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Abstract

Given two images, we want to predict which exhibits a
particular visual attribute more than the other—even when
the two images are quite similar. Existing relative attribute
methods rely on global ranking functions; yet rarely will
the visual cues relevant to a comparison be constant for all
data, nor will humans’ perception of the attribute neces-
sarily permit a global ordering. To address these issues,
we propose a local learning approach for fine-grained vi-
sual comparisons. Given a novel pair of images, we learn a
local ranking model on the fly, using only analogous train-
ing comparisons. We show how to identify these analogous
pairs using learned metrics. With results on three challeng-
ing datasets—including a large newly curated dataset for
fine-grained comparisons—our method outperforms state-
of-the-art methods for relative attribute prediction.

1. Introduction
Beyond recognizing objects (or activities, scenes, emo-

tions, etc.), a computer vision system ought to be able to
compare them. A promising way to represent visual com-
parisons is through attributes, which are mid-level proper-
ties that appear across category boundaries and often vary
in terms of their perceived strengths. For example, with
a model for the relative attribute “brightness”, the system
could judge which of two images is brighter than the other,
as opposed to simply labeling them as bright/not bright.

Attribute comparisons open up a number of interesting
possibilities. In biometrics, the system could interpret de-
scriptions like, “the suspect is taller than him” [29]. In
image search, the user could supply semantic feedback to
pinpoint his desired content: “the shoes I want to buy are
like these but more masculine” [21]. For object recognition,
human supervisors could teach the system by relating new
objects to previously learned ones, e.g., “a mule has a tail
longer than a donkey’s” [5, 28, 30]. In texture recognition,
relative attributes could capture the strength of base proper-
ties [26]. For subjective visual tasks, users could teach the
system their personal perception, e.g., about which human
faces are more attractive than others [1].

Coarse Fine-Grained

“comfort”

“natural” > ?

> ?

Figure 1: A global ranker may be suitable for coarse ranking tasks, but
fine-grained ranking tasks require attention to subtle details—and which
details are important may vary in different parts of the feature space. We
propose a local learning approach to train comparative attributes based on
fine-grained analogous pairs.

While a promising direction, the standard ranking ap-
proach tends to fail when faced with fine-grained visual
comparisons, in which the novel pair of images exhibits
subtle visual attribute differences. While the learned func-
tion tends to accommodate the gross visual differences that
govern the attribute’s spectrum, it cannot simultaneously ac-
count for the many fine-grained differences among closely
related examples, each of which may be due to a distinct set
of visual cues. For example, what makes a slipper appear
more comfortable than a high heel is different than what
makes one high heel appear more comfortable than another;
what makes a mountain scene appear more natural than a
highway is different than what makes a suburb more natural
than a downtown skyscraper (Figure 1). Furthermore, by
learning a single global function to rank all data, existing
methods ignore the reality that visual comparisons need not
be transitive; if human viewers perceive A � B � C � A,
one global function cannot adequately capture the perceived
ordering (Figure 2).

We contend that the fine-grained comparisons are actu-
ally critical to get right, since this is where modeling relative
attributes ought to have great power. Otherwise, we could
just learn coarse categories of appearance (“bright scenes”,
“dark scenes”) and manually define their ordering.

We propose a local learning approach to the fine-grained
visual comparison problem. Rather than learn a single
global function to predict how pairs of examples relate,
we learn local functions that tailor the comparisons to the
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Figure 2: Visual comparisons need not be transitive. An observer rates A
as more comfortable than B, and B > C, but A < C.

neighborhood statistics of the data. In particular, given a
novel test pair of images and the attribute along which they
should be compared, we first identify analogous training
pairs using a learned metric. We then train a ranking func-
tion on the fly using only those nearby pairs, and apply it
to the test case. While simple, our framework directly ad-
dresses the flaws that hinder existing methods. By restrict-
ing training pairs to those visually similar to the test pair,
the learner can zero in on features most important for that
kind of comparison. At the same time, by not insisting on a
single global function to relate all images, we mitigate the
impact of inconsistencies in visual comparisons.

To our knowledge, no prior work specifically explores
fine-grained visual comparisons, and all prior methods as-
sume a single global function is sufficient [9, 11, 21, 23, 28].
Furthermore, while local learning methods have been ex-
plored for classification [2, 6, 17, 31, 33] and information
retrieval problems [3, 13, 16, 24], our idea for learning local
ranking functions with comparisons is new. A key question
is how to identify neighboring training pairs; we show how
to learn pairs that appear analogous to the input, accounting
for the attribute-specific visual similarities.

