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Abstract

A simple and inexpensive (low-power and low-
bandwidth) modification is made to a conventional off-the-
shelf color video camera, from which we recover multiple
color frames for each of the original measured frames, and
each of the recovered frames can be focused at a different
depth. The recovery of multiple frames for each measured
frame is made possible via high-speed coding, manifested
via translation of a single coded aperture; the inexpensive
translation is constituted by mounting the binary code on
a piezoelectric device. To simultaneously recover depth in-
formation, a liquid lens is modulated at high speed, via a
variable voltage. Consequently, during the aforementioned
coding process, the liquid lens allows the camera to sweep
the focus through multiple depths. In addition to design-
ing and implementing the camera, fast recovery is achieved
by an anytime algorithm exploiting the group-sparsity of
wavelet/DCT coefficients.

1. Introduction
A variety of techniques have been developed to extract

information from a single image. For example, the depth-
from-focus method [11, 24, 25] allows estimation of a 3D
scene (depth-dependent focus) from a single 2D image. The
mosaic and demosaic technique [2] allows recovery of col-
or information from a gray-scale image. Recently, inspired
by compressive sensing (CS) [6], video has been extracted
from a single image [8, 9, 14, 16, 23]. In this setting the
measured data are acquired at a low frame rate, with coding
at a faster rate, and high-frame-rate video is computational-
ly recovered subsequently.

In this paper we develop a new method that borrows and
extends ideas from this previous work. Specifically, like
[8, 9, 14, 16] we perform high-frequency coding of video
collected at a low frame rate, with CS-based inversion. Our
coding strategy differs from previous work in that we use a
single code that is inexpensively translated via a piezoelec-
tric device. We recover color via a hardware mosaicing and
computational demosaicing procedure like in conventional
cameras. The newest aspect of the proposed approach is
that we use a lens with voltage-dependent index of refrac-

tion (a liquid lens), and by varying the voltage at high rate,
the recovered high-rate video corresponds to capturing data
at varying focus points (depths). For each of the measured
frames, we recover multiple color frames, and these multi-
ple frames capture variable focus depths.

We here show example results that summarize the three
key aspects of the approach: mosaicing for color, high-
speed coding for video, and fast time-dependent focus for
depth, with the data measured at a low frame rate. We first
consider mosaicing and high-speed coding, with the focus
held constant. In Figure 1 two compressive measurements
(real data from our camera) are shown at left. These are two
consecutive frames collected at frame rate 30 frames/sec,
using an off-the-shelf Guppy Pro camera [1], with a high-
speed coding element, as summarized in Figure 2. At right
in Figure 1, are shown nt = 22 recovered frames from each
of the compressive measurements: 22 color video frames
recovered from a single monochromatic coded image. Each
measurement in Figure 1 employs a high-speed code (here
a shifting mask) to modulate the light during the integration
time-period ∆t; see Figure 2(a).

In Figure 3 we now consider results in which the focus
(observed depth) is varied at a rate that is fast relative to the
rate of the video camera collecting the data (now the mea-
surements employ mosaicing, high-speed coding, and vari-
ation of the focal depth). The variable focus is manifested
by varying the voltage on a liquid lens (see Figure 4). The
coded data, with subsequent CS inversion, allows recovery
of multiple frames for each measured frame. Since the fo-
cus has been adjusted at a fast rate, these high-frequency
recovered frames also capture multiple depths.

In Figure 3, the top figure depicts the camera and scene,
composed of multiple objects at varying depths. At the bot-
tom in this figure, we depict one of the measured gray-scale
frames (here measured at a frame rate of 30 frames/sec),
and at bottom right is depicted the recovered color video
from this single frame. Note that because of the high-speed
time-varying focus, we effectively recover multiple depths,
defined by the focus for which a given region of the image
is sharpest.

