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Abstract

In this paper, we propose a novel two-step scheme to
filter heavy noise from images with the assistance of re-
trieved Web images. There are two key technical contri-
butions in our scheme. First, for every noisy image block,
we build two three dimensional (3D) data cubes by using
similar blocks in retrieved Web images and similar non-
local blocks within the noisy image, respectively. To bet-
ter use their correlations, we propose different denoising
strategies. The denoising in the 3D cube built upon the re-
trieved images is performed as median filtering in the spa-
tial domain, whereas the denoising in the other 3D cube is
performed in the frequency domain. These two denoising
results are then combined in the frequency domain to pro-
duce a denoising image. Second, to handle heavy noise, we
further propose using the denoising image to improve image
registration of the retrieved Web images, 3D cube building,
and the estimation of filtering parameters in the frequency
domain. Afterwards, the proposed denoising is performed
on the noisy image again to generate the final denoising re-
sult. Our experimental results show that when the noise is
high, the proposed scheme is better than BM3D by more
than 2 dB in PSNR and the visual quality improvement is
clear to see.

1. Introduction
With continued advances in CMOS and CCD image sen-

sors [26], noise in captured images is becoming smaller and
smaller even in poor lighting conditions. For the noise actu-
ally captured in images, the current advanced image denois-
ing approaches, such as BM3D [6] and EPLL-GMM [30],
can attenuate it easily while maintaining the image details.

Recently, both industry and academia have proposed
transmitting images and videos over wireless networks
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without compression [18] or with half compression [16],
which avoids the cliff effect in communication, does not
require accurate channel estimation, and better supports
multicast. In this way, pixels or coefficients are transmit-
ted directly through the channel and thus received images
and videos contain additive channel noise. Sometimes, the
channel condition is very poor and the variance in the chan-
nel noise is even larger than that of transmitted signals, as
shown in Fig. 1 (b). Fig. 1 (c) shows that current image
denoising approaches, e.g. BM3D, do not work well in this
case. Clearly, new approaches are required to address the
denoising problem with heavy noise.

When images contain heavy noise, intuitively it is dif-
ficult for current single-image based denoising approaches
to obtain good results because they only use the correlation
within the noisy image, where it is hard to distinguish be-
tween the noise and image details. To better solve this prob-
lem, we propose using retrieved Web images for denoising.
Before this paper, using Web images has been proposed in
image colorization [19], image completion [24, 14], sketch
to photo [27, 20] and computer generated graph to photo
[21]. To the best of our knowledge, there have been few
papers that explore using Web images for denoising.

It is not trivial to leverage extrinsic correlation (vs. in-
trinsic correlation within a noisy image itself) for denois-
ing. For every noisy image block, we build two 3D data
cubes, one using similar blocks in the retrieved Web im-
ages (called the extrinsic cube) and another using similar
non-local blocks within the noisy image (called the intrin-
sic cube). In order to fully exploit both extrinsic and intrin-
sic correlations, we propose different denoising strategies.
The denoising in the intrinsic cube, similar to BM3D, is
performed in the frequency domain, whereas the denoising
in the extrinsic cube is performed as median filtering in the
spatial domain. We get the denoising image by combining
the spatial and frequency filtered results in the frequency
domain.

Although local feature descriptors extracted from noisy
images can be used to retrieve correlated images, the loca-
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Figure 1. Image denoising results. The first row shows whole images (resized) and the second one presents regions marked by the red box
correspondingly. (a) Original image (with a standard deviation of 82.3); (b) Noisy image with a noise standard deviation of 100; (c) BM3D
[6] denoising result (26.23 dB); (d) Our denoising result (28.28 dB).

tions of local feature descriptors are not accurate because of
heavy noise. Furthermore, the accuracy of building 3D data
cubes is greatly affected by the noise. Therefore, we pro-
pose extracting local feature descriptors from the denoising
image to improve the registration of the retrieved images as
well as improve the 3D data building by using the denoising
block for matching. At the same time, similar to BM3D, we
also use the denoising results to estimate the filtering param-
eters in the frequency domain. With these improvements,
we perform the proposed denoising approach on the noisy
image again. As shown in Fig. 1 (d), our approach produces
good results even when the noise variance is larger than that
of the input image. It is better than BM3D by more than 2
dB.

The rest of this paper is organized as follows. Section
2 gives an overview of related work. Section 3 describes
the proposed denoising scheme, including the retrieval of
correlated images. Section 4 proposes combined image de-
noising (CID) in the spatial and frequency domains. The
experimental results are presented in Section 5. Section 6
concludes this paper.

2. Related work
2.1. Image denoising

Denoising approaches can be classified into two cate-
gories: single-image-based and learning-based.

