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Abstract

In this paper, we revisit the pose determination problem
of a partially calibrated camera with unknown focal length,
hereafter referred to as the PnPf problem, by using n (n ≥ 4)
3D-to-2D point correspondences. Our core contribution is
to introduce the angle constraint and derive a compact bi-
variate polynomial equation for each point triplet. Based
on this polynomial equation, we propose a truly general
method for the PnPf problem, which is suited both to the
minimal 4-point based RANSAC application, and also to
large scale scenarios with thousands of points, irrespective
of the 3D point configuration. In addition, by solving bi-
variate polynomial systems via the Sylvester resultant, our
method is very simple and easy to implement. Its simplic-
ity is especially obvious when one needs to develop a fast
solver for the 4-point case on the basis of the characteristic
polynomial technique. Experiment results have also demon-
strated its superiority in accuracy and efficiency when com-
pared with the existing state-of-the-art solutions.

1. Introduction

To determine the camera pose with respect to (w.r.t.) a

known 3D model by using n 3D points and their image

projections is a classical problem in computer vision and

photogrammetry [8]. This problem has been extensively

studied by existing literature, in the case of a fully cali-

brated, partially calibrated and uncalibrated camera. It re-

duces to the well-known perspective-n-point (PnP) prob-

lem [11, 15–17, 22] in the presence of a fully calibrated

camera, while to the camera resection problem [8] in the

uncalibrated case. The strict requirement of full calibra-

tion in PnP prevents its application from scenarios where

a portion of the intrinsic parameters might change online.

In contrast, the uncalibrated case completely ignores some

reasonable assumptions on the camera parameters, such as

unit aspect ratio, zero skew and centered principle point for

a decent digital camera. This dilemma arouses much atten-

tion on the pose determination problem of a partially cali-

brated camera, with unknown focal length [1, 3, 5, 18, 21],

unknown focal length and aspect ratio [6], unknown focal

length and principle point [21], unknown focal length and

radial distortion [2, 10, 14], and so on.

In this paper, we focus primarily on the partially cali-

brated case with unknown focal length, i.e. the PnPf prob-

lem. The other intrinsic parameters, including aspect ratio,

skew, principle point and distortion, are assumed to be cal-

ibrated beforehand or known due to some prior knowledge.

Although it seems to be more restricted than the other afore-

mentioned variants, we believe that the PnPf problem itself

deserves deeper investigation. This is especially true, when

considering its usefulness in such important applications

as augmented reality with a zooming camera, incremental

structure-and-motion [9] and geolocalization [19] using In-

ternet photo collections. Note that in [19], the authors had to

discretize the focal length and apply a standard P3P solver

with RANSAC, which is surely not elegant.

1.1. Related Works on PnP

Since some existing works for PnPf are deeply rooted

in their predecessors for PnP, we would like first to review

some closely related works on PnP. The minimal P3P prob-

lem has been properly resolved, leading to many prominent

solvers, like those in [11, 16]. One current trend is to de-

velop accurate solutions for the PnP problem, which should

scale reasonably w.r.t. the number of points n. Several ex-

cellent noniterative O(n) solutions have been proposed, in-

cluding EPnP [15], RPnP [17] and OPnP [22]. Specifically,

EPnP [15] tries to express all 3D points into the linear com-

bination of 4 (3 in the planar case) virtual control points,

and approximately solve the resulting multivariate polyno-

mial system using linearization. However, EPnP is poor in

accuracy when n is small (e.g., 4 ≤ n ≤ 6), because the

loss of accuracy in linearization can hardly be compensated
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by data redundancy. In addition, it explicitly differentiates

the planar point configuration from the nonplanar one, thus

tends to be inaccurate in the intermediate near-planar case.

RPnP [17] successfully conquers these drawbacks by divid-

ing all points into triplets with a common edge and separat-

ing the estimation of rotation axis and angle.

1.2. Related Works on PnPf

When the focal length f is unknown, the pose deter-

mination problem becomes much more complicated. For

the minimal P4Pf problem1, specialized solutions were pro-

posed in [1] for the planar case, while in [21] for the non-

planar case. The first general method in terms of point con-

figuration was developed by Bujnak et al. [3], on the basis

of the ratio of distance constraint and the polynomial solv-

ing techniques via Gröbner basis (GB) and hidden variable

resultant (HVR). As complained in [19], both solvers are

not fast enough for RANSAC. Although the automatic G-

B solver generator [12] has relieved much burden, it would

still be very challenging, especially for nonexperts, to im-

prove the GB solver, say, by reducing the size of the elim-

ination template for faster speed or choosing other mono-

mials in the basis for higher numerical stability. Actually,

Bujnak [2] tried to find the best GB solver from millions of

candidates, which is undoubtedly a tough task. This P4Pf

solver was later significantly accelerated in [4]. However,

to implement it requires deep understanding on how to cal-

culate the characteristic polynomial of the action matrix.