In this paper, we describe in detail how the camera that
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Measurement 1

Measurement 2

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11

#12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11

#12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22

Figure 1. Reconstruction of real measurement with frame size 512×512. Two plastic fruits dropping, touch a surface at the bottom, and then
rebound. Left-most are two contiguous measurements, and the right part shows 44 corresponding reconstructed video frames (nt = 22
recovered video frames from each compressive measurement). We can see clear motion and color information from the reconstructed
frames (video online at [18]). Note in this dataset we did not change the focal plane during the capture of the measurement.

took these measurements was implemented, with a summa-
ry provided in Figure 2 for the coding and mosaicing com-
ponents, and in Figure 4 for the camera setup. We also dis-
cuss a new CS inversion algorithm, that is endowed with a
guarantee that upon every iteration the residual between the
true video and the estimate is assured to be reduced (with
technical requirements, that are discussed). This is an “any-
time” algorithm, in that the estimated underlying video may
be approximated at any time based upon computations thus
far, and the quality of the inversion is guaranteed to improve
with additional computations.

The contributions of this paper are: i) development of a
new low-cost and low-power CS camera, that for each low-
frame-rate measured image allows recovery of multiple col-
or frames focused at different depths (at high-frame-rate);
and ii) application of an anytime CS inversion algorithm
to data measured by the camera, providing fast recovery of
high-speed motion, color and depth information from the
scene.

2. Hardware Design
The proposed imaging system is built with an off-the-

shelf camera, specifically a Guppy Pro camera [1], by
adding a liquid lens to change the focal plane, and by mov-
ing a single mask to modulate the high speed frames during
one integration time-period, both extremely low-power ad-
ditions (in contrast with common alternatives in the litera-
ture, as detailed in Section 2.3). The main challenge is to
synchronize temporal modulation (coding) with time vari-
ation of the focus location (for capture of variable depth).
Figure 4 depicts the setup of our camera, and Figure 5(b)
shows the synchronized control of the mask and liquid lens.
2.1. Coding strategy

The focal plane of the liquid lens used in the camer-
a is controlled by the voltage of the input signal, which
also controls the pizeoelectronic translator to shift the
mask. The control signal (a triangular wave) is generat-
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Figure 2. Illustration of the proposed method. (a) First row shows
nt color (RGB) frames of the original high-speed video; second
shows each color frame rearranged into a Bayer-filter mosaic; third
row depicts the (horizontally) moving mask used to modulate the
high-speed frames (black is zero, white is one); fast translation
manifested by a pizeoelectronic translator. Fourth row shows the
modulated frames, whose sum gives a single coded capture. (b)
Recovered RGB frames arranged into a Bayer-filter mosaic (sec-
ond row), which is de-mosaicked to give the color frames (first
row). (c) The demosaicing process [1].

ed by a function generator and then we use power divider
to distribute the signal (Figure 5) to the liquid lens and
the pizeoelectronic translator to achieve the synchroniza-
tion. The shifting (through the pizeoelectronic translator)
of the same mask (Figure 2(a)) is utilized to modulate the
high-speed frames. This modulation enjoys advantages of
low-power (∼ 0.2W ), low-cost and low-bandwidth imple-
mentation, compared for example with the modulation by
liquid-crystal-on-silicon (LCoS) in [8, 16] (power > 3W ,
and high-bandwidth electronic switching/coding). In the
experiments, we show that the proposed efficient coding
mechanism yields similar results to that of the relatively
expensive LCoS-type coding. During the calibration, we
approximate the continuous moving of the mask by discrete
patterns (Figure 5(a)).

We record temporally (and depth) compressed measure-
ments for RGB colors on a Bayer-filter mosaic, where the
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Figure 3. Experimental scene (top), three objects are placed at
three depths. 6 selected recovered frames (bottom right) recon-
structed all from the real single measurement (bottom left) are
shown as examples. The focal plane varies from the newspaper
(near) to the chopper-wheel (far) during the integration time peri-
od. Note how chopper-wheel goes from blur (two left columns)
to sharp (refer to the number “2”). Note the motion of the moving
chopper-wheel (video online at [18]).

