality and
Hamming distance consistency. However, they differ a lot in color
space, thus considered as a false positive match in c-MI.

Color extraction: we employ the Color Names (CN)
descriptor [18]. CN assigns a 11-D vector to each pixel, in
which each entry encodes one of the eleven basic colors:
black, blue, brown, grey, green, orange, pink, purple, red,
white, and yellow. Around each detected keypoint, we con-
sider a local patch with an area proportional to the scale of
the keypoint. Then, CN vectors of each pixel in this area
are calculated. We take the mean CN vector as the color
descriptor coupling SIFT for the current keypoint.

Quantization For SIFT and CN descriptors, we use the
conventional quantization scheme as in [14]. Codebooks
are trained using independent SIFT and CN descriptors, re-
spectively. Each descriptor is quantized to the nearest cen-
troid in the corresponding codebook by Approximate Near-
est Neighbor (ANN) algorithm. To improve recall, Multiple
Assignment (MA) is applied. Particularly, to deal with the
illumination variations, MA is set large for CN feature.

Binary signature calculation In order to reduce quan-
tization error, we calculate binary signatures from original
descriptors. For a SIFT descriptor, we follow the method
proposed in [4], resulting in a 64-D binary signature.

Nevertheless, on the side of color feature, since each di-
mension of the CN descriptor has explicit semantic mean-
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Figure 4. Structure of c-MI. The codebook sizes are Ks and Kc

for SIFT and color features, respectively. During online retrieval,
the entry of word tuple (ui, vj) is checked.

ing, we employ the binarization scheme introduced in
[32]. Specifically, given a CN descriptor represented as
(f1, f2, ..., f11)

T, a 22-bit binary feature b can be produced
as follows

(bi, bi+11) =


(1, 1), if fi > ˆth1,

(1, 0), if ˆth2 < fi ≤ ˆth1,

(0, 0), if fi ≤ ˆth2

(2)

where bi(i = 1, 2, ..., 11) is the ith entry of the resulting
binary feature b. Thresholds ˆth1 = g2, ˆth2 = g5, where
(g1, g2, ..., g11)

T is the sorted vector of (f1, f2, ..., f11)T in
descending order.

3.3. Coupled MultiIndex

Structure of c-MI In [1], the 128-D SIFT descriptor is
de-composed into several blocks produced by product quan-
tization [7]. The multi-index is thus organized around the
codebooks of corresponding blocks. Their approach en-
ables more accurate nearest neighbor (NN) search for SIFT
features. In our work, however, we consider the task of im-
age retrieval, which differs from pure NN search. Moreover,
contrary to [1] we couple different features into a multi-
index, so that feature fusion is performed at indexing level.
In this paper, we consider the 2-D inverted index, which is
also called second-order in [1].

Let x⃗ = [xs, xc] ∈ RDs+c be a coupled feature de-
scriptor at keypoint p, where xs ∈ RDs , xc ∈ RDc are

SIFT and color descriptors of dimension Ds and Dc, re-
spectively. For c-MI, two codebooks are trained for each
feature. Specifically, for SIFT and color descriptors, code-
books U = {u1, u2, ..., uKs} and V = {v1, v2, ..., vKc}
are generated, where Ks and Kc are codebook sizes, re-
spectively. As a consequence, c-MI consists of Ks × Kc

entries, denoted as W = {W11,W12, ...,Wij , ...,WKsKc},
i = 1, ...,Ks, j = 1, ...,Kc, as illustrated in Fig. 4.

When building the multi-index, all feature tuples x⃗ =
[xs, xc] are quantized into visual word pairs (ui, vj), i =
1, ...,Ks, j = 1, ...,Kc using codebooks U and V , so that
ui and vj are the nearest centroids to features xs and xc in
codebooks U and V , respectively. Then, in the entry Wij ,
information (e.g. image ID, CN binary signatures and oth-
er meta data) associated with the current feature tuple x⃗ is
stored continuously in memory.