On three challenging datasets from distinct domains, our
approach improves the state of the art in relative attribute
predictions. We also introduce a new large dataset of 50,000
Zappos shoe images that focuses on fine-grained attribute
comparisons. Our results indicate that more labeled data is
not necessarily preferable to isolating the right data.

2. Related Work

Comparing attributes has gained attention in the last sev-
eral years. The “relative attributes” approach learns a global
linear ranking function for each attribute [28]. It is extended
to non-linear ranking functions in [23] by training a hierar-
chy of rankers with different subsets of data, then normaliz-
ing predictions at the leaf nodes. In [11], rankers trained for
each feature descriptor (color, shape, texture) are combined
to produce a single global ranking function. Aside from
learning to rank formulations, researchers have applied the
Elo rating system for biometrics [29], and regression over
“cumulative attributes” for age and crowd density estima-
tion [9]. All the prior methods produce a single global func-
tion for each attribute, whereas we propose to learn local
functions tailored to the comparison at hand.

The basic idea in local learning [2, 6] is to concentrate
the learning algorithm on training instances that are most

similar to the test example. Primarily two formulations
have been studied. In the first, the system identifies the K
training examples nearest to the test input, trains a model
with only those examples, and applies it to the test case.
For example, this paradigm is employed for neural network
classification [6], linear regression [2], and SVM classifica-
tion [33]. In the second strategy, the system learns a fea-
ture space mapping (e.g., with LDA) with only those in-
stances close to the test example [17, 31], thereby tailoring
the representation to the input. In a similar spirit, local met-
ric learning methods use example-specific weights [15, 25]
or a cluster-specific feature transformation [32], then apply
nearest neighbor classification. For all these prior meth-
ods, a test case is a new data point, and its neighboring ex-
amples are identified by nearest neighbor search (e.g., with
Euclidean distance). In contrast, we propose to learn local
ranking functions for comparisons, which requires identify-
ing analogous neighbor pairs in the training data.

In information retrieval, local learning methods have
been developed to sort documents by their relevance to
query keywords [3, 13, 16, 24]. They take strategies quite
similar to the above, e.g., building a local model for each
cluster in the training data [24], projecting training data onto
a subspace determined by the test data distribution [13], or
building a model with only the query’s neighbors [3, 16].
Though a form of ranking, the problem setting in all these
methods is quite different from ours. There, the training ex-
amples consist of queries and their respective sets of ground
truth “relevant” and “irrelevant” documents, and the goal is
to learn a function to rank a keyword query’s relevant doc-
uments higher than its irrelevant ones. In contrast, we have
training data comprised of paired comparisons, and the goal
is to learn a function to compare a novel query pair.

The fact that humans exhibit inconsistencies in their
comparisons is well known in social choice theory and pref-
erence learning [7]. In all the global models above, intran-
sitive constraints would be unaccounted for and treated as
noise. While the HodgeRank algorithm [19] also takes a
global ranking approach, it estimates how much it suffers
from cyclic inconsistencies, which is valuable to know how
much to trust the final ranking function. However, that ap-
proach does not address the fact that the features relevant
to a comparison are not uniform across a dataset, which we
find is critical for fine-grained comparisons.

Work on fine-grained visual categorization aims to rec-
ognize objects in a single domain, e.g., bird species [8,
14]. While such problems also require making distinctions
among visually close instances, our goal is to compare at-
tributes, not categorize objects.

3. Approach
Our local learning approach addresses the relative com-

parison problem on a per attribute basis. As training data



for the attribute of interest A (e.g., “comfortable”), we are
given a pool of ground truth comparisons on pairs of im-
ages. Then, given a novel pair of images, our method pre-
dicts which exhibits the attribute more, that is, which of the
two images appears more comfortable.

In the following, we first present a brief overview of Rel-
ative Attributes [28] (Section 3.1), as it sets the foundation
as a state-of-the-art global ranking approach. Then we in-
troduce our local ranking approach (Section 3.2), followed
by our idea to select fine-grained neighboring pairs with
metric learning (Section 3.3).