Figure 4. Setup of the camera.
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three colors are arranged in the pattern shown in the right
bottom of Figure 2. The single coded image is partitioned
into four components, one for R and B and two for G (each

is 1/4 the size of the original spatial image). The CS recov-
ery (video from a single measurement) is performed sep-
arately on these four mosaiced components, and then the
demosaicing process in Figure 2(b) is employed to mani-
fest the final color video. One may also jointly perform
CS inversion on all 4 components, with the hope of sharing
information on the importance of (here wavelet and DCT)
components; this was also done, and the results were very
similar to processing R, B, G1 and G2 separately.
2.2. Measurement model

Let f(x, y, z, t) denote the continuous/analog spatio-
temporal volume of the video being measured, with (x, y, z)
symbolizing the 3D space coordinate and t denoting time.
Note the depth of the scene is defined by z. Addition-
ally, let object-space and image-space coordinates be re-
spectively designated with unprimed and primed variables.
Given an nx × ny-pixel sensor with pixel size ∆ and in-
tegration time ∆t, space-time compressive measurements
g(x′, y′, t′) ∈ R2 are formed on the detector, with t′ < t.
The digital data used to represent the scene consists of dis-
crete samples of the continuous transformation

g(x′, y′, t′) =
∫ ∫ ∫ ∫

f(x, y, z, t)T (x−r(t), y−s(t))

×rect
(
x−x′

∆ , y−y
′

∆

)
rect

(
t−t′
∆t

)
dydxdtdz,(1)

where T (x − r(t), y − s(t)) represents a random binary
transmission pattern that translates with periodic transverse
(x, y) motion parameterized by (r(t), s(t)). The spatial
and temporal pixel sampling functions, rect

(
x−x′

∆ , y−y
′

∆

)
and rect

(
t−t′
∆t

)
, bandlimit the incident optical datastream,

which is equivalently represented as f = c∗b, with ∗ denot-
ing the convolution operator. Here, c(x, y, z, t) denotes an
instantaneous all-in-focus representation of the spatiotem-
poral scene and b(x, y, z(t)) is a time and depth varying
(blur) kernel imparted by the liquid lens on the focal vol-
ume.

The discrete formulation of the model can be simplified.
The frame at each depth (nt depths in Figure 5(a)) is ap-
proximated as being modulated by a single unique code
(approximated by the shifting mask, Figure 5(a)); in real-
ity the code/mask is always moving continuously. At each
depth, the (physical/continuous) frame can be denoted by
f̃(x, y, t) (z is now manifested by t), and after digitization,
we represent it as Xk ∈ Rnx×ny , ∀k = 1, . . . , nt. Denot-
ing the coding pattern of the mask by Hk ∈ Rnx×ny , the
measurement Y ∈ Rnx×ny is yi,j =

∑nt
k=1 xi,j,khi,j,k +

ei,j ,∀i = 1, . . . , nx; j = 1, . . . , ny; or

Y =
∑
k

Xk �Hk +E, (2)

where E denotes the noise and � symbolizes the
Hadamard (element-wise) product. By vectorizing each
frame and then concatenating them, we have x =
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[(vec(X1))T , . . . , (vec(Xnt))
T ]T ∈ Rnxnynt , and (2) can

be written as:
y = [diag(vec(H1)), . . . ,diag(vec(Hnt))]x+ e

= Ψx+ e, (3)

where Ψ = [diag(vec(H1)), . . . ,diag(vec(Hnt))]. The
imaging process may therefore be modeled as in the stan-
dard CS problem. The goal is to estimate x, given y and
Ψ. Before presenting how we address this, we further com-
ment on related work, now in that we have introduced the
proposed hardware.
2.3. Related work

Video compressive sensing has been investigated in
[8, 9, 14, 16, 19], by capturing low frame-rate video to re-
construct high frame-rate video. The LCoS used in [8, 16]
can modulate as fast as 3000 fps by pre-storing the expo-
sure codes, but, because the coding pattern is continuously
changed at each pixel throughout the exposure, it requires
considerable energy consumption (> 3W ) and bandwidth
compared with the proposed modulation, in which a single
mask is translated using a pizeoelectronic translator (requir-
ing ∼ 0.2W ). Similar coding was used in [14]. However,
we investigate color video here, and thus demosaicing is
needed; because of the R, G and B channels, we need to
properly align (in hardware of course) the mask more ac-
curately compared with the monochromatic video in [14].
Therefore, [14] can be seen as a special case of the proposed
camera. Furthermore, we also extract the depth information
from the defocus phenomenon of the reconstructed frames,
which has not been considered in the above papers.