Querying c-MI Given a query feature tuple x⃗ =
[xs, xc], we first quantize it into a visual word pair (ui, vj)
as in the offline phase. Then, the corresponding entry Wij

in c-MI is identified, and the list of indexed features are tak-
en as the candidate images, similar to the classic inverted
index described in Section 3.1. In essence, the matching
function f0

qs,qc(·) of two local feature tuples x⃗ = [xs, xc]
and y⃗ = [ys, yc] is written as

f0
qs,qc(x⃗, y⃗) = δqs(xs),qs(ys) · δqc(xc),qc(yc), (3)

where qs(·) and qc(·) are quantization functions for SIFT
and CN features, respectively, and δ is the Kronecker delta
response as in Eq. 1. As a consequence, a local match is
valid only if the two feature tuples are similar both in SIFT
and color feature spaces.

Moreover, the Inverse Document Frequency (IDF)
scheme can be applied in the multi-index directly. Specifi-
cally, the IDF value of entry Wij is defined as

idf(i, j) =
N

nij
, (4)

where N is the total number of images in the database, and
nij encodes the number of images containing the visual
word pair (ui, vj). Furthermore, the l2 normalization can
be also adopted in the 2-D case. Let an image be represent-
ed as a 2-D histogram {hi,j}, i = 1, ...,Ks, j = 1, ...,Kc,
where hi,j is the term-frequency (TF) of visual word pair
(ui, vj) in image I , the l2 norm is calculated as,

∥I∥2 =

Ks∑
i=1

Kc∑
j=1

h2
i,j

 1
2

. (5)

Since our multi-index structure mainly works by achieving
high precision, we employ Multiple Assignment (MA) to
improve recall. To address illumination variations, we set
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a relatively large value to the color feature. In our experi-
ments, we find that l2-normalization produces slightly high-
er performance than Eq. 5, which is probably due to the
asymmetric structure of the coupled multi-index.

Furthermore, to enhance the discriminative power of C-
N visual words, we incorporate color Hamming Embed-
ding (HEc) into c-MI. Two feature tuples are considered as
a match iff Eq. 3 is satisfied and the Hamming distance
db between their binary signatures is below a pre-defined
threshold κ. The matching strength is defined as exp(− d2

b

σ2 ).
Therefore, the matching function in Eq. 3 is updated as

fqs,qc(x⃗, y⃗) =

{
f0
qs,qc(x⃗, y⃗) · exp

(
− d2

b

σ2

)
, db < κ,

0, otherwise.
(6)

Then, in the framework of c-MI, the similarity score be-
tween a database image I and query image Q is defined as

sim(Q, I) =

∑
x⃗∈Q,y⃗∈I fqs,qc(x⃗, y⃗) · idf2

∥Q∥2∥I∥2
, (7)

4. Experiments
In this section, we evaluate the proposed method on five

public available datasets: the Ukbench [12], Holidays [4],
DupImage [31], Mobile [22] and MIR Flickr 1M [11].

4.1. Datasets

Ukbench A total of 10200 images are contained in this
dataset, divided into 2550 groups. Each image is taken as
the query in turn. The performance is measured by the aver-
age recall of the top four ranked images, referred to as N-S
score (maximum 4).

Holidays This dataset consists of 1491 images from per-
sonal holiday photos. There are 500 queries, most of which
have 1-2 ground truth images. mAP (mean average preci-
sion) is employed to measure the retrieval accuracy.

DupImages This dataset is composed of 1104 images
divided into 33 groups of partial-duplicate images. 108 im-
ages are selected as queries, and mAP is again used as the
accuracy measurement.

Mobile The Mobile dataset has 400 database images and
2500 queries, captured by mobile devices. The Top-1 (τ1)
and Top-10 (τ10) precision are employed.

MIR Flickr 1M This is a distractor dataset, with one
million images randomly retrieved from Flickr. We add this
dataset to test the scalability of our method.