On the other hand, the HVR based solver is much sim-

pler in implementation through polynomial eigenvalue fac-

torization (e.g. polyeig in MATLAB). Again, when one

needs to accelerate the solver, the characteristic polyno-

mial of an 8×8 resultant matrix has to be computed. The

quotient-free Gauss-Jordan elimination method was revital-

ized to this end [7], which still requires some tedium low-

level operations, like polynomial multiplication and divi-

sion.

The aforementioned works are dedicated to the P4Pf

problem, whose underlying schemes could not be extend-

ed to the general PnPf problem with n varying from 5 to

several thousands. There are some endeavours toward a

general PnPf solver. Choi et al. [5] developed a branch-

and-bound based method for general configuration, which

is unfortunately too slow for online applications. By ex-

tending the idea of EPnP [15], Penate-Sanchez et al. [18]

made one solid step toward a noniterative O(n) solution for

the PnPf problem. Unfortunately, the proposed method does

not work for the P4Pf and P5Pf problems. As for the point

configuration, similar to EPnP, it requires to develop a spe-

1Strictly speaking, the 4-point case is slightly overconstrained, since

three and a half points in general are sufficient to determine the 6dof pose

parameters and the focal length. A common practice, as in [2, 3], is to

ignore one constraint and regard the 4-point case as exactly minimal.

cialized solution for the planar case. In addition, the ex-

haustive linearization technique might deteriorate the com-

putational efficiency severely.

1.3. Overview of the Proposed Method

The most common procedure in geometric computer vi-

sion is first to use a minimal solver in conjunction with

RANSAC to filter out possible outliers, and then to find a

better estimate using redundant inliers [8]. This motivates

us to develop a general method for the PnPf problem, which

is suited for the minimal 4-point based RANSAC applica-

tion, and can also be easily generalized to the redundant

case with even thousands of points. We draw inspiration

from the RPnP method [17] to divide all 3D points into

triplets sharing two endpoints, which define the rotation ax-

is of the rotation between the camera framework and the

intermediate object framework. The rotation axis and an-

gle can be sequentially, thus more easily, determined than

estimating both of them simultaneously.

We introduce the angle constraint into the PnPf prob-

lem, as an important complement to the well-known dis-

tance constraint and the ratio of distance constraint. Based

on this constraint and a variable translation technique, we

derive a compact bivariate polynomial equation for a point

triplet, which is much simpler than those derived from the

distance and the ratio constraint. Thanks to this polynomi-

al equation, we are able to develop a truly general method

for PnPf, in terms both of the number of points n and of

the point configuration2. Rather than dealing with multi-

variate polynomial systems as in [2,3] for P4Pf and [18] for

PnPf, we only need to solve bivariate polynomials via the

Sylvester resultant, which makes our method easy to imple-

ment. Especially, for P4Pf, the characteristic polynomial of

the structured 6×6 resultant matrix can be directly calculat-

ed via cofactors in double precision arithmetics, in contrast

to the more complicated methods in [4, 7].

To resolve the minor issues of error accumulation and

randomness in rotation axis selection, we also propose to

refine the solution further by directly minimizing an uncon-

strained cost function, at the cost of a little extra computa-

tional burden. Experiment results have demonstrated that

our proposed method is more accurate and computationally

efficient than existing state-of-the-art solutions.

2. Preliminaries
2.1. The PnPf Problem

As shown in Fig.1, the PnPf problem is to estimate the

focal length f , the rotation Rc
w and translation tc

w between

the world framework OwXwYwZw and the camera framework

OcXcYcZc, by using n (n ≥ 4) 3D points Xwi and their image

2Except the inherently degenerate configurations, such as all points ly-

ing on a line and planar points viewed by a parallel-front camera.
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Figure 1. A diagram illustrating the PnPf problem.

projections xi, i = 1, 2, · · · , n. Without loss of generality,

we can assume that the camera calibration matrix K satisfies

K = diag([ f , f , 1]). The pinhole projection equation reads

λi [xi; 1] = K
(
Rc
wXwi + tc

w

)
, i = 1, 2, · · · , n, (1)

where λi denotes the depth factor. To simplify notation, we

use the MATLAB-style operator ’;’ to denote column-wise

concatenation of column vectors or scalars.

When the focal length is known, the PnPf problem is

simplified to the well-known PnP problem.

