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Abstract

With the widespread availability of video cameras, we
are facing an ever-growing enormous collection of unedited
and unstructured video data. Due to lack of an automatic
way to generate summaries from this large collection of
consumer videos, they can be tedious and time consuming to
index or search. In this work, we propose online video high-
lighting, a principled way of generating short video sum-
marizing the most important and interesting contents of an
unedited and unstructured video, costly both time-wise and
financially for manual processing. Specifically, our method
learns a dictionary from given video using group sparse
coding, and updates atoms in the dictionary on-the-fly. A
summary video is then generated by combining segments
that cannot be sparsely reconstructed using the learned dic-
tionary. The online fashion of our proposed method enables
it to process arbitrarily long videos and start generating
summaries before seeing the end of the video. Moreover, the
processing time required by our proposed method is close to
the original video length, achieving quasi real-time summa-
rization speed. Theoretical analysis, together with experi-
mental results on more than 12 hours of surveillance and
YouTube videos are provided, demonstrating the effective-
ness of online video highlighting.

1. Introduction
With the widespread availability, to both consumers and

organizations, of low-cost devices capable of high-volume
video recording, such as digital cameras on mobile phones,
tablets, and soon, wearable gadgets such as glasses and
watches; and various surveillance cameras and monitoring
devices all over the world and in space, we are inundated
with billion hours of video footage every day potentially
containing events, people, and objects of context-dependent
and time-space-sensitive interests. However, even to the
creators/owners of such data, let alone all the people who
are granted access for various purposes, the contents in all
these videos remain dark matter in the data universe, be-
cause watching these recorded footage in real-time, or even

playing at 2x or 4x speed is hardly possible and enjoyable.
It is no surprise that with this increasing body of video data,
which are largely left unedited and unstructured, all infor-
mation therein are like trees falling in the forest — they are
nearly impossible to access unless already been seen and
indexed, an undertaking too tedious and time consuming
for human, but an ideal challenge for machine intelligence.
In this paper, we refer to those unstructured and unedited
videos as consumer videos, in contrast to movies, news or
sports videos which are often edited by human or having
special structure (such as shot, scene, etc.).

Specifically, we attempt to develop a method that offers
the following function and alike: “I only have 1 minute for
this hour-long video, tell me where/what to watch”. That
is, it automatically compiles the most salient and informa-
tive portion of the video for users, by automatically scan-
ning through video stream, in an online fashion, to remove
repetitive and uninteresting contents. Our method differs
from some previous attempts to video summarization that
eliminate completely the time axis, and show a synopsis
of the video by collecting a few key frames which are se-
lected either arbitrarily, or according to some importance
criteria [33, 11, 15]. Such key frame representation loses
the dynamic aspect of video and is uninteresting to watch.
More importantly, taking merely frames as unit of content
in a video prevents many important information such as sus-
picious behaviors to be recognized automatically by a ma-
chine, therefore compromises the quality of the summary.
On the other hand, the summary generated by our proposed
method is a short video itself, revealing the essence of the
original video, just like a “trailer”.

We propose onLIne VidEo highLIGHTing (LiveLight), a
principled way of online generation of a short video sum-
marizing the most important and interesting contents of a
potentially very long video. Specifically, LiveLight scans
through the video stream, divided into a collection of video
segments temporally. After processing the first few seg-
ments, it starts to build its own dictionary, which will be
kept updated and refined later. Given a new video segment,
LiveLight attempts to employ its current version of dictio-
nary to sparsely reconstruct this previously unseen segment,
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using group sparse coding [3]. A small reconstruction error
of the new video segment reflects that its content is already
well represented in the current dictionary, further suggest-
ing video segments containing similar contents have been
observed in early part of the video. Hence, this segment is
excluded from the summary, and the algorithm moves on to
next segment. On the other hand, if the new video segment
cannot be sparsely reconstructed, i.e., a high reconstruction
error is suffered, indicating unseen contents from previous
video data, our method incorporates this video segment into
the summary, and updates the dictionary according to the
newly included video data. This process continues until the
end of the video is reached. In summary, our method se-
quentially scans the video stream once, learns a dictionary
to summarize contents seen in the video and updates it after
encountering video data that could not be explained using
current dictionary. A summary video is then constructed
as a combination of two groups of video segments: (1) the
first few segments used to learn initial dictionary, captur-
ing background and early contents of the video; (2) video
segments causing dictionary update, suggesting unseen and
interesting contents. Moreover, as the entire process is car-
ried out online, LiveLight could handle hours or even end-
less video data, ubiquitous in consumer videos.