4.2. Experiment Settings

Baseline This paper adopts the baseline in [14, 4]. Hes-
sian Affine detector and SIFT descriptor are used for feature
extraction. Following [17], rootSIFT is used on every point
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Figure 5. Impact of color codebook size on the Holidays dataset.
Color codebooks of size k = 100, 200, 500, and 1000 are trained
on independent data. The horizontal axis represents the fraction
of the codebook traversed during MAc. We observe a superior
performance of the codebook of size 200, and with MAc = 200×
0.5 = 100. Note that the query time is halved accordingly.
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Figure 6. Influence of weighting parameter σ (left) and Hamming
distance threshold κ (right) on Holidays dataset. mAP results are
presented. We set σ and κ to 4 and 7, respectively.

since it is shown to be effective under Euclidean distance.
We also adopt the average IDF defined in [28] in place of
the original IDF. Then, a codebook of size 20K is trained
using the independent Flickr60k data released in [4].

SIFT Hamming Embedding The 64-bit SIFT Ham-
ming Embedding (HEs) [5] is used in addition to c-MI. The
Hamming threshold is set to 30, and the weighting param-
eter is set to 16. Moreover, we employ the SIFT Multiple
Assignment (MAs) [4] scheme on the query side, in which
a SIFT descriptor is assigned to 3 visual words.

Graph Fusion As a post-processing step, we imple-
mented the graph fusion algorithm proposed in [25]. We
extract 1000-D global HSV histogram for each image, fol-
lowed by L1 normalization and square scaling, similar to
rootSIFT [17]. Rank lists obtained by c-MI and the HSV
histogram are merged, yielding new ranking results.

4.3. Parameter Analysis

Color Codebook Size and MA We extract CN descrip-
tors from independent images and train codebooks of var-
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Methods c-MI Bursts HEs MAs Ukbench Holidays DupImage Mobile
N-S mAP(%) mAP(%) mAP(%) τ1(%) τ10(%)

BoW 3.11 78.89 50.10 48.61 52.88 80.08
BoW × 3.43 88.45 63.32 56.28 67.20 86.64
BoW × × 3.52 90.35 66.38 59.87 71.24 87.76
BoW × × 3.64 92.96 81.00 85.10 94.60 98.56
BoW × × × 3.69 94.00 82.14 86.63 96.48 98.64
BoW × × × × 3.71 94.66 84.02 87.60 96.04 98.76

Table 1. Results for four datasets and for different methods: coupled Multi-Index (c-MI), burstiness weighting (Bursts), SIFT Hamming
Embedding (HEs), and Multiple Assignment (MAs). Parameters are selected as in Section 4.2 and 4.3.

ious sizes, i.e., k = 100, 200, 500, 1000. During color
quantization Multiple Assignment (MAc) is employed, and
we vary the number of assigned words as a percentage of
the codebook size. We present the mAP results on Holi-
days dataset in Fig. 5. It is shown that the codebook of
size 200 performs favorably. Moreover, assigning 50% vi-
sual words in the codebook has a better performance, so
MAc = 200 × 50% = 100 for color feature. Intuitive-
ly, since large variation in color is often observed due to
illumination, a large value of MAc helps to improve recal-
l. Also note that (HEs) with default parameters is used in
parameter analysis.

Color Hamming Embedding Two parameters are in-
volved in color Hamming Embedding: the Hamming dis-
tance threshold κ and weighting factor σ. Fig. 6 demon-
strates the mAP results on Holidays dataset obtained by
varying the two parameters. In Fig. 6(a), the mAP first
rises to the peak at σ = 4 and then slowly drops. From Fig.
6(b), the best performance is achieved at κ = 7, no matter
the weighted distance is employed or not. Therefore, we set
σ and κ to 4 and 7, respectively.

4.4. Evaluation

To what extent does it improve the baseline? Imple-
mented as described in Section 4.2, the baseline results for
Ukbench and Holidays are 3.11 in N-S score and 50.1%
in mAP, respectively, both higher than the reported results
[4, 5]. After expanding inverted index into the 2-D case as
c-MI, large improvement over the baseline approach can be
seen from Table 1. On Ukbench, we observe a big improve-
ment of +0.32 in N-S score. Similarly on Holidays and
Mobile datasets, the improvement is +13.2% in mAP and
+14.3% in Top-1 precision. Note that the improvement is
less prominent for DupImage (mAP from 48.6% to 56.3%),
because the ground truth images in this dataset have a large
variety in color (even gray-level images).