The single-image-based denoising approaches aim to re-
move noise by using the correlation within the noisy im-
age. Earlier approaches removed noise pixel by pixel,
through the use of bilateral filtering, anisotropy diffusion,
or total-variation regularization. Recent, approaches have

performed block by block, such as non-local means filter-
ing [1], sparse representation [8], BM3D [6], or low-rank
regularization [7]. The denoising performance has been im-
proved greatly at the block level rather than the pixel level.

Learning-based approaches use certain priors learned
from noise-free images for denoising. Elad et al. and Mairal
et al. proposed using sparse representation to train the pri-
ors [8, 23]. Roth et al. proposed training high-order Markov
random field (MRF) models as priors [25]. Zoran et al.
proposed training finite Gaussian mixture models as priors
[30]. In [3], the relationship between a noisy patch and its
noise-free version has been studied by a plain multi-layer
perceptron (MLP) deduced from a large training image set.
All these methods have demonstrated that the priors learned
from noise-free images are helpful in denoising.

The above single-image-based and learning-based ap-
proaches cannot adequately deal with noisy images that
have heavy noise. Thus, the multi-scale strategy is in-
troduced in denoising when the noise level is high [2].
Since the noise is uncorrelated across neighboring pixels,
down-sampling will reduce the noise level and make image
structures more visible. In addition to the simple down-
sampling, there is also a multi-scale sparse representation
based denoising algorithm [9]. Furthermore, M. Zontak
et al. proposed using the patch recurrence across scales to
recover the signal [22]. Also, the combined internal and
external image denoising methods are proposed in [10, 13].

Compared with learning-based approaches, our ap-
proach does not have a training process and tries to always
retrieve the most correlated Web images for denoising. The
trained models have the advantage of reduced data size.
However, the training process also drops a great deal of use-



ful information contained in the training image set. Our ap-
proach is expected to have a much better performance by
fully utilizing all information in retrieved images. In addi-
tion, since there is not a training process, our approach has
the potential to use a large-scale image database for denois-
ing.

2.2. Applications using Web images

As more images become available on the Internet, many
problems in image processing and computer vision can be
better solved by retrieving correlated images. Liu et al. pro-
posed using Web images for the colorization of an image
[19]. Hays et al. proposed using Web images to recover
missed regions in an image [14]. Whyte et al. proposed
using Web images to remove objects from an image [24].
Zhang et al. proposed using Web images to enhance per-
sonal photos [4]. Eitz et al. and Chen et al. proposed using
Web images to generate images from their sketches [27, 20].
Johnson et al. proposed using Web images to generate im-
ages from computer generated graphs [21]. Yue et al. pro-
posed using Web images to reconstruct an image from its
small description [11].

Previously, our basic idea using Web images for denois-
ing is proposed in [12]. That approach is similar to BM3D,
which performs denoising in the frequency domain, ex-
cept using similar blocks obtained from external images re-
trieved from Cloud. We will denote that scheme as BM3DC

in the following, with superscript C denoting Cloud. How-
ever, BM3DC totally ignores the intrinsic correlation, re-
sulting in poor visual quality due to the incorrect retrieval
and limiting the denoising performance. Compared with
BM3DC , there are two significant contributions in this pa-
per. First, the combination of spatial and frequency denois-
ing is proposed to fully leverage the intrinsic and extrinsic
correlations. Second, the denoising result from the first step
is utilized to improve image registration and 3D data build-
ing in the second step, thus leading to a better denoising
performance when the noise level is high.

3. Proposed scheme using Web images
Given a noise free image I , its noisy version Ī is pro-

duced as
Ī(·) = I(·) + n(·), (1)

where n(·) is the additive zero-mean independent identi-
cally distributed (i.i.d.) Gaussian noise with variance σ2,
n(·) ∼ N(0, σ2). We aim to recover Ĩ , the estimated noise
free version of Ī , with the help of retrieved correlated im-
ages {I1, I2, ..., IK}.

The proposed denoising scheme using Web images is
shown in Fig. 2. Given a noisy image Ī , we first extract
its local feature descriptors. In this paper, we use SIFT de-
scriptors [5] but our scheme is not limited to this kind of

Figure 2. The proposed denoising scheme using Web images.

descriptor. Although the image Ī contains heavy additive
Gaussian noise, we have found that the extracted SIFT de-
scriptors are still workable for retrieval because SIFT ex-
traction contains Gaussian filtering and down-sampling that
greatly attenuate the noise. The noise mainly affects the
locations of SIFT descriptors. In the next section, we will
discuss how to improve the location accuracy. In addition,
we also discard some SIFT descriptors that have low con-
trast to reduce the noise effect.