3.1. Ranking for Relative Attributes

The Relative Attributes approach [28] treats the attribute
comparison task as a learning-to-rank problem. The idea
is to use ordered pairs of training images to train a rank-
ing function that will generalize to new images. Compared
to learning a regression function, the ranking framework
has the advantage that training instances are themselves ex-
pressed comparatively, as opposed to requiring a rating of
the absolute strength of the attribute per training image.
Each attribute is learned independently.

Let xi ∈ <d denote the image descriptor for image i,
such as a GIST descriptor or a color histogram. The algo-
rithm is given a set of training image pairs OA = {(i, j)},
in which each ordered pair (i, j) denotes that image i dis-
plays the attributeA more than image j. Let RA be a linear
ranking function:

RA(x) = wT
Ax. (1)

The goal is to learn the parameters wA ∈ <d so that the
ordering RA assigns to the training pairs agrees withOA as
much as possible. That is, ∀(i, j) ∈ OA : wT

Axi > wT
Axj .

By itself, the problem is NP-hard, but [20] introduces slack
variables and a large-margin regularizer to approximately
solve it. The learning objective is:

minimize
(

1

2
||wT
A||22 + C

∑
ξ2ij

)
(2)

s.t. wT
A(xi − xj) ≥ 1− ξij ;∀(i, j) ∈ OA

ξij ≥ 0

where the constant C balances the regularizer and ordering
constraints. The objective can also be seen as a paired clas-
sification problem, where, rather than predict the class label
of an individual xi, we want to predict the label “more” or
“less” for a pair (i, j) based on the difference in their visual
features. The margin one wants to maximize is the distance
between the nearest ranked points. While [28] uses this lin-
ear formulation, it is also kernelizable and so can produce
non-linear ranking functions.1

1The objective in [28] further adds a set of “similar” training pairs that
should receive similar ranks. We found they did not impact results for
either global or local methods on all our datasets, and so we omit them.

By projecting images onto the resulting hyperplane wA,
we obtain a 1D global ranking for that attribute, e.g., from
least to most “comfortable”. Given a test pair (xp,xq), if
RA(xp) > RA(xq), the method predicts image p has the
attribute “more” than image q, and “less” otherwise.

Our local approach draws on this particular ranking for-
mulation, which is also used in both [28] and in the hier-
archy of [23] to produce state-of-the-art results. However,
we note that our local learning idea would apply similarly
to alternative ranking methods.

3.2. Local Learning for Visual Comparisons

Existing methods train a global ranking function using
all available constraints OA, with the implicit assumption
that more training data should only help better learn the tar-
get concept. While such an approach tends to capture the
coarse visual comparisons, it can be difficult to derive a sin-
gle set of model parameters that adequately represents both
these big-picture contrasts and more subtle fine-grained
comparisons (recall Figure 1). Indeed, in our early explo-
ration applying Relative Attributes [28], we were impressed
by the qualitative results at either end of an attribute’s spec-
trum, but we could not make sense of its finer-grained pre-
dictions. For example, for a dataset of shoes, it would map
all the sneakers on one end of the “formal” spectrum, and all
the high heels on the other, but the ordering among closely
related high heels did not show a clear pattern.

The solution is not simply a matter of using a higher
capacity learning algorithm. While a low capacity model
can perform poorly in well-sampled areas, unable to suf-
ficiently exploit the dense training data, a high capacity
model can produce unreliable (yet highly confident) deci-
sions in poorly sampled areas of the feature space [6]. Dif-
ferent properties are required in different areas of the fea-
ture space. Furthermore, in our visual ranking domain, we
can expect that as the amount of available training data in-
creases, more human subjectiveness and ordering inconsis-
tencies will emerge, further straining the validity of a single
global function.

Thus, we propose a local learning approach for attribute
ranking. The idea is to train a custom ranking function tai-
lored to each novel pair of images Xq = (xr,xs) that we
wish to compare. We train the custom function using just a
subset of all labeled training pairs, exploiting the data statis-
tics in the neighborhood of the test pair. In particular, we
sort all training pairs OA by their similarity to (xr,xs),
then compose a local training set O′A consisting of the top
K neighboring pairs, O′A = {(xk1,xk2)}Kk=1. (We explain
in the next section how we define similarity between pairs.)
Then, we train a ranking function using Eq. 2 on the fly, and
apply it to compare the test images.