Coded apertures have been used often in computational
imaging for depth estimation [11, 12, 24]. However, these
only consider still images. From the algorithms investigat-
ed therein, one can get the depth map from a still image. In
[10] an imaging system was presented that enables one to
control the depth of field by varying the position and/or ori-
entation of the image detector, during the integration time
of a single photograph. However, moving the detector costs
more energy than controlling the liquid lens in the proposed
design (almost no power consumption), and the camera de-
veloped in [10] can only provide a single all-in-focus im-
age without the depth information. Furthermore, no motion
information is considered in the above coded-aperture cam-
eras, while here we consider video (allowing depth estima-
tion on moving scenes).
3. Reconstruction algorithm

We reconstruct high-frame-rate video from low-frame-
rate measurements via an anytime algorithm, the general-
ized alternating projection (or GAP) algorithm, first devel-
oped in [13] for other applications. GAP produces a se-
quence of partial solutions that monotonically converge to
the true signal (thus, anytime). In [13], the authors did not
mention how to select group weights and no real data or ap-
plication was considered. The manner in which the GAP

algorithm is employed here, as well as the application con-
sidered, is significantly different from [13]. In the follow-
ing, we first review the underlying GAP algorithm and then
show how to improve it to get better results for the data con-
sidered here.

GAP is used to investigate the group-sparsity of
wavelet/DCT coefficients of the video to be reconstruct-
ed. Let Tx ∈ Rnx×nx , Ty ∈ Rny×ny , Tt ∈ Rnt×nt
be orthonormal matrices defining bases such as wavelet-
s or DCT [15]. Define w =

(
TT
t ⊗TT

y ⊗TT
x

)
x, and

Φ = Ψ (Tt ⊗Ty ⊗Tx), where ⊗ denotes Kroneck-
er product [15]. Then we can write (3) concisely as
y = Φw + e, where Φ ∈ Rnxny×nxnynt with ΦΦT =
diag (vec (

∑nt
k=1Hk �Hk)). For simplification, from

now we ignore possible noise e. Note that y reflects one
nx × ny compressively measured image, as denoted at left
in Figure 1, and x = (Tt ⊗Ty ⊗Tx)w is the nx×ny×nt
video we wish to recover (Figure 1 right, for nt = 22).
3.1. GAP for CS inversion

Let Φ ∈ Rn1×n, w ∈ Rn, and y ∈ Rn1 , with n1 < n.
Assume Φ has full row rank. Let G = {G1,G2, · · · ,Gm}
be a set of nonempty mutually-disjoint and collectively ex-
haustive subsets of {1, 2, · · · , n}. Let β = [β1, · · · , βm]T

be a column of constant positive weights with βk associated
with Gk. We solve the weighted-`2,1 minimization problem

min
w
‖w‖`Gβ2,1

, subject to Φw = y, (4)
with ‖w‖`Gβ2,1

=
∑m
k=1 βk‖wGk‖2, where wGk is a sub-

vector ofw containing components indexed by Gk, and ‖·‖2
denotes `2 norm; ‖·‖`Gβ2,1

is referred as a weighted-`2,1 norm

or `Gβ2,1 norm. The groups and weights are below related to
the anticipated importance of wavelet/DCT coefficients; the
larger βk, the more importance is placed on the kth group
of coefficients being sparse.

The problem in (4) can be equivalently rewritten as
min
w,C

C subject to ‖w‖`Gβ2,1
≤ C and Φw = y (5)

Denote BGβ2,1(C) = {w : ‖w‖`Gβ2,1
≤ C} and SΦ,y =

{w : Φw = y}, where SΦ,y is a given linear manifold and
BGβ2,1(C) is a weighted-`2,1 ball with radius C. Geometri-
cally, the problem in (5) is to find the smallest weighted-`2,1
ball that has a nonempty intersection with the given linear
manifold; we refer to this ball as the critical ball and de-
note its radius as C∗. When the smallest intersection is a
singleton, the solution to (5) is unique.