1.1. Related Works

Previous research on video summarization has mainly
focused on edited videos, e.g., movies, news, and sports,
which are highly structured [21, 30]. For example, a movie
could be naturally divided into scenes, each formed by one
or more shots taken place at the same site, and each shot
is further composed of frames with smooth and continuous
motions. However, consumer videos lack such structure,
often rendering previous research not directly applicable.

Key frame based methods compose video summary as a
collection of salient images (key frames) picked from the
original video. Various strategies haven been studied, in-
cluding shot boundary detection [9], color histogram [33],
motion stability [33], clustering [13], curve splitting [7],
and frame self-expressiveness [11]. However, isolated and
uncorrelated still images, without smooth temporal contin-
uation, are not best suited to help viewer understand the
original video. Moreover, [15] proposes a saliency based
method, which trains a linear regression model to predict
importance score for each frame in egocentric videos [15].
However, special features designed in [15] limit its applica-
bility only to videos generated by wearable cameras. Be-
sides picking frames from the original video, methods cre-
ating new image not present in the original video have also
been studied [1, 5, 17, 24, 26, 27], where a panoramic
image is generated from a few consecutive frames having
some important content. However, the number of consec-
utive frames from original video used to construct such

panoramic image is limited by occlusion between objects
from different frames. Consequently, these approaches gen-
erally assume short clips with few objects. Finally, sum-
maries composed by a collection of video segments, have
been studied for structured videos. Specifically, [23] use
scene boundary detection, dialogue analysis, and color his-
togram to produce trailer for a feature film. [2] and [16]
extract important segments from sports and news programs
utilizing special characteristics of these videos, includ-
ing fixed scene structures, dominant locations, and back-
grounds. Moreover, [29] and [28] utilize closed caption and
speech recognition to transform video summarization into
a text summarization problem and generate summaries us-
ing natural language processing techniques. However, the
large body of consumer videos usually have no such special
structure, nor audio information at all.

Sparse coding [22] has led to state-of-the-art results in
several vision tasks such as image denoising and restora-
tion [10, 20], as well as classification [32, 31] and anomaly
detection [34]. Moreover, brute-force deployment of sparse
coding for video summarization, using the entire video as
dictionary, and selecting key frames based on zero patterns
of the coding vector, has recently been attempted [11, 6] on
short videos (less than few minutes long). We will discuss
and compare against such method later in this paper.

1.2. Summary of Contributions

To conclude the introduction, we summarize our main
contributions as follows. (1) We propose a principled way
of generating short summary video of a potentially very
long video, summarizing its most important and interest-
ing contents while eliminating repetitive events, enabling
viewer to understand the video without watching the en-
tire sequence. (2) We propose an online dictionary update
method, enabling our method to generate summaries on-
the-fly. (3) We provide theoretical analysis of the proposed
method, guaranteeing convergence of the online dictionary
update and generalization ability to unseen video segments.
(4) We demonstrate the effectiveness of LiveLight on real-
world data, including both surveillance videos and YouTube
videos, achieving quasi real-time speed on all tested videos.