Complementarity to some existing methods To test
whether c-MI is compatible with some prior arts used in
the 1-D inverted index, we further “pad” burstiness weight-
ing (Bursts) [5], Hamming Embedding (HEs) [4], Multiple

Methods Ours HSV HSV* Ours + HSV*
Ukbench, N-S 3.71 2.97 3.40 3.85

Holidays, mAP(%) 84.02 59.43 65.29 85.76
Table 2. Performance of our method combined with graph fusion
on Ukbench and Holidays datasets. * denotes results obtained by
HSV histogram scaled as described in Section 4.2.

Methods Baseline HEs c-MI + HEs

Ukbench 2.282 1.933 1.339
Holidays 2.722 2.140 1.413

DupImage 1.900 1.391 0.885
Mobile 1.421 1.185 0.667

Table 3. Average query time (s) on Ukbench, Holidays, DupImage,
and Mobile + MIR Flickr 1M datasets.

Assignment (MAs) [4], etc., into our framework. Note that
these techniques are applied on the SIFT side.

It is clear from Table 1 that these methods bring about
consistent improvements. Taking Ukbench for example, the
combination of Bursts and HEs each improves the N-S from
3.43 to 3.52, and from 3.43 to 3.64, respectively. Combin-
ing the three steps brings the result to 3.69. Then, the use of
MAs obtains the N-S of 3.71. Similar situation is observed
for the other datasets. These demonstrate the feasibility of
c-MI as a general framework for image retrieval.

In addition, we add a post-processing step, i.e.,, the
graph fusion of global HSV histogram [25] to the Holi-
days and Ukbench datasets. Similar to the scaling method
applied in rootSIFT [17], we also normalize the HSV his-
togram by its l1 norm, and then exert a square root scaling.
With the modified HSV histogram (HSV*), we have ob-
tained a much higher result of HSV-based image retrieval
(see Table 2). After merging the graphs constructed from
the c-MI and HSV rank lists, the final result arrives at 3.85
for Ukbench and 85.8% for Holidays, respectively.

Large-scale experiments To test the scalability of our
method, the four benchmark datasets are merged with vari-
ous fractions of the MIR Flickr 1M images. In what follows,
we mainly report three related aspects, i.e., accuracy, time
efficiency, and memory cost.
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Methods Ours [21] [22] [8] [19] [26] [23] [6] [16] [29] [5]
Ukbench, N-S score 3.71 - 3.56 3.61 3.52 3.60 3.50 3.42 - 3.62 3.54
Holidays, mAP(%) 84.0 82.2 78.0 - 76.2 80.9 78.9 81.3 82.1 81.9 83.9

Table 5. Performance comparison with state-of-the-art methods without post-processing

Methods Ours [25] [3] [8] [15] [19] [6] [16] [5]
Ukbench, N-S score 3.85 3.77 84.7 3.68 3.67 3.56 3.55 - 3.64
Holidays, mAP(%) 85.8 84.6 3.75 - - - 84.8 80.1 84.8

Table 6. Performance comparison with state-of-the-art methods with post-processing

Methods Baseline c-MI HEs c-MI + HEs

Per feature (bytes) 4 6.75 12 14.75
1M dataset (GB) 1.7 2.8 5.0 6.1

Table 4. Memory cost for different approaches.

First, we plot the image retrieval accuracy against the
database size in Fig. 7. We note that when applied alone,
HEs and c-MI each brings about a significant improvement
over the baseline. The reason is that both methods work-
s by enhancing the discriminative power of visual words.
Moreover, the combination of HEs and c-MI achieves fur-
ther improvements on all the four datasets. As the database
is scaled up, the performance gap between c-MI and the
baseline seems to become larger: the feature fusion scheme
works better for large databases.