We solve (5) as a series of alternating projection prob-
lems, (

w(t),θ(t)
)

= arg min
w,θ
‖w − θ‖22,

subject to ‖θ‖`Gβ2,1
≤ C(t) and Φw = y, (6)

where a special rule is used to update C(t) to ensure that
limt→∞ C(t) = C∗. For each C(t), we solve an equivalent
problem
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Figure 6. (a) Demonstration of groups of the wavelet/DCT coefficients of the video. The large 3D cube represents the wavelet/DCT
coefficients and the small 3D cubes in different color denote different groups, with the size {bx, by, bt} shown by one example group on
the top-left. (b) DCT block structure time-weight. Each bt (here bt = 2) frames in time share the same weight. (c) Wavelet-tree structure
scale-weight in space. The groups in the same wavelet level (shown in the same color) share the same weight.(

w(t),θ(t)
)

= arg min
w,θ
‖w − θ‖22 + λ(t)‖θ‖`Gβ2,1

subject to Φw = y, (7)

where λ(t) ≥ 0 is the Lagrangian multiplier uniquely as-
sociated with C(t). Denote by λ∗ the multiplier associated
with C∗. It suffices to find a sequence {λ(t)}t≥1 such that
limt→∞ λ(t) = λ∗.

We solve (7) by alternately projection between w and
θ. Given one, the other is solved analytically: w is an Eu-
clidean projection of θ on the linear manifold, while θ is
the result of applying group-wise shrinkage to w. An at-
tractive property of GAP is that, by using a special rule of
updating λ(t), we only need to run a single iteration of (7)
for each λ(t) to make {λ(t)}t≥1 converge to λ∗. In particu-
lar, GAP starts from θ(0) = 0 and computes two sequences,
{θ(t)}t≥1 and {w(t)}t≥1:

w(t) =θ(t−1) + ΦT (ΦΦT )−1(y −Φθ(t−1)), (8)

θ
(t)
Gk =w

(t)
Gk max

1− λ(t)βk∥∥∥w(t)
Gk

∥∥∥
2

, 0

 , ∀k = 1, . . . ,m(9)

where λ(t) =

∥∥∥∥∥w(t)
G
j
(t)
m?+1

∥∥∥∥∥
2

β−1

j
(t)

m?+1

, m? < m (10)

with
(
j

(t)
1 , j

(t)
2 , · · · , j(t)

m

)
a permutation of (1, 2, · · · ,m)

such that
∥∥∥∥w(t)
G
j
(t)
1

∥∥∥∥
2

β−1

j
(t)
1

≥
∥∥∥∥w(t)
G
j
(t)
2

∥∥∥∥
2

β−1

j
(t)
2

≥ · · · ≥∥∥∥∥w(t)
G
j
(t)
m

∥∥∥∥
2

β−1

j
(t)
m

.

The algorithm (8)-(9) is referred as generalized alter-
nating projection (or GAP) [13] to emphasize its differ-
ence from alternating projection (AP) in the conventional
sense: conventional AP produces a sequence of projections
between two fixed convex sets, while GAP produces a se-
quence of projections between two convex sets that under-
go systematic changes over the iterations. In the GAP algo-
rithm as shown in (8)-(9), the alternating projection is per-

formed between a fixed linear manifold SΦ,y and a chang-
ing weighted-`2,1 ball, i.e., BGβ2,1(C(t)) whose radius C(t) is
a function of the iteration number t.

By interpreting 1
λ(t) ‖θ − w‖22 as a penalty to enforce

θ = w, one may view that iteration of (7) with t constitut-
ing a penalty method for solving the following constrained
problem,

min
θ
‖θ‖`Bβ2,1

subject to θ = w and Φw = y, (11)

which is an equivalent formulation of (4). The GAP al-
gorithm in (8)-(10) is a special penalty method for solv-
ing (11), using (10) to adjust the penalty strength

{
λ(t)
}

.
Bregman iteration [21] can also solve (4) or (11). However,
Bregman penalizes ‖y−Φw‖22, while GAP keeps y = Φw
as a constraint and fulfills it via the orthogonal projection
in (8). Under a set of group-restricted isometry property
(group-RIP) conditions, the use of (8)-(10) ensures mono-
tonic decrease of the reconstruction error to zero and makes
GAP an anytime algorithm [13]. By contrast, Bregman it-
eration and classic penalty method (which adjusts λ(t) d-
ifferently) do not have the anytime property, nor do other
popular algorithms such as TwIST and ADMM [5].
3.2. Extension of GAP for the proposed camera