2. Online Video Highlighting
Given an unedited and unstructured consumer video, on-

line video highlighting starts with temporal segmentation,
breaking original video into segments. Such temporal seg-
mentation should ensure minimum variation, and consis-
tency of objects, view and dynamics within each segment.
Unlike structured videos, where shot boundary detection
could be employed for temporal segmentation, most con-
sumer videos do not even have such shot boundary, but in-
stead with continuous camera movement. Therefore, we
choose to evenly divide the original video into segments,



each with a constant length of 50 frames. Such short tem-
poral length ensures the consistency within each segment.
These video segments are the base units in LiveLight, in
the sense that a few selected ones will compose the final
summary video. A key component in LiveLight is dictio-
nary, which summarizes the contents of seen video. Specif-
ically, a dictionary is initially learned using video segments
at the beginning of the input video, with group sparse cod-
ing. After dictionary initialization, LiveLight scans through
the rest video segments following temporal order, and at-
tempts to reconstruct each video segment using the learned
dictionary. Those video segments with reconstruction error
higher than certain threshold are considered to contain in-
teresting contents unprecedented in previous video, and are
included into the summary video. Moreover, the dictionary
is updated accordingly to incorporate the newly observed
video contents, such that similar video segments seen later
will suffer much smaller reconstruction error. On the other
hand, those video segments that could be well reconstructed
using the current dictionary is excluded from the summary,
as small reconstruction error suggests its content is already
well represented in the current dictionary, further indicating
video segments containing similar contents have been ob-
served in early part of the video. Hence, the dictionary rep-
resents the knowledge about previously seen video contents,
and is updated in an online fashion to incorporate newly
observed contents. Algorithm 1 provides the work flow of
LiveLight, where X0 = {X1, . . . ,Xm} is used to learn ini-
tial dictionary with m � K, and ε0 is a pre-set threshold
parameter controlling length of the summary video.

Algorithm 1 Online Video Highlighting (LiveLight)
input Video X composed of temporal segments {X1, . . . ,XK}
output Short video Z summarizing most important and interest-

ing contents of X
1: Learn initial dictionary D using X0 = {X1, . . . ,Xm} via

group sparse coding and initialize Z = X0

2: for all Video segments Xk ∈ {Xm+1, . . . ,XK} do
3: Reconstruct video segment Xk using current dictionary D

and compute reconstruction error εk
4: if εk is larger than pre-set threshold ε0 then
5: Update dictionary D using Xk and incorporate Xk into

summary video Z = Z ∪Xk

6: end if
7: end for

2.1. Video Segment Reconstruction

The basic idea for our approach is to represent the
knowledge of previously observed video segments using
the learned dictionary D, whose columns (a.k.a. atoms)
are bases for reconstructing future video segments. Given
learned dictionary D (details of learning initial dictionary
will be provided later in this section), LiveLight attempts to

sparsely reconstruct query video segment using its atoms.
Specifically, sparse reconstruction indicates both small re-
construction error and small footprint on the dictionary, i.e.,
using as few atoms from the dictionary as possible. Conse-
quently, video summarization is formulated as a sparse cod-
ing problem, seeking linear decomposition of data using a
few elements from a dictionary learned in online fashion.

We start with discussion of feature representation for
video data. Specifically, we adopt the representation based
on spatio-temporal cuboids [14, 8, 12], to detect salient
points within the video and describe the local spatio-
temporal patch around the detected interest points. Differ-
ent from optical flow, this feature representation only de-
scribes spatio-temporal salient regions, instead of the entire
frame. On the other hand, spatio-temporal cuboids are less
affected by occlusion, a key difficulty in tracking trajectory
based representations. Specifically, we adopt the spatio-
temporal interest points detected using the method in [8],
and describe each detected interest point with histogram of
gradient (HoG) and histogram of optical flow (HoF). The
feature representation for each detected interest point is then
obtained by concatenating the HoG feature vector and HoF
feature vector. Finally, each video segment is represented
as a collection of feature vectors, corresponding to detected
interest points, i.e., Xk = {x1, . . . ,xnk

}, where nk is the
number of interest points detected in video segment Xk.