Second, the average query time for the 1M database is
presented in Table 3. The experiments are performed on a
server with 3.46 GHz CPU and 64GB memory. The feature
extraction and quantization takes an average of 0.67s and
0.24s on the 1M dataset, respectively. From Table 3, the
baseline approach is the most time-consuming, e.g. 2.28s
for a query in the Ukbench dataset. HEs is more efficien-
t than the baseline due to the filtering effect of the Ham-
ming threshold. On Ukbench, HEs reduces the query time
to 1.93s. Furthermore, the c-MI + HEs method proves to be
the most time efficient one. On all the four datasets, c-MI
cuts the query time to about one half compared to the base-
line. The reason lies in that compared with the conventional
inverted index, c-MI shortens the list of indexed features
per entry. Moreover, since 50% of the color index are tra-
versed, c-MI actually halves the query time. Nevertheless,
the query time can be further decreased if fewer entries are
visited, i.e., at a cost of lower accuracy.

Third, we discuss the memory cost of c-MI in Table 4.
For each indexed feature, 4 bytes are allocated to store im-
age ID in the baseline. In HEs, 8 bytes are needed to store
the 64-bit binary SIFT feature. c-MI adds another 22 bits
(2.75 bytes) for the binary CN signature. On the 1M dataset,
the c-MI + HEs method totally consumes 6.1 GB memory.

The above analysis indicates that c-MI is especially suit-
able for large scale settings: higher accuracy accompanied
with less query time, and acceptable memory cost.
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Figure 7. Image retrieval performance against the database size for
BoW baseline, c-MI, HEs, and c-MI + HEs methods. (a) Ukbench,
(b) Holidays, (c) DupImage, and (d) Mobile datasets are merged
with various fractions of MIR Flickr 1M dataset.

4.5. Comparison with stateofthearts

We first compare our results with state-of-the-art meth-
ods which do not apply any post-processing procedure. As
shown in Table 5, for Ukbench dataset, we achieve the best
N-S score 3.71, which significantly exceeds the result re-
ported in [8] by +0.10. For Holidays dataset, our result
(mAP = 84.0%) also outperforms the state-of-the-art ap-
proaches. By +0.1% in mAP, our result is slightly higher
than [5]. In fact, [5] also employs the inter-image bursti-
ness weighting and weak geometric consistency, which are
absent in our retrieval system.

Moreover, in Table 6, we present a comparison with re-
sults obtained by various post-processing algorithms, in-
cluding RANSAC verification [14], kNN re-ranking [19],
graph fusion [25], and RNN re-ranking [15], etc. We show
that, followed by graph fusion [25] of modified global HSV
feature (HSV*), we have set new records on both Ukbench
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and Holidays datasets. Notably, we achieve an N-S score
of 3.85 on Ukbench, and an mAP of 85.8% on Holidays,
which greatly exceeds the N-S score of 3.77 [25] and mAP
of 84.8% [5], respectively. We envision that other post-
processing steps can also benefit from our method.

5. Conclusion
In this paper, we present a coupled Multi-Index (c-MI)

framework for accurate image retrieval. Each keypoint in
the image is described by both SIFT and color descriptors.
Two distinct features are then coupled into a multi-index,
each as one dimension. c-MI enables indexing-level feature
fusion of SIFT and color descriptors, so the discriminative
power of BoW model is greatly enhanced. To overcome
the illumination changes and improve recall, a large MA is
used for color feature. By further incorporating other com-
plementary methods, we achieve new state-of-the-art per-
formance on Holidays (mAP = 85.8%) and Ukbench (N-S
score = 3.85) datasets. Moreover, c-MI is efficient in terms
of both memory and time (about half compared to the base-
line) costs, thus suitable for large scale settings. As another
contribution, codes and data are released on our website1.

In the future, more efforts will be made to explore the
intrinsic properties of the coupled multi-index. Moreover,
since c-MI can be extended to include other local de-
scriptors, different feature selection strategies and c-MI of
higher orders will be investigated.
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