2.2. Procedures of RPnP

RPnP is a prominent solution to the PnP problem. Its

basic procedures are as follows:

Step-1. Choose two 3D points, e.g. Xw
1

and Xw
2

in Fig.1,

and build an intermediate object framework OoXoYoZo,

whose origin lies at the middle of Xw
1

and Xw
2

, while

the zo-axis is aligned with
−−−−→
Xw

1
Xw

2
. The xo-axis can be

chosen arbitrarily. It is possible to transform all 3D

points Xwi into Xo
i by using the known rotation Ro

w and

translation to
w. The remaining task is to estimate the

rigid transformation Rc
o and tc

o between OcXcYcZc and

OoXoYoZo. An important observation is that Rc
o can be

decomposed as

Rc
o = R1R2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 c −s
0 s c
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (2)

where R1 is an arbitrary rotation matrix such that its

third column [r13; r23; r33] equals zo, and R2 denotes a

rotation of ϕ degrees around the zo-axis, with c = cosϕ
and s = sinϕ.

Step-2. Every remaining point, e.g. Xw
3

in Fig.1, togeth-

er with the two endpoints, forms a triangle, i.e. point

triplet, for which one can build a 4-degree univariate

polynomial. The key is to choose one variable proper-

ly such that it is shared by all n − 2 univariate polyno-

mials.

Step-3. Determine the axis zo by minimizing the least-

square error of all n−2 polynomials, which boils down

to the solving of a 7-degree univariate polynomial.

Step-4. Estimate the angle ϕ and the translation tc
o.

Impressed by the excellent performance of RPnP in [17],

we are particularly interested in the generalization of the

RPnP procedures to the PnPf problem.

Since the PnPf problem concerned in this paper relies on

point correspondences as well, the operations in Step-1 can

be reused completely. As for the criterion to select the rota-

tion axis, we follow the heuristic in [17] to randomly sample

n 3D point pairs and choose the one with longest distance

as the two endpoints. In the following, we focus primarily

on Step-2 to find a polynomial for each point triplet, whose

variables are shared by all triplets.

3. Polynomial Equation for Point Triplet
3.1. Distance and Ratio of Distance Constraints

The distance constraint has been used in [2] for P4Pf

and [18] for PnPf. It is based on the simple fact that the Eu-

clidean distance keeps unchanged under any rigid transfor-

mation. For example, the triplet Xc
1
Xc

2
Xc

3
in Fig.1 provides

three quadratic distance constraints

∥∥∥Xc
1 − Xc

2

∥∥∥2
2
= d12,

∥∥∥Xc
1 − Xc

3

∥∥∥2
2
= d13,

∥∥∥Xc
2 − Xc

3

∥∥∥2
2
= d23, (3)

in which d12, d13 and d23, denoting the squared length of

Xw
1

Xw
2

, Xw
1

Xw
3

and Xw
2

Xw
3

, are known in the world framework.

As confirmed in [2], the distance constraint would lead

to much more complicated polynomials than those from the

following ratio of distance constraint, thus it shall not be

explored further.

The ratio of distance constraint was first utilized for the

P4Pf problem in [3], and later systematically investigated in

[2]. The core idea is to build another triangle (e.g. X̃c
1
X̃c

2
X̃c

3
)

that is similar to the original one (e.g. Xc
1
Xc

2
Xc

3
). When im-

age points are noise-free, the coordinate of X̃c
i in OcXcYcZc

can be expressed as αi[xi; f ], where αi is the pseudo-depth.

Now, we take the triangle X̃c
1
X̃c

2
X̃c

3
as an example. Since

it is similar to Xc
1
Xc

2
Xc

3
, the invariance of ratio of distance

provides two homogeneous equations

∥∥∥X̃c
1
− X̃c

3

∥∥∥2
2∥∥∥X̃c

1
− X̃c

2

∥∥∥2
2

=

∥∥∥α1

[
x1; f
] − α3

[
x3; f
]∥∥∥2

2∥∥∥α1

[
x1; f
] − α2

[
x2; f
]∥∥∥2

2

=
d13

d12

,

∥∥∥X̃c
2
− X̃c

3

∥∥∥2
2∥∥∥X̃c

1
− X̃c

2

∥∥∥2
2

=

∥∥∥α2

[
x2; f
] − α3

[
x3; f
]∥∥∥2

2∥∥∥α1

[
x1; f
] − α2

[
x2; f
]∥∥∥2

2

=
d23

d12

.