Different from conventional settings of sparse coding,
where input signal is a vector, the input signal in our prob-
lem is a video segment, represented as a group of vectors
Xk = {x1, . . . ,xnk

}. Therefore, our goal is to effectively
encode groups of instances in terms of a set of dictionary
atoms D = {dj}|D|j=1, where |D| is the size of the dictio-
nary, i.e., number of atoms in D. Specifically, given learned
dictionary D, LiveLight seeks sparse reconstruction of the
query segment X, as follows

min
A

1

2

1

|X|
∑
xi∈X

∥∥∥∥∥∥xi −
|D|∑
j=1

αijdj

∥∥∥∥∥∥
2

2

+ λ

|D|∑
j=1

‖αj‖2 (1)

where A = {α1, . . . ,α|X|}, αi ∈ R|D| is the reconstruc-
tion vector for interest point xi ∈ X, and |X| is the number
of interest points detected within video segment X. The first
term in (1) is reconstruction cost. If video segments similar
to X have been observed before, this term should be small,
due to the assumption that the learned dictionary represents
knowledge in the previously seen video data. The second
term is the group sparsity regularization. Since dictionary
D is learned to sparsely reconstruct previously seen video
segments, if X contains no interesting or unseen contents,
it should also be sparsely reconstructible using few atoms
in D. On the other hand, if contents in X have never been
observed in previous video segments, although it is possible
that a fairly small reconstruction cost could be achieved, we



would expect using a large amount of video fragments for
this reconstruction, resulting in dense reconstruction weight
vectors. Moreover, the special mixed `1/`2 norm of A
used in the second term regularizes the number of dictio-
nary atoms used to reconstruct the entire video segment X.
This is more preferable over conventional `1 regularization,
as a simple `1 regularizer only ensures sparse weight vec-
tor for each interest point xi ∈ X, but it is highly possible
that different interest points will have very different foot-
print on the dictionary, i.e., using very different atoms for
sparse reconstruction. Consequently, reconstruction for the
video segment X could still involve large number of atoms
in D. On the other hand, the `1/`2 regularizer ensures a
small footprint of the entire video segment X, as all inter-
est points within segment X are regularized to use the same
group of atoms for reconstruction. Moreover, the tradeoff
between accurate reconstruction and compact encoding is
controlled by regularization parameter λ. Finally, we de-
note the value of (1) with optimal reconstruction matrix A
as ε, which is used in Algorithm 1 to decide if segment X
should be incorporated into the summary video.

Consequently, LiveLight encapsulates the following in-
tuitions for what we would think of a video summary. Given
a dictionary optimized to sparsely reconstruct previously
seen video contents, a new segment exhibiting similar con-
tents seen in previous video data should be reconstructible
from a small number of such atoms. On the other hand, a
video segment unveiling contents never seen before is either
not reconstructible from the dictionary of previous video
segments with small error, or, even if it is reconstructible, it
would necessarily build on a combination of a large num-
ber of atoms in the dictionary. Crucial to this technique, is
the ability to learn a good dictionary of atoms representing
contents seen in previous video segments, and being able to
update the dictionary online to adapt to changing content of
the video, which we discuss in detail later in this section.

2.1.1 Optimization

To find the optimal reconstruction vectors {αi} for inter-
est points in X, we need to solve problem (1). We employ
alternating direction method of multipliers (ADMM) [4] to
carry out such optimization, due to its efficiency. Specifi-
cally, ADMM consists of the following iterations:

∀i : αik+1=

[
D>D

|X|
+ρI

]−1[
D>xi
|X|

+ρ(zik−uik)
]

(2)

∀j : zj,k+1=Sλ/ρ(αj,k+1 + uj,k) (3)

∀i : uik+1=uik +αik+1 − zik+1 (4)

and alternates among the above updates until convergence,
where ρ > 0 is called the penalty parameter, I ∈ R|D|×|D|
is the identity matrix, S is the soft-thresholding opera-
tor defined as Sκ(a) = max{(1 − κ/|a|), 0}a, A =

{α1, . . . ,α|X|}, Z = {z1, . . . , z|X|} = {z>1 , . . . , z>|D|}
>,

U = {u1, . . . ,u|X|}, index i runs through {1, . . . , |X|},
index j runs through {1, . . . , |D|} and k is the iteration
counter. Both Z update (3) and U update (4) are trivial to
compute. The A update in (2) can be accelerated via tech-
niques such as warm start, caching factorization and fast
matrix inversion as discussed in [4].