In the image retrieval module of Fig. 2, we use the ap-
proach proposed in [17], where a large scale SIFT descrip-
tor is bundled with small scale SIFT descriptors that are
completely covered by the large scale SIFT descriptor. Here
we refer to them as a SIFT group. The SIFT group is more
robust to noise than an individual SIFT descriptor because
the relative positions of SIFT descriptors in the group are
considered in retrieval. Finally, we match all SIFT groups
extracted from the noisy image with those extracted from a
candidate image. The images {I1, I2, ..., IK} are retrieved
as correlated images with many matched SIFT groups.

Our main technical contributions in this paper are in the
denoising module. With the retrieved images, we will dis-
cuss how to attenuate noise using both intrinsic and extrin-
sic correlations in the next section.

4. Proposed combined image denoising
Fig. 3 shows the framework of our two-step CID.

4.1. Step 1

The retrieved Web images may have different scales,
viewpoints, and orientations. Using the locations of
matched SIFT groups, we can estimate the geometric trans-
form from every retrieved image to the noisy image and reg-
ister it toward the noisy image. Because of heavy noise,
a photometric transform cannot be estimated accurately.
Thus, we must remove the mean value of every block while
building the extrinsic cube, which will reduce the effect of
different illuminations.

After registration, for every noisy image block BĪ ,
we first search for the most similar blocks in the re-
trieved images and assume that there are m found blocks
Be

1, B
e
2, · · · , Be

m. The similar blocks are obtained by mini-
mizing the `2 distance. The superscribe e indicates the ex-



Figure 3. Flowchart of the proposed CID algorithm. The operations surrounded by dash-dot lines are repeated for each noisy block. The
noisy image is Ī , and its correlated images are {I1, I2, ..., IK}. The final denoising result is Ĩ .

trinsic correlation. Similarly, there are n non-local blocks,
Bi

1, B
i
2, · · · , Bi

n, found in the noisy image, where the super-
scribe i indicates the intrinsic correlation. Therefore, two
3D data cubes are built as shown in Fig. 3, denoted as Be

3D

and Bi
3D, respectively. Note that Be

1 and Bi
1 are the noisy

block BĪ itself. The mean value of every block in Be
3D has

been removed to reduce illumination differences.
In the intrinsic cube Bi

3D, similar to BM3D [6], we adopt
a 3D transform and filter the noise by hard-thresholding in
the transform domain. The denoising process is described
as follows:

B̂i
3D = T −1

3D
(
γ(T3D(Bi

3D))
)
, (2)

where T3D represents the 3D transform consisting of a 2D
wavelet transform and a 1D Hadamard transform along the
third dimension, and γ represents the hard thresholding of
the transform coefficients with a given threshold λ3Dσ. Af-
ter the inverse 3D transform T −1

3D , we obtain the denoised
3D intrinsic cube B̂i

3D. The first block B̂i
1 in B̂i

3D is the
denoising result. For simplicity, we use B̂i to represent B̂i

1.
However, the extrinsic cube Be

3D that contains only one
noisy block and m − 1 noise free blocks is not sparse in
the frequency domain. Furthermore, the hard thresholding
in the frequency domain will attenuate many image details
while removing noise. In the spatial domain, observing
in the third dimension, the noise looks like an impulsive
function in the array. Therefore, we adopt spatial filtering,
namely, median filtering, to remove the noise from Be

3D.
Median filtering can be described as the following `1 mini-
mization problem

B̂e(x) = arg min ||Be(x)−{Be
1(x), · · · , Be

m(x)}||1, (3)

where x is a 2D spatial coordinate. B̂e, the set of all B̂e(x),
is the denoising result in the extrinsic cube Be

3D.
However, since the retrieved images have different illu-

minations than the noisy image, as shown in Fig. 3, the
denoising result B̂e may have different illuminations than
the noisy image, even though the mean values have been
removed. In other words, the spatial filtered image may be

largely distorted in the low frequency. Fortunately, we have
observed that the frequency filtered image does a good job
of keeping low-frequency information because the found
blocks have a similar illumination. Therefore, we propose
combining the spatial and frequency filtered images B̂e and
B̂i as follows

B̃1st = T −1
2D

(T2D(B̂i)�W i + T2D(B̂e)�W e

W i +W e

)
, (4)

where T2D and T −1
2D are forward and inverse 2D DCT trans-

form, respectively. The parameter� is the point-wise multi-
plication. Matrix W i and W e are the weighting matrices to
combine the frequency coefficients of B̂i and B̂e. The reli-
ability of T2D(B̂i) is decided by noise variance. The higher
the noise, the less reliability the high-frequency coefficients
have. Therefore, we only combine the first F frequency co-
efficients of B̂i and B̂e. The remaining coefficients are di-
rectly copied from T2D(B̂e). The number F is determined
by noise deviation σ as follows

