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Abstract

3D reconstruction from a single image is a classical
problem in computer vision. However, it still poses great
challenges for the reconstruction of daily-use objects with
irregular1 shapes. In this paper, we propose to learn 3D re-
construction knowledge from informally captured2 RGB-D
images, which will probably be ubiquitously used in dai-
ly life. The learning of 3D reconstruction is defined as a
category modeling problem, in which a model for each cat-
egory is trained to encode category-specific knowledge for
3D reconstruction. The category model estimates the pixel-
level 3D structure of an object from its 2D appearance, by
taking into account considerable variations in rotation, 3D
structure, and texture. Learning 3D reconstruction from u-
biquitous RGB-D images creates a new set of challenges.
Experimental results have demonstrated the effectiveness of
the proposed approach.

1. Introduction
3D reconstruction is a classical area in the field of com-

puter vision, but 3D reconstruction from a single image still
has great challenges. In this paper, we re-consider the prob-
lem of single-view 3D reconstruction in terms of two CV
areas: category modeling and knowledge mining from big
visual data (see Fig. 1).

Category modeling & task output: For the bottleneck
in single-view 3D reconstruction, i.e. the reconstruction of
objects with irregular1 structures, we have to return to the
concept of “category modeling”.

Therefore, the objective is to train a model to detect ob-
jects in the target category in large images, while simulta-
neously projecting their 2D shapes into the 3D space at the
pixel level. The category model encodes the knowledge of
how intra-category structure deformation and object rota-
tions affect 2D object shapes.

Mining from big visual data & task input: Another
bottleneck lies in efficiently learning the category-specific

1The word “irregular” is used to indicate that our approach focuses
on general object categories without setting strong assumptions for object
shapes. In contrast, Cheeger-set-based methods focus on ball-like surfaces,
and perspective-based methods require vanishing points.

Informally captured 
RGB-D images

Collected RGB-D 
object samples

Category 
model

2D shape

3D structure

Category 
detector

Category 
detectorA RGB 

image

Figure 1. Flowchart for training (cyan arrows) and testing (green
arrows) processes. Single-view 3D reconstruction is hampered by
objects with irregular1 shapes. Therefore, for objects in each cate-
gory, we aim to learn a specific category model for 3D reconstruc-
tion. We propose to directly train the category model from “in-
formally captured” RGB-D images (where target objects are NOT
aligned) to save human labeling, thereby ensuring high efficiency
in model learning. We first mine the category detector from infor-
mally captured RGB-D images to collect RGB-D objects, and then
use these object samples to train the category model. For testing,
the category detector and category model are used in sequence to
localize the target object and estimate its 3D structure.

knowledge of 3D reconstruction for a huge number of cat-
egories. Ideally, we would need to train a model for each
object category in daily use, so as to construct a knowl-
edge base to provide a 3D reconstruction service for arbi-
trary RGB images. Therefore, we hope to learn from big
visual data2 to avoid the labor of manually preparing train-
ing samples (e.g. well built 3D models), and thus ensure a
high learning efficiency.

In this paper, we train category models directly from in-
formally captured and “unaligned” RGB-D images. We use
the phrase “informally captured” to describe loose require-
ments for ubiquitous2 images. They are typical of what can
be directly collected by search engines (Figures 1 and 2).

The informally captured images are not manually
aligned, and they consist of small objects that are ran-
domly positioned. In particular, these daily-use objects are

2Actually, learning from “big visual data” is still in the early stages
of development, and its scope is quite extensive. It usually involves two
aspects. This first is learning from a large amount of web data, such as the
widely used deep learning [17]. The second is learning under challenging
conditions of “informally captured” images that contain small objects and
are ubiquitous in everyday life, as is the case in our method. [26] also
provides detailed description of the second aspect.

1
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Figure 2. Overview of challenges.

usually designed with texture variations, various rotations,
and some structure deformation for commercial purposes.
Technically speaking, these images can be loosely regarded
as a kind of big visual data2.

Challenge analysis: Just like the training, the RGB im-
ages for testing 3D reconstruction are also such kind of in-
formally captured images in this research. The use of in-
formally captured images raises a number of challenges, as
shown in Fig. 2.