2.1.2 Learning Initial Dictionary

In this section, we discuss how to learn an initial dictionary,
necessary to launch the LiveLight algorithm. Specifically,
we would like a learning method that facilitates both in-
duction of new dictionary atoms and removal of dictionary
atoms with low predictive power. To achieve this goal, we
again apply `1/`2 regularization, but this time to dictionary
atoms. The idea for this regularization is that uninformative
dictionary atoms will be regularized towards 0, effectively
removing it from the dictionary. Given first few video seg-
mentsX0 = {X1, . . . ,Xm}, we formulate learning optimal
initial dictionary as follows

min
D,{A1,...,Am}

1

m

∑
Xk∈X0

J(Xk,Ak,D)+γ

|D|∑
j=1

‖dj‖2 (5)

where J(Xk,Ak,D) is the objective function in (1), and γ
balances sparse reconstruction quality and dictionary size.
Though non-convex to D and {A1, . . . ,Am} jointly, (5) is
convex w.r.t. {A1, . . . ,Am}when D is fixed, and also con-
vex w.r.t. D with fixed {A1, . . . ,Am}. A natural solution
is to alternate between these two variables, optimizing one
while clamping the other. Specifically, with fixed dictionary
D, each Ak ∈ {A1, . . . ,Am} can be optimized individu-
ally, using optimization method described in the previous
section. On the other hand, with fixed {A1, . . . ,Am}, op-
timizing dictionary D can be similarly solved via ADMM.
Due to limit of space, we omit details for this optimization.

2.2. Online Dictionary Update

As LiveLight scans through the video, segments that can-
not be sparsely reconstructed using current dictionary, indi-
cating unseen and interesting contents, are incorporated into
the summary video. However, all following occurrences of
similar contents appearing in later video segments, should
ideally be excluded. Consequently, it is crucial to update the
dictionary such that those video segments already included
in the summary video should no longer result in large re-
construction error. Assume the current version of summary
is Zt, composed of t video segments {Xk}tk=1, then the
optimal dictionary is the solution of the following problem

min
D

f(D)= min
A1,...,At

1

t

∑
Xk∈Zt

J(Xk,Ak,D)+γ

|D|∑
j=1

‖dj‖2 (6)



where we need to store feature representations {Xk}tk=1 for
all t segments inZt. This might not cause problem for short
videos, however, for hours of videos, especially surveillance
videos running endlessly, storing these feature representa-
tions requires huge space. Moreover, solving the above op-
timization problem from scratch using alternating optimiza-
tion for each dictionary update, is extremely time consum-
ing, and would hinder the algorithm from applicable to real
world consumer videos. Therefore, LiveLight employs on-
line learning for approximate and efficient dictionary up-
date [19]. Specifically, instead of optimizing dictionary
D and reconstruction coefficients {A1, . . . ,At} simulta-
neously, LiveLight aggregates the past information com-
puted during the previous steps of the algorithm, namely
the reconstruction coefficients {Â1, . . . , Ât} computed us-
ing previous versions of dictionary, and only optimizes D in
problem (6). Therefore, the online dictionary update seeks
to solve the following approximate optimization problem

min
D

f̂(D)=
1

t

∑
Xk∈Zt

J(Xk, Âk,D)+γ

|D|∑
j=1

‖dj‖2 (7)

It is easy to see that f̂(D) upper bounds f(D) in prob-
lem (6). Moreover, theoretical analysis shown in the next
section guarantees that f̂(D) and f(D) converges to the
same limit and consequently f̂(D) acts as a surrogate for
f(D). Moreover, it is easy to show that problem (7) could
be equivalently reformulated as follows

min
D

1

2t
T r(D>DPt)−

1

t
T r(D>Qt)+γ

|D|∑
j=1

‖dj‖2 (8)

where Tr(·) is matrix trace, Pt and Qt are defined as

Pt =

t∑
k=1

∑
αi∈Ak

αiαi
>
, Qt =

t∑
k=1

∑
αi∈Ak

xiα
i> (9)

Therefore, there is no need to store {Âk}tk=1 or {Xk}tk=1,
as all necessary information is stored in Pt and Qt. Finally,
problem (8) could be efficiently solved using ADMM.