The diagonalization of ΦΦT is the key to fast GAP re-
covery of video. The inversion of ΦΦT in (8) now just
requires computation of the reciprocals of the diagonal el-
ements, as a result of the hardware implementation of the
proposed camera. Best results were found when Tx and
Ty correspond to a wavelet basis (here the Daubechies-8
[15]), and Tt corresponds to a DCT. The basis-function
weights (β) are defined with respect to these bases, and the
groups are manifested in the domain of these wavelet-DCT
coefficients (see Figure 6(a) for a depiction of the group-
s). For Tt the coefficients are arranged from low frequen-
cies to high frequencies in Figure 6(b), and for Tx and Ty

the 2D arrangement of coefficients is as is done typical-
ly with wavelets [15], and illustrated in Figure 6(c). Let
{bx, by, bt} represent the edge lengths of each group of co-
efficients (Figure 6(a)). In all experiments, bx = by = 2
and bt =

[
nt
4

]
, where [ ] denotes the closest integer of the
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number inside [ ]. The weight is constituted by the product
of a time-weight associated with the DCT (Figure 6(b)) and
a scale-weight associated with the wavelets (Figure 6(c)).
We show the details of the weight design in the following.

Let {gx, gy, gt} index each group with gx =
1, . . . , nxbx , gy = 1, . . . ,

ny
by
, gt = 1, . . . , ntbt . The time

weights are defined by βt(gt) = a(gt−1). For the scale
weights, we exploit the wavelet-tree structure (Figure 6(c)),
and enforce the groups in the `th level (assuming L lev-
els in total, and ` = 1, . . . , L) of the wavelet coefficients
sharing the same weight, determined by βx,y(g`x, g

`
y) =

a(`−1),∀ g`x =
n(`−1)
x

bx
+1, . . . ,

n`x
bx
, g`y =

n(`−1)
y

by
+1, . . . ,

n`y
by

,
with

{
n`x, n

`
y, n

`
t

}
denoting the end points of wavelet coef-

ficients at the `th level, and n0
x = n0

y = 0. The weight
for each 3D group is β(g`x, g

`
y, gt) = βx,y(g`x, g

`
y)βt(gt).

Setting a = 1.5 was found to yield good results. After
constructing the groups and weights as above, the GAP per-
formance is improved significantly in the application here.

3.3. Temporal overlap in inversion
In Section 3.1, each coded CS measurement Yl is em-

ployed to recover nt frames of video. This may lead to
discontinuities in the video recovered from consecutive C-
S measurements. To mitigate this, we also consider the
joint inversion of two consecutive CS measurements, Yl
and Yl+1, from which 2nt consecutive frames are recov-
ered at once. Therefore the nt frames associated with Yl
are estimated jointly from Yl−1 ∪ Yl and (separately) from
Yl∪Yl+1. The final recovered video within a particular con-
tiguous set of nt frames is taken as the average of the results
inferred from Yl−1∪Yl and Yl∪Yl+1. As demonstrated be-
low, this tends to improve the quality of the recovered video
(yields smoother results).
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Figure 7. PSNR comparison of weighted group (average PSNR:
22.13dB), no weight, no group (average PSNR: 19.92dB), and
temporal overlapping weighted group (average PNSR: 22.80dB).
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4. Simulation results
To demonstrate the performance of the reconstruction al-

gorithm, we start with simulated data (see Section 5 for real
data from the proposed camera), and employ a color video
sequence in which a basketball player performs a dunk [18];
this video is challenging due to the complicated motion of
the basketball players and the varying lighting conditions
and multiple depths scene; see the example video frames
in Figure 2(a). We consider a binary mask, with 1/0 coding
drawn at random Bernoulli(0.5); the code is shifted spatially
via the coding mechanism in Figure 2(a)), as in our physical
camera. The video frames are 256 × 256 spatially, and we
choose nt = 8.