For application purposes, the category model should
have the ability to detect small target objects with various
textures, rotations, and scales in large RGB images before
3D reconstruction. Similarly, the learning process should
also be able to handle these challenges to collect RGB-D
objects in cluttered RGB-D images. Moreover, this detec-
tion has to be accurate to the part level, since 3D reconstruc-
tion uses the parts’ 2D positions to estimate the pose and 3D
structure of an object.

Then, we analyze the challenges of learning 3D recon-
struction knowledge from the collected RGB-D objects3.
We need to simultaneously consider the following three fac-
tors that affect the correspondence between the 2D and 3D
structure of the object. 1) Rotation changes. This is the
primary factor. 2) Deformation of 3D object structures. 3)
Depth errors near object edges in training samples (mea-
sured by the Kinect)

Proposed method: As shown in Fig. 1, the training of
category detectors is the first step. The category detectors
collect3 RGB-D/RGB object samples from the informally
captured RGB-D/RGB images, which serves as the basis for
further training/testing of 3D reconstruction. We use unsu-
pervised category modeling based on graph matching [28]
to train the category detector (specified in [26]). This algo-
rithm automatically discovers a set of relatively distinguish-
ing parts (namely key parts) of objects for each category.

3In our study, these objects are collected from RGB images (or RGB
dimensions of the RGB-D images) using the trained category detectors.
The 3D object structure is projected into the 2D shape afterwards.

Thus, the category detector achieves a part-level detection.
We then train the category model to use the parts’ 2D posi-
tions to determine the object’s pose and 3D structure.

Unlike conventional methods that use well built 3D mod-
els to provide multi-view object appearances and prior reg-
ularity of 3D structure deformation, our approach needs to
learn this knowledge in an unsupervised manner. In other
words, we need to train the category model to simultane-
ously remove the effects of viewpoint changes, and esti-
mate the 3D structure deformation using the 2D shape of
an object. The category model consists of a number of es-
timators, each corresponding to a specific position inside
the 2D shape. These estimators use the spatial relationship
between key object parts to estimate the corresponding 3D
coordinates of their positions. We connect neighboring es-
timators to form a continuous Markov random field (MRF)
and thus train these estimators.

The contributions of this paper can be summarized as
follows. We regard 3D reconstruction from a single image
as a category modeling problem to overcome the difficulties
in the reconstruction of irregular1 shapes. To ensure a high
learning efficiency and a wide application, this is the first
attempt to learn category models from informally captured
RGB-D images, and then apply the category model back to
the informally captured RGB images for 3D reconstruction.
We explore a new set of challenges raised by our choice of
training and testing data, and provide a solution.

2. Related work
3D reconstruction is a large area in the field of comput-

er vision. However, in this paper, we limit our discussion
to 3D reconstruction from a single image. Many method-
s for single-view 3D reconstruction have strong assump-
tions for the image environment. For example, “shapes
from shading” methods [23, 4, 3, 14] had special require-
ments for lighting conditions and textures. A large number
of studies use the perspective principle for 3D reconstruc-
tion. They were typically based on the vanishing points
in images, and therefore assumed that these images con-
tained enough cues to extract vanishing points [24, 15].
Such methods were mainly applied to large-scale indoor
and urban environments. In addition, some studies used
the ground/vertical assumption to assist in vanishing point
extraction [13, 2, 7, 8]. Saxena et al. [19] proposed to
learn an MRF for 3D reconstruction in large-scale environ-
ments. Fouhey et al. [9] proposed to learn 3D primitives
from RGB-D images for single-view reconstruction of in-
door environment.

A number of methods relied on the assumption that the
object structure in question had smooth surfaces. They usu-
ally extracted object-level structures from locally captured
images that contained no perspective cues. For example,
the Cheeger Set approach [18] assumed that the target ob-



ject had ball-like surfaces. Given the object contour and the
object volume, it computed the 3D structure with the min-
imum surface area. However, such assumptions for object
structure are usually not valid for the reconstruction of ir-
regular1 shapes. Therefore, many methods [25, 22, 21, 14]
combined human interactions with these assumptions to
guide the 3D reconstruction.