Such a fine-grained approach helps to eliminate order-
ing constraints that are irrelevant to the test pair. For in-
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Figure 3: Given a novel test pair (blue 4) in a learned metric space, our
local approach (a) selects only the most relevant neighbors (green #) for
training, which leads to ranking test image 2 over 1 in terms of “sporty”.
In contrast, the standard global approach (b) uses all training data (green
# & red ×) for training; the unrelated training pairs dilute the training
data. As a result, the global model accounts largely for the coarse-grained
differences, and incorrectly ranks test image 1 over 2. The end of each
arrow points to the image with more of the attribute (sporty). Note that the
rank of each point is determined by its projection onto w.

stance, when evaluating whether a high-topped athletic shoe
is more or less “sporty” than a similar looking low-topped
one, our method will exploit pairs with similar visual dif-
ferences, as opposed to trying to accommodate in a single
global function the contrasting sportiness of sneakers, high
heels, and sandals (Figure 3).

One might wonder if we could do as well by training
one global ranking function per category—i.e., one for high
heels, one for sneakers, etc., in the example above. This
would be another local learning strategy, but it is much too
restrictive. First of all, it would require category-labeled
examples (in addition to the orderings OA), which may be
expensive to obtain or simply not apropos for data lacking
clear-cut category boundaries (e.g., is the storefront image
an “inside city scene” or a “street scene”?). Furthermore,
it would not permit cross-category comparison predictions;
we want to be able to predict how images from different
categories compare in their attributes, too.

3.3. Selecting Fine-Grained Neighboring Pairs

A key factor to the success of the local rank learning
approach is how we judge similarity between pairs. Intu-
itively, we would like to gather training pairs that are some-
how analogous to the test pair, so that the ranker focuses on
the fine-grained visual differences that dictate their compar-
ison. This means that not only should individual members
of the pairs have visual similarity, but also the visual con-
trasts between the two test pair images should mimic the

visual contrasts between the two training pair images. In
addition, we must account for the fact that we seek com-
parisons along a particular attribute, which means only cer-
tain aspects of the image appearance are relevant; in other
words, Euclidean distance between their global image de-
scriptors is likely inadequate.

To fulfill these desiderata, we define a paired distance
function that incorporates attribute-specific metric learning.
Let Xq = (xr,xs) be the test pair, and let Xt = (xu,xv)
be a labeled training pair for which (u, v) ∈ OA. We define
their distance as:

DA (Xq, Xt) = min
(
D′A ((xr,xs), (xu,xv)) ,

D′A ((xr,xs), (xv,xu))
)
,

(3)

where D′A is the product of the two items’ distances:

D′A ((xr,xs), (xu,xv)) = dA(xr,xu)× dA(xs,xv).
(4)

The product reflects that we are looking for pairs where
each image is visually similar to one of those in the novel
pair. If both query-training couplings are similar, the dis-
tance is low. If some image coupling is highly dissim-
ilar, the distance is greatly increased. The minimum in
Eq. 3 and the swapping of (xu,xv) → (xv,xu) in the
second term ensure that we account for the unknown or-
dering of the test pair; while all training pairs are ordered
with RA(xu) > RA(xv), the first or second argument of
Xq may exhibit the attribute more. When learning a local
ranking function for attribute A, we sort neighbor pairs for
Xq according to DA, then take the top K to form O′A.

When identifying neighbor pairs, rather than judge im-
age distance dA by the usual Euclidean distance on global
descriptors, we want to specialize the function to the par-
ticular attribute at hand. That’s because often a visual at-
tribute does not rely equally on each dimension of the fea-
ture space, whether due to the features’ locations or modal-
ity. For example, if judging image distance for the attribute
“smiling”, the localized region by the mouth is likely most
important; if judging distance for “comfort” the features de-
scribing color may be irrelevant. In short, it is not enough
to find images that are globally visually similar. For fine-
grained comparisons we need to focus on those that are sim-
ilar in terms of the property of interest.

To this end, we learn a Mahalanobis metric:

dA(xi,xj) = (xi − xj)
TMA(xi − xj), (5)

parameterized by the d×d positive definite matrix MA. We
employ the information-theoretic metric learning (ITML)
algorithm [12], due to its efficiency and kernelizability.
Given an initial d × d matrix MA0

specifying any prior
knowledge about how the data should be compared, ITML
produces the MA that minimizes the LogDet divergence
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Figure 4: Example fine-grained neighbor pairs for three test pairs (top row) from the datasets tested in this paper. We display the top 3 pairs per query.
FG-LocalPair and LocalPair denote results with and without metric learning (ML), respectively. Zap50K pointy: ML puts the comparison focus on the tip
of the shoe, caring less about the look of the shoe as a whole. OSR open: ML has less impact, as openness in these scenes relates to their whole texture.
PubFig smiling: ML learns to focus on the mouth/lip region instead of the entire face.