F =
N√
σ + 1

, (5)

where N is the number of pixels in one block. We have
observed that large coefficients in low frequency domains
are more important for recovering the structure of a block.
Therefore, the weighting matrix W i is proportional to the
value of

(
T2D(B̂i)

)2
/
(
T2D(B̂e)

)2
. Similarly, W e is pro-

portional to the value of 1/W i.
After obtaining the denoising image block B̃1st for ev-

ery noisy image block BĪ in Ī , they are averaged together,
resulting in the first step denoising image Ĩ1st.

4.2. Step 2

After obtaining Ĩ1st, we can use it in the second step of
denoising. The noise in Ĩ1st is assumed to be greatly attenu-
ated. Therefore, we can first use it to improve the geometric
transform by extracting SIFT descriptors from Ĩ1st and re-
calculating the matched SIFT groups between Ĩ1st and the
retrieved images. Second, since the pixel values of Ĩ1st are
closer to the original image, we can estimate photometric
transforms between Ĩ1st and the retrieved images. In our



Figure 4. Test images used in our experiments denoted from “a” to “g”.

scheme, we use pixel values of matching SIFT keypoints to
calculate a linear photometric transform.

In addition, the block matching process will be more ac-
curate using Ĩ1st. Both intrinsic and extrinsic block match-
ing can benefit from this. We would like to point out that
adding some noise to Ĩ1st will improve the accuracy of
block matching because Ĩ1st may be too smooth, which will
result in incorrect matching in the extrinsic cube. Therefore,
we use Ĩbasic, which is calculated as

Ĩbasic = Ĩ1st + λ(Ī − Ĩ1st), (6)

to search similar blocks in the registered images. λ here is
a weighting factor.

Finally, Ĩ1st can be used to improve the frequency fil-
tering by using it to calculate Wiener filtering coefficients.
In the second step of denoising, we build two 3D intrinsic
cubes. One is built by retrieving similar blocks in Ĩ1st, de-
noted as B̃i2nd

3D , and the other is built from the noisy image Ī
using the same location blocks as matched in Ĩ1st, denoted
as Bi2nd

3D . The frequency denoising result is obtained via
Wiener filtering as follows:

B̂i2nd

3D = T wie−1

3D
(
Wwie � (T wie

3D (Bi2nd

3D ))
)
, (7)

where T wie
3D represents a 2D DCT transform and a 1D

Hadamard transform along the third dimension. T wie−1

3D is
the inverse 3D transform. The wiener shrinkage coefficient
Wwie is determined by

Wwie =
|T wie

3D (B̃i2nd

3D )|2

|T wie
3D (B̃i2nd

3D )|2 + σ2
. (8)

Similar to Step 1, the denoising block B̃2nd is obtained
by combining the spatial filtering block and frequency fil-
tering block. Then these blocks are aggregated together to
generate the final denoising image Ĩ2nd.

We would like to point out that when the noise level is
high (σ > 80), we prefer to first down sample the noisy
image by a factor of 0.8 and then hallucinate the denoised
image to its original resolution.

5. Experimental results
In our test, we used an image dataset containing 505,062

images to simulate the Web images. In the dataset,

5,062 images were from the public dataset Oxford Build-
ing [15], the others were landmark and building images
(≥ 1024× 768) crawled from Flickr1. Different levels of
Gaussian noise were added to seven Oxford Building im-
ages (as shown in Fig. 4) for the denoising test.

Some empirical parameters were used to generate the
following results. The number of K correlated images was
four. The numbers of blocks in the extrinsic and intrinsic
one were K + 1 and 16 (m = 5, n = 16), respectively. The
hard thresholding parameter λ3D was set to 2.7. The num-
ber of pixels in a block in Eq. (5) was 256 (N=256). The
parameter λ in Eq. (6) was 0.1.

In the following subsections, we will first demonstrate
the advantage of CID by comparing it with four state-of-the-
art approaches, and then present some intermediate results
of CID to show its efficiency step by step.

5.1. Comparison with other schemes

We evaluated the performance of CID in comparison to
four state-of-the-art methods, including single-image based
BM3D [6], learning based EPLL [30], texture enhanced
based GHP [28] and correlated image based BM3DC [12].
For a fair comparison, the same correlated images were
used in both BM3DC and CID.