By and large, the lack of cues for the estimation of irreg-
ular1 object structures is the main challenge for single-view
3D reconstruction. From this perspective, our research is
related to the example-based methods [11, 10, 20]. They
required a comprehensive dataset of 3D object samples that
were captured in all poses from different viewpoints. The
3D structure knowledge of a target object was extracted via
a large number of comparisons between the object and the
samples in the dataset. Chen et al. [6, 5] learned 3D re-
construction knowledge from well built 3D object models.
These 3D object models provided knowledge on structure
deformation and the multi-view appearance. In this way,
they learned to match the 2D shape of a given object to the
3D object models, and thus estimate the object’s viewpoint,
pose, and 3D structure.

In contrast, we apply much less supervision to idealize
the concept of automatic “category modeling” in terms of
training. Learning from informally captured RGB-D im-
ages without manual alignment saves great labor for prepa-
ration for 3D object models or a large 3D-example dataset.
The challenges of object detection, rotation changes, and
the estimation of 3D structure deformation are all involved
in the training process. The trained category model is then
applied back to the informally captured RGB images for 3D
reconstruction, without example comparison.

3. Training of category detectors
Category detectors are not only trained from, but also ap-

plied to informally captured and unaligned images. The cat-
egory models for 3D reconstruction are designed on the ba-
sis of category detectors. In our study, we use the graphical
model defined in [26] as the category detector, considering
the need for robustness to shape deformations and rotations
in the informally captured images. We then apply unsuper-
vised learning for graph matching [28] to mine the category
detectors. In reality, we simply use the RGB channels of
RGB-D images for training. The detector is trained to en-
code the pattern for the common objects in all the images.
A set of key object parts are discovered to form the pattern
for a category (see Fig. 3(c)).

Category detectors: As shown in Fig. 3(a), the im-
age is represented as a complete attributed relational graph
(ARG). In Fig. 3(b), continuous object edges (magenta) are
discretized into line segments (black), and these line seg-
ments form the graph nodes. Thus the objects within it are
represented as sub-graphs.
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Figure 3. Object detectors. (a) Graph-based image representation.
Object edge segments (cyan) form the graph nodes. (b) Notation
for the graphical model. The initial graphical model consists of
five nodes (colored lines) and edges (dotted lines) between them.
(c) Learning the graphical model (category detector). The algo-
rithm modifies (i) the initial graphical model into (ii) the SAP (G).
The node set and node/edge features are modified so that 1) the
node number (size) of G is maximized and 2) all the node/edge
features represent common patterns in all the graphs.

The category detector is a graphical model in [26], which
will be automatically trained to be the soft attributed pattern
(SAP) among the target sub-graphs (or objects) in differen-
t images. Let graph G with node set V denote the mod-
el. G is described by a set of node and edge features. Let
{Fs

i } and {Fst
j } (i = 1, 2, ..., NP , j = 1, 2, ..., NQ) denote

the i-th node feature for node s and the j-th edge feature
for edge (s, t), respectively. Here, NP and NQ indicate
the feature numbers for each node and edge, respectively.
FV = {Fs

i }
⋃
{Fst

j }, ∀s, t ∈ V . Note that Fs
i includes

the texture features on the terminals of lines segments. The
category detector thus also contains the textural knowledge.
(Please see [26] for details of the feature settings.)

Object detection: Object detection is achieved via
graph matching. Given a target RGB image represented by
graph G′ with a node set V ′, graph matching is performed
to compute the matching assignments between G and G′.
Let x denote the label set, and let the label xs ∈ x denote
the matched node in G′ for node s in G. Graph matching
is formulated as the minimization of the following energy
function w.r.t x.

E(x|FV,FV ′)=
∑
s∈V

Ps(xs|FV,FV ′)+
∑

s,t∈V,s 6=t

Qst(xs,xt|FV,FV ′) (1)

This is a typical formula for graph matching, where
the functions Ps(·|·, ·) and Qst(·, ·|·, ·) measure matching
penalties (feature dissimilarity) between the two matched
nodes and edges. These are generally defined using
squared differences. E.g. Ps(xs|FV,FV ′) = wT [‖Fs

1 −
Fxk

s
1 ‖2, ...,‖Fs

NP
−Fxk

s

NP
‖2]. (Please see [28] for details.)