D`d from that initial matrix, subject to constraints that sim-
ilar data points be close and dissimilar points be far:

min
MA�0

D`d(MA,MA0
)

s. t. dA(xi,xj) ≤ c (i, j) ∈ SA,
dA(xi,xj) ≥ ` (i, j) ∈ DA.

(6)

The sets SA and DA consist of pairs of points constrained
to be similar and dissimilar, and ` and c are large and small
values, respectively, determined by the distribution of orig-
inal distances. We set MA0

= Σ−1, the inverse covariance
matrix for the training images. To compose SA and DA,
we use image pairs for which human annotators found the
images similar (or dissimilar) according to the attribute A.

Figure 4 shows example neighbor pairs. They illustrate
how our method finds training pairs analogous to the test
pair, so the local learner can isolate the informative visual
features for that comparison. Note how holistically, the
neighbors found with metric learning (FG-LocalPair) may
actually look less similar than those found without (Local-
Pair). However, in terms of the specific attribute, they better
isolate the features that are relevant. For example, images
of the same exact person need not be most useful to predict
the degree of “smiling”, if others better matched to the test
pair’s expressions are available (last example). In practice,
the local rankers trained with learned neighbors are substan-
tially more accurate, as we will show in Section 5.

3.4. Discussion

Learning local models on the fly, though more accurate
for fine-grained attributes, does come at a computational
cost. The main online costs are finding the nearest neigh-
bor pairs and training the local ranking function. For our

datasets, with K = 100 and 20,000 total labeled pairs, this
amounts to about 3 seconds. There are straightforward ways
to improve the run-time. The neighbor finding can be done
rapidly using well known hashing techniques, which are ap-
plicable to learned metrics [18]. Furthermore, we could
pre-compute a set of representative local models. For exam-
ple, we could cluster the training pairs, build a local model
for each cluster, and invoke the suitable model based on a
test pair’s similarity to the cluster representatives. We leave
such implementation extensions as future work.

While global rankers produce comparable values for all
test pairs, our method’s predictions are test-pair specific.
This is exactly what helps accuracy for subtle, fine-grained
comparisons, and, to some extent, mitigates the impact of
inconsistent training comparisons. For an application re-
quiring a full ordering of many images, one could feed our
predictions to a rank aggregation technique [10], or apply a
second layer of learning to normalize them, as in [9, 11, 23].

4. Fine-Grained Attribute Zappos Dataset

We introduce a new Zappos50K dataset (Zap50K2)
specifically targeting the fine-grained attribute comparison
task. The dataset is fine-grained due to two factors: 1) it
focuses on a narrow domain of content, and 2) we develop
a two-stage annotation procedure to isolate those compar-
isons that humans find perceptually very close.

The image collection is created in the context of an on-
line shopping task, with 50,000 catalog shoe images from
Zappos.com. For online shopping, users care about precise

2Zap50K dataset and all related data are publicly available for down-
load at vision.cs.utexas.edu/projects/finegrained



Figure 5: Example pairs contrasting our predictions to the Global baseline’s. In each pair, top item is more sporty than bottom item according to ground
truth from human annotators. (1) We predict correctly, Global is wrong. We detect subtle changes, while Global relies only on overall shape and color. (2)
We predict incorrectly, Global is right. These coarser differences are sufficiently captured by a global model. (3) Both methods predict incorrectly. Such
pairs are so fine-grained, they are difficult even for humans to make a firm decision.

visual differences between items. For instance, it is more
likely that a shopper is deciding between two pairs of simi-
lar men’s running shoes instead of between a woman’s high
heel and a man’s slipper. The images are roughly 150×100
pixels and shoes are pictured in the same orientation for
convenient analysis. For each image, we also collect its
meta-data (shoe type, materials, manufacturer, gender, etc.)
that are used to filter the shoes on Zappos.com.