(4)

Due to the homogeneity, it is possible to fix the scale of

αi (αi > 0) without causing any singularity. In this paper,

we let that α1 = 2− α2, that is, the average pseudo-depth of

X̃c
1

and X̃c
2

is 1. This is slightly different from the way in [2]

to fix α1 to be 1. In addition, considering that f appears in

even degrees in Eq.(4), we introduce w such that w = f 2.
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Figure 2. Numerical stability with noise-free synthetic data. The

experiment details can be found in Sec.5.1.1.

After regarding α2 and w as the hidden variable, we can

eliminate α3 by using the Sylvester resultant. This would

lead to a bivariate polynomial with 25 monomials, whose

highest degree monomial is w4α4
2.

As shown in Fig.2, the numerical stability of using this

bivariate polynomial, especially for PnPf, is not very strong.

In the following, we try to reduce the degree by introducing

the angle constraint.

3.2. Angle Constraint
Since X̃c

1
X̃c

2
X̃c

3
is similar to Xc

1
Xc

2
Xc

3
, the angle θ between

−−−−→
Xc

1
Xc

2
and
−−−−→
Xc

1
Xc

3
keeps constant. Due to the cosine law, cosθ

can be calculated by (d12 + d13 − d23) /
(
2
√

d12

√
d13

)
, while

in the camera framework, it can be expressed as

cosθ =
(X̃c

2 − X̃c
1) · (X̃c

3 − X̃c
1)∥∥∥X̃c

2
− X̃c

1

∥∥∥
2

∥∥∥X̃c
3
− X̃c

1

∥∥∥
2

=
(X̃c

2 − X̃c
1) · (X̃c

3 − X̃c
1)

√
d13/d12

∥∥∥X̃c
2
− X̃c

1

∥∥∥2
2

=

(
α2

[
x2; f
] − α1

[
x1; f
]) · (α3

[
x3; f
] − α1

[
x1; f
])

√
d13/d12

∥∥∥α2

[
x2; f
] − α1

[
x1; f
]∥∥∥2

2

,

(5)

in which the ’·’ operator denotes the dot-product of two

vectors, and the first ratio constraint in Eq.(4) has been in-

corporated.

It is critical to note that α3 appears linearly in Eq.(5). Af-

ter expressing α3 as a function of α2 and w, we can plug the

expression into the second ratio constraint in Eq.(4). This

would lead to a bivariate polynomial with 20 monomials,

whose highest degree monomial has been successfully re-

duced to w3α4
2, in contrast to w4α4

2 from the ratio of distance

constraint only.

Actually, the angle constraint in Eq.(5) is widely known,

and has been used for the P3P problem in a different math-

ematical form [16].

3.3. Translating Variable

Unfortunately, the 20 coefficients of the bivariate poly-

nomial from the angle constraint are correlated, which

would weaken numerical stability, as shown in Fig.2. We

have recognized that, by translating the variable α2 to α2+1,

the number of monomials can be further reduced to 14, al-

though the highest degree monomial keeps to be w3α4
2.

Specifically, on the basis of the angle constraint togeth-

er with variable translation, every remainging point Xc
i , i =

3, 4, · · · , n, in conjunction with the two endpoints Xc
1

and

Xc
2
, leads to a compact bivariate polynomial Pi(w, α2) with

14 monomials w3α4
2, w2α4

2, wα4
2, α4

2, w2α3
2
, wα3

2
, α3

2
, w2α2

2,

wα2
2, α2

2, wα2, α2, w, 1. The polynomial coefficients can be

easily calculated by using the cosine values of angles, the

distance between points and the image projections.

Before proceeding to solving the PnPf problem, let us

point out that the polynomials Pi(w, α2), i = 3, 4, · · · , n, as-

sume some trivial (physically infeasible) solutions.

Proposition 1. The following four trivial solutions (TS)
are compatible with all n − 2 polynomials Pi(w, α2): (TS-
1). α2 = −1, w = −‖x1‖22; (TS-2). α2 = 1, w = −‖x2‖22;
(TS-3) and (TS-4). a conjugate complex pair w = 0, α2 =(
−b ± √b2 − 4ac

)
/(2a)− 1, where a = ‖x1‖22 + ‖x2‖22 + 2x1 ·

x2, b = −4(‖x1‖22 + x1 · x2), c = 4‖x1‖22.

The proof is very straightforward by plugging the values

of α2 or w back into the ratio of distance constraint in Eq.(4).

Note that similar trivial solutions exist in the ratio based

GB solvers in [2]. The existence of such trivial solutions

and their multiplicity could largely explain why the size of

action matrix varies among the solvers in Table 6.1 of [2].

In the following, we show how to solve the PnPf problem

by using our compact bivariate polynomial.