We first investigate the efficacy of weighted groups
in the proposed GAP algorithm. Figure 7 demonstrates
the improvement by the weighting and grouping of the
wavelet/DCT coefficients; these parameters (weights and
groups) were not optimized, and many related settings yield
similar results – there is a future opportunity for optimiza-
tion. In Figure 7 we also demonstrate the performance im-
provement manifested by temporal overlapping and aver-
aging results from two consecutive measurements. Note
that without temporal overlapping, the PSNR degrades for
frames at the beginning (e.g., 1, 9, 17, ...) and end (8, 16,
24, ...) of a given measurement, while the PSNR curve with
temporal overlapping (red curve) is much smoother. The
experiments with (real) measured data consider temporal
overlapping when performing inversion.
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Figure 9. (a) Convergence comparison of GAP, TwIST, and lin-
earized Bregman. (b) PSNR of reconstructed video frames with
three different coding scenarios. “Shifting binary mask” means
the coding mechanism proposed in our camera. “Random binary
mask” denotes that for every frame, each element of the mask is
randomly drawn from Bernoulli(0.5). “Random grayscale mask”
symbolizes each element of the mask is randomly drawn from
[0, 1] for every frame.
4.1. Reconstruction performance and convergence

The developed GAP algorithm is compared with the
following: i) two-step iterative shrinkage/thresholding
(TwIST) [4] (with total variation norm), ii) K-SVD [3] with
orthogonal matching pursuit (OMP) [17] used for inversion,
iii) a Gaussian mixture model (GMM) based inversion al-
gorithm [7, 20, 22], and iv) the linearized Bregman algo-
rithm [21]. The `1-norm of DCT or wavelet coefficients
is adopted in linearized Bregman algorithm with the same
transformation as GAP. GMM and K-SVD are patch-based
algorithms and we used a separate dataset for training. A

6



batch of training videos were used (shown in the website
[18]) to pre-train K-SVD and GMM, and we selected the
best reconstruction results for presentation here. The PSNR
curves of videos reconstructed by GAP and the four alter-
native algorithms are shown in Figure 8, demonstrating the
GAP algorithm outperforms the other algorithms by 0.7-
2dB higher in PSNR. In this simulation, the temporal over-
lap was not used. The readers can refer to the reconstructed
videos on the website [18].

We further investigate the convergence properties of
GAP, TwIST and linearized Bregman, as they are each
solved iteratively. We run each algorithm a total of 100 it-
erations and compute the relative mean square error (MSE)
of the estimate compared with the ground truth for each it-
eration. Relative MSE versus iteration number are plotted
in Figure 9(a). It can be seen that GAP and linearized Breg-
man converge much faster than TwIST, while GAP provides
the smallest relative MSE in every iteration. We also verify
the anytime property of GAP by computing the first-order
difference of the MSE for each iteration (compared with
TwIST and Bregman); see Supplementary Material [18].
4.2. Comparison with other coding mechanisms

One advantage of the proposed coded aperture compres-
sive camera (manifested by spatially shifting a single bina-
ry mask), compared with others [8, 16], is its low-power,
low-bandwidth characteristics. However, the use of a single
shifted binary mask to yield temporal coding may appear
limiting, and therefore it is of interest to compare to other
strategies. In Figure 9(b) we compare the proposed trans-
lated coding mechanism in our hardware system with even
more general coding strategies than in [8, 16]. Specifically,
we compare to a unique random binary mask at each time
point, for which each of the nt codes is a distinct i.i.d. draw
Bernoulli(0.5). We also consider the case for which each
code/mask element, for each of the nt codes, is drawn uni-
formly at random from [0,1], reflecting the degree of code
transmission (each of the nt codes is distinct, and each is
not restricted to be binary). Summarizing Figure 9(b), the
simple shifted binary code in the proposed system yields
similar results (even a little higher PSNR for some datasets)
compared to these alternative coding strategies, at an order
of magnitude less power. We found similar results when
comparing to the coding strategies in [8, 16].

5. Experimental results: real data
The physical camera we have developed captures the

measurements (coded capture) at 1/∆t = 30 fps, and the
reconstructed video has 660 fps (nt = 22, although dif-
ferent nt may be considered in the inversion). One result
from this camera was shown in Figure 1 (recovery of high-
speed motion). From the reconstructed frames in Figure 1,
one can clearly identify the spin of the red apple and the re-
bound of the yellow orange; the full video is at [18], along
with many addition examples. At [18], we show compar-

isons to a diverse set of alternative algorithms, for example
via [21].