Learning graph matching with SAPs: As shown in
Fig. 3(c), [28] proposed an algorithm for mining SAPs. The



SAP is a fuzzy attributed pattern, which describes the com-
mon sub-graphs in a set of ARGs, in which node and edge
features have considerable variations. In other words, the
category detector (i.e. the SAP) represents a set of key
object parts (nodes) that frequently appear in training im-
ages of the entire category. The category detector is trained
taking into account the robustness to texture variations and
structure deformations.

To start the training process, this method requires people
only to label the sub-graph of a single object for initializing
the graphical model G. [28] is designed to modify G from
the specific shape of the labeled object into the SAP among
all graphs. Given a set of N training images, each image is
denoted by {G′k} (k = 1, 2, ..., N ) with node set V ′k . FV ′

k

are the attribute sets of G′k, and xks ∈ xk ∈ X indicates the
node in V ′k matched by s ∈ V . The “frequency” of node s
in G is defined as the average penalty for matching s to all
the {G′k}, as follows.

Es(X̂,F̂V )=
1

N

N∑
k=1

[
Ps(x̂

k
s |F̂V ,FV ′

k
)+
∑

t∈V,t6=s

Qst(x̂
k
s , x̂

k
t |F̂V ,FV ′

k
)
]

If Es(X̂, F̂V ) is less than a given threshold τ , node s
is regarded as a frequently appearing part; otherwise not.
Hence, the goal of learning graph matching is to train the
node set V and attributes FV of model G, in such a manner
that 1) all nodes of G frequently appear in graphs {G′k} and
2) the size of G is maximized.

max
V
‖V ‖

s.t. (F̂V , X̂) = argmin
FV ,X={xk}

∑N

k=1
E(xk|FV ,FV ′

k
);

∀s ∈ V, Es(X̂, F̂V ) ≤ τ.

(2)

[28] proposes an EM framework to solve (2).

4. Learning 3D reconstruction
We introduce the preparation of training samples, mod-

el learning, and the application of 3D reconstruction in the
following three subsections.

4.1. Object sample collection & pose normalization

The preparation of training samples involves two steps,
i.e. object sample collection and 3D pose normalization. In
the first step, we use the trained category detector to collect
RGB-D samples from informally captured RGB-D images
for training. Each training sample contains its 2D shape and
the 3D coordinates of each 2D pixel within it. The 3D co-
ordinates are measured in the global coordinate system of
each RGB-D image, rather than a coordinate system w.r.t
the object. Therefore, in the second step, we compute the
3D pose of the object, and thereby normalize the 3D coor-
dinates into the object coordinate system.

Object sample collection: We use the category detec-
tor to match a set of key object parts (graph nodes) in each
image by applying (1). However, as mentioned above, the
key parts consist of line segments on the object, and do not
comprise the entire object body. Therefore, we first recov-
er the entire body area of the object from the detected line
segments, before the further learning. Actually, a number of
methods for interactive4 object segmentation are oriented to
this application. Nevertheless, in order to make a reliable
evaluation of the proposed 3D reconstruction method, we
need to simplify the whole system and thereby avoid bring-
ing in uncertainties related to object segmentation. Con-
sequently, given the key line segments of the object, we
roughly estimate its body area as the convex hull of the line
terminals (see Fig. 4(c)).

3D pose normalization: We define centers and 3D
poses for the object samples in the RGB-D images, thus
constructing a relative coordinate system for each sample,
as shown in Fig. 4(f,bottom). We then project 3D point
clouds of the objects onto these coordinate systems, as the
ground truth of their 3D structures.

Fig. 4(e) shows the notation. The center of an object is
defined as the mean of the 3D coordinates of its key parts
c =

∑
1≤s≤m ps/m, where m is the part (node) number

and ps denotes the center coordinates of part s. We define
the orientations of the three orthogonal coordinate axes <
v1,v2,v3> as follows.

v1=u(v
′
1 + v′2), v2=u(v

′
1 − v′2), v3=v′1×v′2 (3)

where function u(·) normalizes a vector to a unit vector,
v′1 =u(

∑
1≤s<t≤m u(pt − ps)), v′2 =u(

∑
1≤s<t≤m(ot×

os)), and os denotes the 3D orientation of line segment s.