4. Proposed Method for PnPf
4.1. Estimating Focal Length and Rotation Axis

Considering that the focal length f =
√
w and the rota-

tion axis zo = α2

[
x2; f
] − α1

[
x1; f
]
, we only need to esti-

mate w and α2.

4.1.1 Minimal 4-Point Case

In the presence of 4 points, two triplets lead to a bivariate

polynomial system

P3(w, α2) = 0, P4(w, α2) = 0. (6)

By treating α2 as the hidden variable and using the Sylvester

resultant, Eq.(6) can be solved via the polynomial eigenval-

ue factorization technique [13]

M(α2)v =
∑4

k=0 α
k
2
Mkv = 0, (7)

in which Mk can be constructed by using the coefficients of

the two polynomials. v = [w5;w4; · · · ;w; 1] is the eigenvec-

tor, from which we can extract w.

As suggested in [4,7], we can solve Eq.(7) via the charac-

teristic polynomial technique as well. Specifically, we first

calculate the symbolic determinant of M(α2) and then solve

α2 via the Sturm-sequence method in a prescribed interval

([-1, 1] in our method). Given α2, w can be determined in

closed form using either polynomial in Eq.(6).

The challenge lies in how to calculate the determinan-

t of M(α2) accurately and efficiently. Fortunately, M(α2)



is a 6×6 well-structured matrix with 12 zero entries. This

enables us to directly calculate its determinant via cofac-

tors in double precision arithmetics, rather than resorting

to the more complicated techniques in [4, 7]. As shown in

Fig.2(a), the stability is sufficiently close to that of the poly-

nomial eigenvalue technique.

We have found that Eq.(6) usually has 16 solutions, a-

mong which 6 solutions, including TS-1 (multiplicity 2),

TS-2 (multiplicity 2), TS-3 and TS-4, are trivial.

4.1.2 Overconstrained n-Point Case

In the presence of n (n ≥ 5) points, we can build n−2 bivari-

ate polynomials in all. Due to image noise, these polynomi-

als are not simultaneously feasible, except for those trivial

solutions in Proposition 1.

Inspired by [17], we directly minimize the sum of

squared error defined as F(w, α2) =
∑n

i=3[Pi(w, α2)]2. To

retrieve its global minimum, we can solve the following bi-

variate polynomial system derived from its first order opti-

mality condition

∂F(w, α2)/∂w = 0, ∂F(w, α2)/∂α2 = 0. (8)

Similarly, Eq.(8) can be solved by polynomial eigenvalue

factorization. Although the maximum degree of α2 is 8

here, the numerical stability is sufficiently strong, as shown

in Fig.2(b), thanks to the derived compact bivariate polyno-

mial.

4.2. Estimating Rotation Angle and Translation

After the focal length and rotation axis are determined,

R1 in Eq.(2) and K in Eq.(1) are known. Based on Eq.(1),

the projection equation using 3D points in the intermediate

framework can be rewritten as

λi [xi; 1] = K
(
R1R2Xo

i + tc
o
)
, i = 1, 2, · · · , n. (9)

Due to image noise, the equation could not be complete-

ly satisfied. We can minimize the sum of squared error

min
λi,c,s,tc

o

∑n
i=1

∥∥∥∥λi [xi; 1] − K
(
R1R2Xo

i + tc
o

)∥∥∥∥
2

2
. (10)

After projecting out the linear variables λi and tc
o, Eq.(10)

can be simplified in a standard quadratic minimization prob-

lem with a unit-norm constraint

min
c,s

[c; s]T G [c; s] − bT [c; s], s.t., c2 + s2 = 1, (11)

in which G is a known 2×2 data matrix, while b a 2D col-

umn vector. This problem can be easily solved via quadratic

eigenvalue factorization [20]. It can be further written into

a quartic polynomial, for which closed-from solutions exist.

Note that the solution for Eq.(10) in RPnP is not optimal.

4.3. Iterative Refinement

Until now, all the focal length and pose parameters have

been determined. To conquer the minor problems of error

accumulation in sequential determination of rotation axis

and angle, as well as the randomness in rotation axis selec-

tion, we propose to refine the estimated results further.

Inspired by [22], we parameterize the rotation Rc
o using

the fractional quaternion and fix the scale of the quaternion

to be the reciprocal of the average depth. To minimize the

sum of squared error leads to a unconstrained minimization

problem with five variables (see the supplementary material

for the details). We use the typical Gauss-Newton method

to solve the optimization problem. Since the initialization

is accurate enough, the maximum number of iteration is set

to be 10 throughout the following experiment section.