All algorithms considered here were implemented in
Matlab 2012(a), and the experiments are conducted on a PC
with a CPU@3.30 GHz and 16GB RAM. For the real data
(512×512×22), GAP, TwIST, and linearized Bregman use
50, 100, and 500 iterations, respectively (required to yield
good results). Each iteration in these three algorithms are
similar (around 0.8 seconds). Hence, TwIST and linearized
Bregman cost much longer (> 2×) time than GAP, but typ-
ically provide worse results, and do not have an anytime
property. K-SVD and GMM may be made fast if parallel
computing is used (processing the multiple patches in par-
allel with GPU or networks), but for serial computing on a
PC like that considered here these methods are slower than
GAP.
5.1. Recovery of depth and motion simultaneously

Figure 3 shows the reconstruction frames (6 out of 14
frames are shown for demonstration) recovered from one
measurement. The three objects, “newspaper,” “smile-face”
and “chopper-wheel” are in three different depths. The mo-
tion of the rotating chopper-wheel is also recovered from
the reconstructed frames. The first column of the recov-
ered frames (bottom right of Figure 3) shows the newspa-
per is in focus; the second column shows the smile-face is
in focus, and finally, the chopper-wheel is in focus at col-
umn three. We have built a depth-frames relationship table
with calibration. The newspaper is best in focus in frame
3, which corresponds to 14cm away from the objective lens
(truth 15cm). The smile-face is best in focus in frame 8,
corresponding to 40cm (truth 38cm). The chopper-wheel is
best in focus in frame 12, which corresponds to 64cm (truth
65cm). It can be seen the depths of these objects are esti-
mated correctly.
5.2. Recovery of high-speed motion

As one additional example of high-speed motion recov-
ery (assuming all the objects are in focus, i.e., here without
the liquid lens), Figure 10 shows the results of a purple ham-
mer quickly hitting a red apple. In this dataset, 44 frames
are reconstructed from 2 measurements (left part) showing
the entire process of hitting (full video is at [18]), and 5 ex-
ample frames out of 44 are plotted in the right part of Figure
10. To demonstrate the anytime property of GAP, we show
the results after 2, 10, 20 and 50 iterations. Note that good
results are manifested with as few as 10 iterations, with con-
vergence after about 20.
5.3. Recovery of depth

When the scene is not moving, we can get space-depth-
color information from the reconstructed data. An example
is shown in Figure 11. We can see that the smile-face is first
out-of-focus, then in-focus and finally out-of-focus again.
6. Conclusions

This paper proposes a means of recovering depth, time,
and color information from a single coded image, via de-
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Measurement 1

2 iterations

10 iterations

Measurement 2

20 iterations

50 iterations

#1 #11 #21 #31 #41

#1 #11 #21 #31 #41

#1 #11 #21 #31 #41

#1 #11 #21 #31 #41

Figure 10. Reconstruction from two real measurements (left part).
Five selected frames out of the 44 reconstructed video frames
(nt = 22 recovered video frames from each compressive mea-
surement) after 2, 10, 20, and 50 iterations of GAP are shown in
the right part.

out of 

focus

(nearly) 

in focus

out of 

focus

Measurement

Reconstruction

#1 #2 #3 #4

#5 #6 #7 #8

#9 #10 #11 #12

Figure 11. Reconstruction from a real single measurement (left
part). 12 selected frames are shown in the right part to demonstrate
the process of the smile-face from out-of-focus to in focus and then
out-of-focus again.
velopment of a new color CS camera for high-speed depth-
video reconstruction. In the presented computational time
comparisons, GAP was run in MATLAB, since that was
the language in which all of the comparison algorithms had
available code, and therefore provided a good comparison
point for relative speed. In the context of absolute speed,
we have implemented GAP in C++ on a GPU, and the total
time for reconstructing a 512×512×22 video from a single
CS measurement is less than 0.5 seconds, opening the door
for real-time fast (3D) video capturing and reconstruction.
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