4.2. Model learning

We train a category model from RGB-D object samples
to estimate the pixel-level 3D reconstruction. Essentially,
even if we are given a prior 3D structure for a category,
3D reconstruction from a single image still has great chal-
lenges. There are two general hypotheses, i.e. object rota-
tions and structure deformations, to interpreting a specific
2D object shape in 3D reconstruction. Each hypothesis can
independently estimate the 3D object structure from the 2D
shape (e.g. computing the rotation or 3D deformation of the
prior 3D structure that best fits the contour of the 2D shape).

Obviously, the 3D reconstruction needs to combine the
both hypotheses. Unlike [5, 6] using well built 3D object
models to provide or train prior regularity of structure de-
formation, we need to train the category model to simulta-
neously identify the effects of object rotations and struc-
ture deformations from 2D shapes, without prior knowl-
edge. This greatly increases the challenge.

4The key object parts can be labeled as the foreground.
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Figure 4. Some steps in learning 3D reconstruction. (a,b) Visu-
alization of the detected key object parts in the RGB and depth
image. (c) Recovery of the object body area. (d) Notation for the
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Fig. 5 shows the basic design of the category model.
The category model handles both the effects and directly
projects each 2D pixel into a 3D space. Considering the
model’s robustness to shape deformation, we use a set of lo-
cal 2D coordinate systems to simultaneously localize each
pixel inside the 2D shape. Each local 2D coordinate system
is constructed using each pair of key object parts. For each
point in every 2D coordinate system, we train a local regres-
sor to estimate its 3D coordinates from its point features.

The point features are designed to represent the spa-
tial relationship between the point and key objects parts,
as well as the 2D shape of these key object parts. Thus,
the point features contain sufficient cues for object rotation-
s and structure deformation to guide the estimation of the
3D coordinates of each 2D point. For point p in the lo-
cal 2D coordinate system w.r.t key parts s and t of a giv-
en object sample, its point features are defined as θpst =
[ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, 1]

T . ϑ1 and ϑ2 denote the lengths of s
and t, respectively, and ϑ3 denotes the angle between s and
t. ϑ4 and ϑ5 measure the distance between p and the line
segments s and t, respectively. ϑ1, ϑ2, ϑ4, and ϑ5 are nor-
malized by the centerline length between s and t (Fig. 4(d)).

Then, the local regressor Fp
st(·) is modeled as a linear

regression of the 3D coordinates of p using θpst:

Fp
st(θ

p
st) = (θpst)

TMp
st (4)
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Figure 5. Learning 3D reconstruction. The category model uses
different local 2D coordinate systems (bottom) to localize the 2D
points, and estimates the 3D structure in these coordinate system-
s. Given a specific 2D coordinate system w.r.t each pair of key
parts s and t, we generate a MRF to train the parameter Mp

st for
the local regressor Fp

st(·) in each different point p. Fp
st(·) uses

the point feature θp,(i)
st in object sample i to estimate 3D coordi-

nates of p, thus overcoming i’s specific object rotations, structure
deformation, and depth errors.

where matrix Mp
st is the parameter for the function Fp

st(·).
The local regressor Fp

st(·) is the basic element of the cat-
egory model. The category model is formulated as a linear
combination of these local regressors, as follows.

Y(x) = 1

Z

∑
1≤s<t≤m

wp
stF

p
st(θ

p
st)|p=pst(x) (5)

where Z =
∑

1≤s<t≤m w
p=pst(x)
st . x is a pixel inside the

2D object shape, and Y(x) estimates its 3D coordinates. s
and t indicate two key parts of the object;m denotes the key
part number. Given the local coordinate system constructed
using s and t, function pst(x) determines the 2D position
of x in this coordinate system. Thus, function Fp

st(·) is the
local regressor of 3D coordinates for point p in the coordi-
nate system of s and t, as mentioned above. wp

st measures
the reliability of the local regressor Fp

st(·) and is regarded
as its weight.