5. Experiment Results
In this section, we investigate the performance of our

proposed general method for the PnPf problem, referred

to as GPnPf (GP4Pf when n=4) without refinement and

GPnPf+GN (GP4Pf+GN when n=4) with Gauss-Newton

refinement. When n > 4, we compare our method with

the-state-of-the-art solution in [18], denoted by UPnPf or

UPnPf+GN when the refinement step in [18] is used. We

also include into comparison the direct linear transforma-

tion (DLT) for non-planar 3D points and HOMO for planar

points, which extract the focal length and pose parameters

from the projection matrix and the homography, respective-

ly. Note that DLT assumes an uncalibrated camera, while

HOMO uses partial prior calibration information. As ref-

erence, we also consider the calibrated RPnP method by

using the ground-truth focal length.

In the 4-point case, we compare our method with the

best distance-based GB solver (Dist-Best) with a 561×581

elimination template [2], the best ratio-based GB solver

(Ratio-Best) with a 139×153 elimination template [2] and

the ratio-based HVR solver (Ratio-HVR) [3].

We implement our method in MATLAB and use the

MATLAB codes of UPnPf, UPnPf+GN, Dist-Best, Ratio-
Best and Ratio-HVR, which are provided by their respec-

tive authors. However, the characteristic polynomial tech-

nique of GP4Pf is implemented in C and interfaced vi-

a MATLAB-MEX. We run all codes on a notebook with

2.8GHz CPU and 4GB RAM.

5.1. Synthetic Data

We synthesize a virtual perspective camera with zero-

distortion, zero-skew and unit aspect ratio. The principle

point lies at the image center. The image resolution is

800×600 pixels. We randomly vary the focal length from

200 to 2000 pixels. n 3D reference points are randomly

generated in the camera framework. For the nonplanar 3D
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Figure 3. Experiment results w.r.t. varying noise levels (n=8 points) in case of nonplanar 3D (1st row) and planar (2nd row) point configu-

ration. The median rotation, translation, focal length and reprojection error are shown in the 1st, 2nd, 3rd and 4th column, respectively.

case, these points are randomly distributed in the box of [-

2,2]×[-2,2]×[4,8], while for the near-planar case, they are

in [-2,2]×[1,2]×[4,8]. Then, we randomly synthesize the

ground-truth rotation and translation, and transform those

3D points into the world framework. Unless explicitly s-

tated otherwise, we measure the absolute error (in degrees)

of rotation, the relative error (%) of translation and focal

length, between the estimated entities and their correspond-

ing ground truth. The root mean square reprojection error

(in pixels) is also measured.

5.1.1 Numerical Stability

First, we experimentally study how the bivariate polyno-

mial from the angle constraint with variable translation (in

GP4Pf and GPnPf) improves numerical stability over the

ones from the angle constraint alone (Angle-Bi) and the ra-

tio constraint (Ratio-Bi). At each trial, we synthesize 4 or

n (n=20) image points without any noise, and measure the

log10 value of the relative error between the estimated fo-

cal length f and the ground truth fgt, i.e. | f − fgt |/ fgt. The

error histograms over 4000 trials are shown in Fig.2(a) and

Fig.2(b) for the 4-point and n-point (n=20) case. In the 4-

point case, we also compare the stability of GP4Pf with

that of Dist-Best, Ratio-Best and Ratio-HVR in Fig.2(c).

From Fig.2, we can see that our compact bivariate poly-

nomial contributes significantly to improving numerical sta-

bility. Actually, GP4Pf is clearly superior in stability over

the state-of-the-art 4-point solutions.

We have also compared the characteristic polynomial

based implementation of GP4Pf, denoted by GP4Pf-CP in

Fig.2(a). Its stability is very strong overall, except a few

inaccurate estimates, which are probably caused by error

accumulation in the three-stage procedure to calculate f .

5.1.2 Accuracy w.r.t. Varying Noise

Now, we add zero-mean Gaussian noise onto the image

points. We first vary the noise deviation level δ from 0.5 to 5

pixels, while keeping n to be 8. At each noise level, we run

500 independent tests and report the median rotation, trans-

lation, focal length and reprojection error in Fig.3. Note that

in the planar case, we use the specialized version of UPnPf,
in which the Gauss-Newton step plays no role.

Based on Fig.3, in terms of the rotation and reprojection

error, GPnPf is better than UPnPf in the nonplanar 3D case

(1st row), but slightly worse in the planar case (2nd row).

Our GPnPf+GN has the highest accuracy, irrespective of

the error criterion and the point configuration. Its rotation

accuracy is even comparable to that of the RPnP method.