Using Mechanical Turk (mTurk), we collect ground truth
comparisons for 4 relative attributes: “open”, “pointy at the
toe”, “sporty”, and “comfortable”. The attributes are se-
lected for their potential to exhibit fine-grained differences.
A worker is shown two images and an attribute name, and
must make a relative decision (more, less, equal) and report
the confidence of his decision (high, mid, low). We repeat
the same comparison for 5 workers in order to vote on the
final ground truth. We collect 12,000 total pairs, 3,000 per
attribute. After removing the low confidence or agreement
pairs, and “equal” pairs, each attribute has between 1,500 to
1,800 total ordered pairs.

Of all the possible 50K2 pairs we could get annotated,
we want to prioritize the fine-grained pairs. To this end,
first, we sampled pairs with a strong bias (80%) towards
intra-category and -gender images (based on the meta-data).
We call this collection Zap50K-1. We found ∼40% of
the pairs came back labeled as “equal” for each attribute.
While the “equal” label can indicate that there’s no de-
tectable difference in the attribute, we also suspected that
it was an easy fallback response for cases that required a
little more thought—that is, those showing fine-grained dif-
ferences. Thus, we next posted the pairs rated as “equal”
(4,612 of them) back onto mTurk as new tasks, but without
the “equal” option. We asked the workers to look closely,
pick one image over the other, and give a one sentence ratio-
nale for their decisions. The rationale functions as a speed
bump to slow workers down so that they think more care-
fully about their decisions. We call this set Zap50K-2.

Interestingly, the workers are quite consistent on these
pairs, despite their difficulty. Out of all 4,612 pairs, only
278 pairs had low confidence or agreement (and so were
pruned). Overall, 63% of the fine-grained pairs (and 66%
of the coarser pairs) had at least 4 out of 5 workers agree on
the same answer with above average confidence. This con-
sistency ensures we have a dataset that is both fine-grained

as well as reliably ground truthed.
Compared to an existing Shoes attribute dataset [4] with

relative attributes [21], Zap50K is about 3.5× larger, offers
meta-data and 10× more comparative labels, and most im-
portantly, specifically targets fine-grained tasks.

5. Experiments
To validate our method, we compare it to two state-of-

the-art methods as well as informative baselines.

Datasets We evaluate on three datasets: Zap50K, as de-
fined above, with concatenated GIST and color histogram
features; the Outdoor Scene Recognition dataset [27]
(OSR); and a subset of the Public Figures faces dataset [22]
(PubFig). OSR contains 2,688 images (GIST features) with
6 attributes, while PubFig contains 772 images (GIST +
Color features) with 11 attributes. See Supp File for more
details. We use the exact same attributes, features, and
train/test splits as [23, 28].

Setup We run for 10 random train/test splits, setting aside
300 ground truth pairs for testing and the rest for training.
We cross-validateC for all experiments, and adopt the same
C selected by the global baseline for our approach. We use
no “equal” pairs for training or testing rankers. We report
accuracy in terms of the percentage of correctly ordered
pairs, following [23]. We present results using the same
labeled data for all methods.

For ITML, we use the ordered pairs OA for rank train-
ing to compose the set of dissimilar pairsDA, and the set of
“equal” pairs to compose the similar pairs SA. We use the
default settings for c and l in the authors’ code [12]. The set-
ting of K determines “how local” the learner is; its optimal
setting depends on the training data and query. As in prior
work [6, 33], we simply fix it for all queries at K = 100.
Values ofK = 50 to 200 give similar results. See Supp File
for more details.

Baselines We compare the following methods:

• FG-LocalPair: the proposed fine-grained approach.

• LocalPair: our approach without the learned metric
(i.e., MA = I). This baseline isolates the impact of tai-
loring the search for neighboring pairs to the attribute.



Open Pointy Sporty Comfort
Global [28] 87.77 89.37 91.20 89.93
RandPair 82.53 83.70 86.30 84.77
LocalPair 88.53 88.87 92.20 90.90

FG-LocalPair 90.67 90.83 92.67 92.37

Table 1: Zap50K-1 dataset results for coarser pairs.

Open Pointy Sporty Comfort
Global [28] 60.18 59.56 62.70 64.04
RandPair 61.00 53.41 58.26 59.24
LocalPair 71.64 59.56 61.22 59.75

FG-LocalPair 74.91 63.74 64.54 62.51

Table 2: Zap50K-2 dataset results for fine-grained pairs.

• RandPair: a local approach that selects its neighbors
randomly. This baseline demonstrates the importance
of selecting relevant neighbors.

• Global: a global ranker trained with all available la-
beled pairs, using Eq. 2. This is the Relative Attributes
Method [28]. We use the authors’ public code.