Local 2D coordinate system: As shown in Fig. 4(d),
given the line segments of each pair of key parts s and t (1 ≤
s < t ≤ m), we generate a local 2D coordinate system.
The line segment connecting the center of s to that of t is



called the centerline between s and t. The origin of the
local coordinate system w.r.t s and t is defined as the center
of the centerline. We take the centerline’s orientation as the
orientation of the first coordinate axis, and determine the
orientation of the second axis using the right-hand rule. The
unit vector of the first axis is normalized using the centerline
length, and that of the second axis is normalized using the
average segment length of s and t.

Model learning based on a continuous MRF: In the
local 2D coordinate system determined by the key parts s
and t, the local regressors of the neighboring positions are
connected to form an MRF. We generate the following ob-
jective function to learn the parameters of the regressors.

argmax
Mst

∑
p∈V

φ1(M
p
st) +

∑
(p,q)∈E

φ2(M
p
st,M

q
st) (6)

where Mst = {Mp
st|p ∈ V}; V and E denote node and

edge sets of the MRF, respectively.
In the MRF, the unary term φ1(·) measures the similar-

ities between the ground truth and the 3D coordinates esti-
mated by the regressor for each point p.

φ1(M
p
st) =

1

‖S‖
∑
i∈S

exp(−η‖Fp
st(θ

p,(i)
st )− ypi ‖) (7)

where S is the set of training samples. For each object sam-
ple i, θp,(i)st and ypi denote the point feature and true 3D
coordinates of p, respectively. η is a scaling parameter.

The pairwise term φ2(·, ·) is a smoothing term between
neighboring points.

φ2(M
p
st,M

q
st) = −λ(M

p
st −Mq

st)
2 exp[−α(Up + Uq)2]

Up =
1

‖S‖
∑
i∈S

max
(p,p′)∈E

‖ypi − y
p′

i ‖ (8)

where Up use true 3D structures of the training samples to
measure the discontinuity around point p. Object areas with
high discontinuity, such as object edges, have low weights
for smoothing. λ and α are scaling parameters. We use the
MCMC method to solve the continuous MRF.

Finally, when the regressor Fp
st(·) has been trained, the

weight for Fp
st(·) in (5) is computed as

wp
st =

1

‖S‖
∑
i∈S

exp[−η(Fp
st(θ

p,(i)
st )− ypi )

2] (9)

4.3. 3D reconstruction based on category models

As shown in Fig. 1, we use a trained category model to
directly perform 3D reconstruction on testing RGB images.
We first use the trained category detector to collect target
objects in the RGB images, and simultaneously determine
the body area of the objects (see Section 4.1). We then use
the category model in (5) to estimate the 3D coordinates for
each pixel inside the object.

5. Experiments

5.1. Data

We use the category dataset of Kinect RGB-D im-
ages [1, 26], which is published as a standard RGB-D object
dataset5 for the learning of graph-matching-based model-
s, such as [26, 27]. These RGB-D images depict cluttered
scenes containing objects with different textures and rota-
tions. Four categories—notebook PC, drink box, sprayer,
and dustpan—in this dataset contain a sufficient number of
RGB-D objects for training and are thus chosen in the ex-
periments.

5.2. Implementation details

Training of category detectors: We train the SAP
(category detector) from a set of large graphs (informally
captured images). Parameter τ controls the graph size of
the SAP, or in other word, the number of key object parts
contained by the category detector. When we set a higher
value for τ , we can extract more key parts for a category,
but the key parts are less reliable in part detection. To sim-
plify the learning process, we require the SAPs (detectors)
to have four nodes (key parts) for all the four categories.
We try different values of τ in the training process, until the
category detector satisfies this requirement. Hence, we can
detect four key parts for each object, and the rotation and
deformation of the object are determined by the complex
spatial relationship between the four key parts.

Learning 3D reconstruction: As shown in Fig. 5, in
each local 2D coordinate system, we divide the entire ob-
ject area comprising of 50×50 grids to identify different 2D
points. A local regressor with parameter Mp

st is generated
for each grid p, and we thus use the local regressors con-
struct the MRF. For the application of 3D reconstruction,
many pixels in the 2D shape are not accurately localized in
the grid centers. To achieve accurate pixel-level 3D recon-
struction, we interpolate the regressor parameter value for
each 2D pixel from the trained parameters Mp

st of the near-
by grids. We set parameter α as 0.1 for all the categories in
model learning, and use different values of λ and η to test
the system.