5.1.3 Accuracy w.r.t. Varying Number of Points

Then, we fix δ=2 pixels but vary n from 4 to 15. At each

n, 500 independent tests are conducted. To illustrate the

error distribution, we present the rotation error of UPnPf,
UPnPf+GN, GPnPf and GPnPf+GN in Fig.4 by using the

MATLAB boxplot function.

From Fig.4, we can observe that UPnPf is inaccurate

when 6 ≤ n ≤ 7, and inapplicable at all when 4 ≤ n ≤ 5.

Our GPnPf is general in terms of the number of points, and

works reasonably well even in the near-planar case (2nd
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Figure 4. Experiment results w.r.t. varying number of points (δ=2 pixels) in case of nonplanar 3D (1st row) and near-planar (2nd row) point

configuration. For each method, the distribution of rotation error over 500 trials is shown by using the MATLAB boxplot function. The

values between 25% and 75% percentiles are shown as a box with horizontal line at the median. The red crosses indicate data beyond 1.5

times the inter-percentile range.
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Figure 5. Results of competing 4-point solutions in combination

with RANSAC on synthetic data with 50% outliers and noise lev-

els of 0.1 pixels (left), 0.5 pixels (middle) and 1 pixel (right).

row). Again, GPnPf+GN is the best one among all com-

pared methods. It is therefore recommended to refine the

solutions whenever possible.

5.1.4 Effectiveness with RANSAC

Here, we explore the effectiveness of competing 4-point so-

lutions when used with RANSAC. At each trial, we ran-

domly generate 1000 3D points and project them on the

image. 50% of the image points are severely corrupted to

simulate outliers, while the remaining points disturbed by

0.1, 0.5 and 1 pixel Gaussian noises. Then, we randomly

sample 500 4-point subsets and use the same 4-point subset

for all solutions. We count the maximum number of inliers

found so far by each solution. The inlier threshold is 2 pix-

els. The average counts over 200 trials in the first 200 sam-

plings are shown in Fig.5, from which we can observe that

GP4Pf is as effective as Dist-Best and Ratio-Best, while

GP4Pf+GN can be slightly better. Ratio-HVR is omitted

since it overlaps Dist-Best and Ratio-Best.

5.1.5 Computational Time

It is straightforward to verify that the complexity of GPnPf
and GPnPf+GN is O(n). Here, we compare its speed with
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Figure 6. Running time w.r.t

varying number of points.

Method Time

Dist-Best 100.5 ms

Ratio-Best 2.1 ms

Ratio-HVR 7.6 ms

GP4Pf 1.3 ms

GP4Pf-CP 26.8 μs
Table 1. Running time of com-

peting 4-point solutions.

that of UPnPf and UPnPf+GN when varying n from 6 to

1006. For each n, we conduct 500 tests and report the aver-

age running time in milliseconds (ms) in Fig.6.

In the minimal 4-point case, considering that those pe-

ripheral operations, like calculating the polynomial coeffi-

cients, Gauss-Newton refinement (in GP4Pf+GN) and 3D-

3D registration (in Dist-Best and Ratio-Best), can be made

very fast by implementing them in C, we simply show the

time of solving the polynomial system, as in Table 1. We

observe that GP4Pf is faster than the other compared so-

lutions. Its simple characteristic polynomial based imple-

mentation in C takes only 26.8 microseconds (μs), which

compares favorably with the fast solver reported in [4].

5.2. Real Images

We have also tested our proposed method using real im-

ages captured by a zooming camera with 2144×1424 res-

olution. The principle point is assumed to be at the im-

age center. After establishing tentative correspondences be-

tween the input image and the reference image, we first use

GP4Pf in RANSAC to remove potential outliers. Then, all

inliers are used to estimate the focal length and pose pa-

rameters by GPnPf+GN. As shown in Fig.7, our proposed

method works very well in real scenarios and provides vi-

sually satisfying results.



Figure 7. Experiments using a 3D box (1st row) and a planar book cover (2nd row). In each row, the first image shows the template, while

the remaining five images are the input ones. For each input image, inliers (green circle) have been differentiated from outliers (red cross)

by using RANSAC together with GP4Pf. The input image is augmented by the projected contour using the results of GPnPf+GN.

6. Conclusion
We have proposed a general method for the pose de-

termination problem of a partially calibrated camera with

unknown focal length. In the minimal 4-point case, the

proposed method is numerically stable and effective when

used in RANSAC loop to remove outliers. It can also be

generalized to handle large-scale problems due to its O(n)

complexity, and compares favorably with the state-of-the-

art methods in speed and accuracy. Our method can handle

any nondegenerate configuration in a unified way. In spite

of its generality, the proposed method is very simple to im-

plement, without requiring expertise in the Gröbner basis

technique nor low-level polynomial operations. All these

advantages are attributed to the compact bivariate polyno-

mial equation for a point triplet that we have derived from

the angle constraint3.