Table 1 shows the objective evaluation of the five meth-
ods in terms of PSNR and SSIM [29] values. The Gaussian
noise deviation σ was set at 50,70, and 90 to suit a high
noise scenario. We have highlighted the best results for each
noise level in bold and our CID method clearly achieved the
best PSNR and SSIM results over all the test images. Com-
pared with BM3D, GHP, and EPLL, our scheme constantly
outperforms these schemes at more than 2 dB in PSNR and
more than 0.1 in SSIM, on average. Compared with the sec-
ond best result BM3DC, our method achieves more than 1
dB gain, although the two methods used the same external
correlated images. It further demonstrates the importance
and effectiveness of the combined filtering in denoising.

Fig. 5 shows some visual evaluations of the five
schemes. This figure shows the exemplified denoising re-
sults for image “a”, “b”, “c”, and “e” when σ is 70. For
each image we show two cropped regions highlighted with
red boxes to visualize the details. It can be observed that our

1http://www.flickr.com/



Figure 5. The denoising results for image “a”, “b”, “c”, and “e” when the noise standard deviation was 70. For each column, the first row is
the noisy image. Two crops of the regions indicated by red boxes are shown from the second row to the eighth row, obtained from the noisy
image, BM3D result [6], EPLL result [30], GHP result [28], BM3DC result [12], proposed CID result, and the original image respectively.

method reconstructs the most natural and realistic details
for all the test images. For image “c”, our method faithfully
recovers the dense edges on the wall and the tiny charac-
ters, while all the other methods fail. We also reconstruct
vivid textures, such as the decorative pattern in the wall
in image “a” and the tree in image “e”. BM3D generates

much smoother denoising results because the frequency fil-
tering not only alleviates the noise but also reduces the im-
age details. EPLL and GHP produce noisy artifacts along
the edges since the priors learned from general natural im-
ages or the noisy image itself (when the noise level is high)
cannot clearly reveal the original information.



In brief, among all the test schemes, our CID produced
the best denoising results in terms of both subjective and
objective qualities.

5.2. Intermediate results

This subsection presents the intermediate results of our
CID to illustrate the step-by-step enhancement of the de-
noising images. To clearly show the details, Fig. 6 presents
the intermediate results of two regions, R1 (left) and R2
(right) in image ”a”, as marked by two red boxes in Fig.
5. In this figure, the top three groups of images illustrate
the intermediate results of Step 1 and the bottoms ones are
the results of Step 2 (as defined in Section 4). From left
to right, the three columns show the results of frequency
filtering only, spatial filtering only, and our combined fil-
tering, respectively. We can observe that for region R1,
the frequency filtering greatly deduces the details because
the high-frequency coefficients are filtered out, whereas the
spatial filtering keeps the details quite well. But for region
R2, the frequency filtering provides much sharper edges
whereas the spatial filtering makes a clean sky but blurred
edges because of a lack of good matched blocks in the re-
trieved images. Our combined filtering takes advantage of
both these filters and achieves the best results in both cases.
We also found that improved results were achieved in Step 2
after the first step of denoising and the Step 2 CID presents
the best one among all the results with clean edges and the
sky.

6. Conclusion

In this paper, we have proposed denoising images that
have heavy noise using combined filtering with the help of
Web images. We not only built two 3D data cubes, intrin-
sic and extrinsic, by retrieving the similar blocks inside and
outside the noise image, but also performed different filter-
ing strategies, spatial and frequency, so as to use the data
correlation adaptively. We have further proposed combin-
ing the spatial and frequency filtering and introduced the
two-step denoising to greatly reduce the heavily noise while
preserving the details and cleanness of the denoising image.
Experimental results showed that our scheme significantly
outperforms the four state-of-the-art methods in both sub-
jective and objective evaluations.

We would like to point out that the correlated Web im-
ages play an important role in our CID. Without any corre-
lated images, CID degenerates into one frequency filtering
in the intrinsic cube and provides a similar performance as
BM3D. If part of the noisy image content is too unique, we
cannot find the correlated patches externally and internally.
It would result in unpleasant denoising results. In addition,
in our current test, no noisy images were retrieved, but this
may not be true in real applications. We will work to make
our scheme more feasible in the future.

Figure 6. The intermediate results. To clearly show the details, we
only show two crops of the corresponding results. (a), (b), and
(c) show the frequency filtering result (25.78 dB), spatial filtering
result (27.48 dB), and combining result (28.30 dB) in Step 1, re-
spectively; (d), (e), and (f) show the the frequency filtering result
(27.68 dB), spatial filtering result (27.72 dB), and combining re-
sult (29.00 dB) in Step 2, respectively. The PSNR values were
computed over the whole image pixels.
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