5.3. Quantitative comparison

Competing method: We compare our approach with
conventional methods for 3D reconstruction from a single
image. As discussed in Section 2, most related techniques
have their own specific assumptions for the target image
and are thus not suitable for 3D reconstruction of irregular1

shapes. From this viewpoint, example-based 3D reconstruc-
tion is close to our method, but conventional techniques are

5Compared to other RGB-D datasets i.e. [16, 12], this is one of the
largest RGB-D object datasets, and reflects challenges of graph matching.
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Figure 6. 3D reconstruction comparison. The proposed method exhibits smaller reconstruction errors and surface roughness than the
example-based method. The learning of category models is not sensitive to different settings of parameters λ and η. λ and η are not
involved in the example-based method.

hampered by the use of informally captured RGB-D im-
ages for training. Nevertheless, considering the challenges
in the training dataset, we design a competing method that
achieves a rough idea of the example-based 3D reconstruc-
tion, as follows. First, given a RGB image, we use the cate-
gory detector trained in Section 3 to detect the target object
in it, as well as its key object parts. We then randomly select
an RGB-D object from the training sample set as the exam-
ple for 3D reconstruction. The 3D coordinate estimation
is based on (5), just like the proposed method. However,
without training, the weight for local regressors (wp

st) is set
to 1. The local regressors Fp

st is redefined as a constant, i.e.
the 3D coordinate for point p on the example, rather than a
function in (4) w.r.t. point features θpst.

Pixel-level evaluation: We evaluate the reconstruction
errors and surface roughness (non-smoothness) of the pro-
posed approach at the pixel level. Reconstruction errors are
widely used to evaluate 3D reconstruction. We manually
prepare the ground the truth of the 3D structure for each
object using the Kinect measurement. We measure the dis-
tance between the estimated 3D coordinates of each pixel
and its true coordinates, as the pixel reconstruction error.
We define the reconstruction error of an object as the av-
erage reconstruction error of its constituent pixels. The re-
construction error of a category is defined as the average
reconstruction error of all its objects. The other evaluation
metric is the surface roughness. The roughness of pixel p
is measured as rp = ‖Yp − 1

N(p)

∑
q∈N(p) Yq‖, where

pixel N(p) is the set of 4-connectivity neighboring pixels
of p, Yp denotes the estimated 3D coordinates of pixel p
on the object. Just like the reconstruction error, the objec-
t roughness is the average of the pixel roughness, and the
surface roughness of a category is defined as the average of
object-level roughness.

The evaluation is achieved via cross validation. Just as
in [26, 27], we randomly select 2/3 and 1/3 of the RGB-
D images in the entire dataset as a pair of sample pools
for training and testing, respectively. Each pair of sample
pools can train a category model, and provide values of the

reconstruction error and surface roughness for the catego-
ry. We prepare different pairs of training and testing pools
and compute the average performance by cross validation.
Fig. 6 and Fig. 7 show the comparison of 3D reconstruction
performance. Without sufficient learning, the competing
method cannot correctly estimate structure deformation for
objects, and suffers from the unavoidable errors in Kinect’s
depth measurement.

6. Conclusions
In this paper, we proposed to learn a category model for

single-view 3D reconstruction, which encoded knowledge
for structure deformation, texture variations, and rotation
changes. The category model was both trained from and
applied to the informally captured images. Experiments
demonstrated the effectiveness of the proposed method.

For the training of category detectors, we used various
node and edge features. These included texture features
on local image patches. Thus, the texture information con-
tributes to the extraction of key object parts. However, tex-
tures contribute much less in further 3D reconstruction, as
many daily-use objects (e.g. the drink box) are designed
with different textures that are unrelated to object structures
for commercial purposes. The spatial relationship between
key object parts was, therefore, taken as more reliable cues
for 3D reconstruction and used in model learning.

We did not apply object segmentation and thus avoided
the uncertainties related to it, so as to simplify the system
and enable a reliable evaluation. The category model did
not performed so well on object edges as in other object
area due to the time-of-the-flight errors and calibration er-
rors between 3D points and RGB images.
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