2.3. Importance of Dictionary

Very recently, there have been attempts employing the
idea of sparse reconstruction for video summarization [11,
6]. However, those approaches use the entire video itself
as basis for reconstruction, instead of learning and updating
a dictionary as concise summary of video contents. Using
the entire video as reconstruction basis [11, 6], significantly
increases the complexity of optimization and computational
time, as shown later in the experiments, the approach in [6]
takes nearly 10 times more CPU time than LiveLight on the
same videos. Such heavy computational footprint hinders
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Figure 1. (Left) 15 video segments; (Right) reconstruction error for each
video segment.

those approaches from being applied in temporally long
consumer videos (actually, [11, 6] only used videos with
at most several minutes in their empirical study). More-
over, [11, 6] have to see the entire video before starting to
generate summary, eliminating the possibility of real-time
summarization. On the other hand, the dictionary learned
and updated in LiveLight concisely summarizes the contents
of seen video, significantly reduces computational cost, and
captures any concept drift in video streams.

2.4. Sanity Check

We use synthetic video to perform sanity check on Live-
Light. Specifically, we use two types of video sequences
from Weizmann action recognition data [12], i.e., walk and
bend. The synthetic video is constructed by combining 5
walk sequences, followed by 5 bend sequences, and 5 more
walk sequences. Details of this synthetic video are shown
in Figure 1. LiveLight learns initial dictionary using the first
walk sequence, and carries out reconstruction and online
dictionary update on the rest 14 video sequences. There are
2 clear peaks in Figure 1, corresponding to the third walk se-
quence, which is the first occurrence of walking from left to
right (the first and second sequences are both walking from
right to left), and the first bend sequence. Moreover, the re-
construction error for the fourth walk sequence, which also
shows walking from left to right, is significantly smaller
then the third walk sequence, indicating the dictionary has
learned the contents of walking to the right, through online
dictionary update. Finally, the last 5 walk sequences all re-
sult in small reconstruction errors, even after LiveLight has
just observed 5 bend sequences, showing that the dictionary
retains its knowledge about walk.

3. Theoretical Analysis
We first study the convergence property of online dictio-

nary update. Specifically, we have the following theorem,
Theorem 1 Denote the sequence of dictionaries learned in
LiveLight as {Dt}, where D1 is the initial dictionary. Then
f̂(D), defined in (7), is the surrogate function of f(D), de-
fined in (6), satisfying
(1) f(D)− f̂(D) converges to 0 almost surely;
(2) Dt obtained by optimizing f̂ is asymptotically close to
the set of stationary points of (6) with probability 1



Theorem 1 guarantees that f̂(D) could be used as a proper
surrogate for f(D), such that we could optimize (7) to ob-
tain the optimal dictionary efficiently, instead of solving the
much more time-consuming optimization problem (6).

Next, we study the generalization ability of LiveLight
on unseen video segments. Specifically, as LiveLight scans
through the video sequence, the dictionary is learned and
updated only using video segments seen so far. Conse-
quently, the dictionary is optimized to sparsely reconstruct
contents in seen video segments. It is crucial for LiveLight
to also be able to sparsely reconstruct unseen video seg-
ments, composed of contents similar to video segments seen
before. This property is called generalization ability in sta-
tistical machine learning terminology. Specifically,
Theorem 2 Assume data points X (i.e., video segments)
are generated from unknown probability distribution P .
Given t observations {X1, . . . ,Xt}, for any dictionary D,
and any fixed δ > 0, with probability at least 1− δ

EX∼PJ
∗(X,D)− 1

t

t∑
k=1

J∗(Xk,D) ≤ ε(t, δ) (10)

where J∗(X,D) = minA J(X,A,D) is the minimal re-
construction error for X using dictionary D, as defined
in (1), and ε(t, δ) = o(ln t/

√
t) is a small constant that

decreases as t increases.