Acknowledgement. This work was partially supported by

the Grants-in-Aid for Scientific Research (no. 25240025)

from the Japan Society for the Promotion of Science.

References
[1] M. Abidi and T. Chandra. A new efficient and direct so-

lution for pose estimation using quadrangular targets: algo-

rithm and evaluation. TPAMI, 17(5):534–538, 1995. 1, 2

[2] M. Bujnak. Algebraic solutions to absolute pose problems.

PhD Thesis, Czech Technical University, 2012. 1, 2, 3, 4, 5

[3] M. Bujnak, Z. Kukelova, and T. Pajdla. A general solution

to the p4p problem for camera with unknown focal length.

Proc. CVPR, pages 1–8, 2008. 1, 2, 3, 5

[4] M. Bujnak, Z. Kukelova, and T. Pajdla. Making minimal

solvers fast. Proc. CVPR, pages 1506–1513, 2012. 2, 4, 5, 7

[5] K. Choi, S. Lee, and Y. Seo. A branch-and-bound algorithm

for globally optimal camera pose and focal length. Image
and Vistion Computing, 28(9):1369–1376, 2010. 1, 2

[6] Y. Guo. A novel solution to the P4P problem for an uncali-

brated camera. Journal of Mathematical Imaging and Vision,

45(2):186–198, 2013. 1

[7] R. Hartley and H. Li. An efficient hidden variable ap-

proach to minimal-case camera motion estimation. TPAMI,
34(12):2303–2314, 2012. 2, 4, 5

3Our MATLAB source codes are publicly available at https://

sites.google.com/site/yinqiangzheng/.

[8] R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge Univ. Press, 2nd edition, 2003.

1, 2

[9] A. Irschara1, C. Zach, J.-M. Frahm, and H. Bischof. From

structure-from-motion point clouds to fast location recogni-

tion. Proc. CVPR, pages 2599–2606, 2009. 1

[10] K. Josephson and M. Byrod. Pose estimation with radial

distortion and unknown focal length. Proc. CVPR, pages

2419–2426, 2009. 1

[11] L. Kneip, D. Scaramuzza, and R. Siegwart. A novel

parametrization of the perspective-three-point problem for a

direct computation of absolute camera position and orienta-

tion. Proc. CVPR, pages 2969–2976, 2011. 1

[12] Z. Kukelova, M. Bujnak, and T. Pajdla. Automatic generator

of minimal problem solvers. Proc. ECCV, pages 302–315,

2008. 2

[13] Z. Kukelova, M. Bujnak, and T. Pajdla. Polynomial eigen-

value solutions to minimal problems in computer vision. T-
PAMI, 34(7):1381–1393, 2012. 4

[14] Z. Kukelova, M. Bujnak, and T. Pajdla. Real-time solution

to the absolute pose problem with unknown radial distortion

and focal length. Proc. ICCV, pages 2816–2823, 2013. 1

[15] V. Lepetit, F. Moreno-Noguer, and P. Fua. EPnP: An accu-

rate O(n) solution to the PnP problem. IJCV, 81(2):155–166,

2008. 1, 2

[16] S. Li and C. Xu. A stable direct solution of perspective-three-

point problem. IJPRAI, 25(5):627–642, 2011. 1, 4

[17] S. Li, C. Xu, and M. Xie. A robust O(n) solution to

the perspective-n-point problem. TPAMI, 34(7):1444–1450,

2012. 1, 2, 3, 5

[18] A. Penate-Sanchez, J. Andrade-Cetto, and F. Moreno-

Noguer. Exhaustive linearization for robust camera pose and

focal length estimation. TPAMI, 35(10):2387–2400, 2013. 1,

2, 3, 5

[19] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Ex-

ploring image collections in 3D. ACM TOG (SIGGRAPH
2006), pages 835–846, 2006. 1, 2

[20] F. Tisseur and K. Meerbergen. The quadratic eigenvalue

problem. SIAM Review, 43(2):235–286, 2001. 5

[21] B. Triggs. Camera pose and calibration from 4 or 5 known

3d points. Proc. ICCV, pages 278–284, 1999. 1, 2

[22] Y. Zheng, Y. Kuang, S. Sugimoto, K. Astrom, and M. Okuto-

mi. Revisting the PnP problem: A fast, general and optimal

solution. Proc. ICCV, pages 2344–2351, 2013. 1, 5