The above theorem is true for any dictionary D, and ob-
viously also true for the dictionary learned in LiveLight.
Therefore, Theorem 2 guarantees that if dictionary D has
small reconstruction error on previously seen video seg-
ments, it will also result in small reconstruction error for
unseen video segments with similar contents.

4. Experiments
We test the performance of LiveLight on more than 12

hours of consumer videos, including both YouTube videos
and surveillance videos. The 20 videos in our data set span
a wide variety of scenarios: indoor and outdoor, moving
camera and still camera, with and without camera zoom
in/out, with different categories of targets (human, vehicles,
planes, animals etc.) and covers a wide variety of activities
and environmental conditions. Details about the data set are
provided in Table 1.

4.1. Experiment Design and Evaluation

We compare LiveLight with several other methods, in-
cluding evenly spaced segments, K-means clustering [6]
using the same features as our method, and DSVS algo-
rithm proposed in [6], state-of-the-art method for video
summarization. It is shown in [6] that DSVS already
beats color-histogram based method [25] and motion-based
method [18]. Parameters for various algorithms are set such

Video Time Frames CamMo Zoom
CarRace 34.00 61133 Yes No
FirefighterSave 21.53 38714 Yes Yes
MonsterTruck 50.85 91430 Yes No
StockCar 38.91 69963 Yes No
SpeedBoat 64.03 115249 Yes Yes
DogSwimming 20.08 36106 No No
PetEvent 33.63 60472 Yes Yes
HorseTraining 20.67 37171 Yes No
ShowJumping 20.73 31087 Yes Yes
Snorkeling 21.92 39463 Yes No
DisneyParade 29.10 50694 Yes No
ShamuShow 21.08 37845 Yes No
BoatTour 28.36 51043 Yes Yes
AirShow 12.04 21626 Yes Yes
PolicePullOver 46.58 83761 Yes No
SubwayExit 43.27 64902 No No
SubwayEntrance 96.17 144249 No No
Mall-1 55.44 83156 No No
Mall-2 39.98 59969 No No
Mall-3 60.35 90525 No No

Table 1. Data set details. The first 15 videos are downloaded from
YouTube, and the last 5 videos are from surveillance cameras. Video
length (Time) is measured in minutes. CamMo stands for camera motion,
and Zoom means camera zoom in/out.

T LL(%) ES(%) CL(%) DSVS(%)
CarRace 60.7 59.80 40.53 44.98 58.04
FirefighterSave 59.4 66.84 38.22 52.53 55.83
MonsterTruck 61.6 54.38 42.05 49.35 46.36
StockCar 60.2 61.30 35.55 40.03 48.36
SpeedBoat 59.3 75.55 45.03 59.53 77.07
DogSwimming 62.2 79.10 42.93 54.34 64.57
PetEvent 61.9 58.32 36.51 54.12 43.93
HorseTraining 60.3 66.17 54.06 53.90 60.63
ShowJumping 60.6 46.86 39.93 37.13 44.22
Snorkeling 60.4 60.10 37.58 62.09 56.83
DisneyParade 58.5 67.69 39.49 62.56 67.17
ShamuShow 59.0 61.36 34.75 21.02 48.75
BoatTour 59.9 59.28 33.89 40.57 50.93
AirShow 36.8 85.33 49.46 74.46 72.29
PolicePullOver 61.7 91.41 30.63 60.45 76.75
SubwayExit 89.1 91.87 21.55 47.70 85.03
SubwayEntrance 92.1 80.56 42.56 43.65 73.85
Mall-1 89.7 94.98 37.46 57.08 85.40
Mall-2 88.4 96.83 43.67 61.99 87.72
Mall-3 92.0 88.26 38.70 58.59 81.99
Average - 72.30 39.23 51.80 64.29

Table 2. T is the length (seconds) of summary video. LL: LiveLight; ES:
evenly spaced segments; CL: K-Means Clustering; DSVS: sparse recon-
struction using original video as basis [6].

that the length of generated summary videos are the same
as ground truth video. For LiveLight, we fix the number
of atoms in dictionary to 200, though better performance is
possible with fine tuning of parameters.

For each video in our data set, three judges selected
segments from original video to compose their preferred
version of summary video. The final ground truth is then
constructed by pooling together those segments selected by
at least two judges. Following [6], to quantitatively de-
termine the overlap between algorithm generated summary
and ground truth, both video segment content and time dif-
ferences are considered. Specifically, two video segments



Figure 2. (Best viewed in color and zoom-in.) Some frames of the sum-
mary video generated by LiveLight for a YouTube video showing police
pulling over a black SUV and making arrest (frames are organized from
left to right, then top to bottom in temporal order). From the summary
video, we could see the following storyline of the video: (1) Police car
travels on the highway; (2) Police car pulls over black SUV; (3) Police
officer talks to passenger in the SUV; (4) Two police officers walk up to
the SUV, and open the passenger side door of the SUV; (5) Police officer
makes arrest of a man in white shirt; (6) Police officer talks to passenger in
the SUV again; (7) Both police car and black SUV pull into highway traf-
fic; (8) Police car follows black SUV off the highway; (9) Both vehicles
travel in local traffic; (10) Black SUV pulls into local community.

must occur within a short period of time (two seconds in
our experiments), and must be similar in scene content and
motion pattern to be considered equivalent. Final accuracy
is computed as the ratio of segments in algorithm generated
summary video that overlaps with ground truth.

4.2. Results

According to the quantitative comparison provided in
Table 2, we have following observations: (1) LiveLight
achieves highest accuracy on 18 out of 20 videos, and in
most cases beats competing algorithms with a significant
margin; (2) On the 5 surveillance videos, both LiveLight and
DSVS outperform other two algorithms, showing the ad-
vantage of sparse reconstruction based methods on summa-
rizing surveillance videos; (3) Averaged across 20 videos,
LiveLight outperforms the state-of-the-art summarization
method DSVS by 8%, revealing the advantage of LiveLight.

Besides quantitative measures, we also show the auto-
matically generated summary (“trailer”) for YouTube video
PolicePullOver (more summary videos are provided in sup-
plementary material). As shown in Figure 2, the summary
video captures the entire story line of this near hour long
video, achieving more than 40 times compression in time
without losing semantic understandability of the summary
video. Moreover, the background in this video involves var-
ious cars passing in both directions, and it is interesting that
LiveLight is not affected by this background motion.

4.3. Time Complexity

LiveLight is implemented using MATLAB 7.12 on a
3.40 GHZ Intel Core i7 PC with 16.0 GB main memory.
Table 3 compares the processing time of various algorithms,
with the following observations: (1) The last column under
LiveLight shows the ratio between its computational time
and video length. For all videos, this ratio is less than 2, and
for 6 videos even less than 1. Thus, with MATLAB imple-
mentation on a conventional PC, LiveLight already achieves
near real-time speed, further revealing its promise in real
world video analysis applications; (2) LiveLight is nearly
10 times faster than DSVS, revealing the advantage of learn-
ing and updating dictionary in an online fashion, instead of
using original video as basis for sparse reconstruction.

5. Conclusions
In this paper, we propose LiveLight to generate short

video summarizing the most important and interesting con-
tents, of a potentially very long video. LiveLight enables
viewer to understand the video without watching the en-
tire sequence. Theoretical analysis is provided, focusing
on online dictionary update convergence, and generaliza-
tion ability to unseen video segments. Experiments on real
world surveillance videos and YouTube videos demonstrate
the effectiveness and efficiency of LiveLight. The fact that
LiveLight is quasi real-time on all tested videos shows its
promise on summarizing the huge body of consumer videos.
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