• RelTree: the non-linear relative attributes approach
of [23], which learns a hierarchy of functions, each
trained with successively smaller subsets of the data.
Code is not available, so we rely on the authors’ re-
ported numbers (available for OSR and PubFig).

Zappos Results Table 1 shows the accuracy on Zap50K-
1. Our method outperforms all baselines for all attributes.
To isolate the more difficult pairs in Zap50K-1, we sort the
test pairs by their intra-pair distance using the learned met-
ric; those that are close will be visually similar for the at-
tribute, and hence more challenging. Figure 6 shows the
results, plotting cumulative accuracy for the 30 hardest test
pairs per split. We see that our method has substantial gains
over the baselines (about 20%), demonstrating its strong ad-
vantage for detecting subtle differences. Figure 5 shows the
qualitative results.

We proceed to test on even more difficult pairs. Whereas
Figure 6 focuses on pairs difficult according to the learned
metric, next we focus on pairs difficult according to our hu-
man annotators. Table 2 shows the results for Zap50K-2.
We use the original ordered pairs for training and all 4,612
fine-grained pairs for testing (Section 4). We outperform all
methods for 3 of the 4 attributes. For the two more objective
attributes, “open” and “pointy”, our gains are sizeable—
14% over Global for “open”. We attribute this to their lo-
calized nature, which is accurately captured by our learned
metrics. No matter how fine-grained the difference is, it
usually comes down to the top of the shoe (“open”) or the
tip of the shoe (“pointy”). On the other hand, the subjec-
tive attributes are much less localized. The most challeng-
ing one is “comfort”, where our method performs slightly
worse than Global, in spite of being better on the coarser
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Figure 6: Accuracy for the 30 hardest test pairs on Zap50K-1.

pairs (Table 1). We think this is because the locations of the
subtleties vary greatly per pair.

Overall, local learning outperforms the state-of-the-art
global approach [28] on the Zappos images.

Scenes and PubFig Results We now shift our attention
to OSR and PubFig, two commonly used datasets for rela-
tive attributes [21, 23, 28]. The paired supervision for these
datasets originates from category-wise comparisons [28],
and as such there are many more training pairs—on aver-
age over 20,000 per attribute.

Tables 3 and 4 show the accuracy for PubFig and OSR,
respectively. Figure 7 shows representative precision recall
curves, using |R(xi)−R(xj)| as a measure of confidence.

On both datasets, our method outperforms all the base-
lines. Most notably, it outperforms RelTree [23], which to
our knowledge is the very best accuracy reported to date
on these datasets. This particular result is compelling not
only because we improve the state of the art, but also be-
cause RelTree is a non-linear ranking function. Hence, we
see that local learning with linear models is performing bet-
ter than global learning with a non-linear model. With a
lower capacity model, but the “right” training examples, the
comparison is better learned. Our advantage over the global
Relative Attributes linear model [28] is even greater.

On OSR, RandPair comes close to Global. One possible
cause is the weak supervision from the category-wise con-
straints. While there are 20,000 pairs, they are less diverse.
Therefore, a random sampling of 100 neighbors seems to
reasonably mimic the performance when using all pairs. In
contrast, our method is consistently stronger, showing the
value of our learned neighborhood pairs.

While metric learning (ML) is valuable across the board
(FG-LocalPair > LocalPair), it has more impact on Pub-
Fig than OSR. We attribute this to PubFig’s more localized
attributes. Subtle differences are what makes fine-grained
comparison tasks hard. ML discovers the features behind
those subtleties with respect to each attribute. Those fea-
tures could be spatially localized regions or particular image
cues (GIST vs. color). Indeed, our biggest gains compared
to LocalPair (9% or more) are on “white”, where we learn
to emphasize color bins, or “eye”/“nose”, where we learn to
emphasize the GIST cells for the part regions. In contrast,
the LocalPair method compares the face images as a whole,



Male White Young Smiling Chubby Forehead Eyebrow Eye Nose Lip Face
RelTree [23] 85.33 82.59 84.41 83.36 78.97 88.83 81.84 83.15 80.43 81.87 86.31
Global [28] 81.80 76.97 83.20 79.90 76.27 87.60 79.87 81.67 77.40 79.17 82.33
RandPair 74.43 65.17 74.93 73.57 69.00 84.00 70.90 73.70 66.13 71.77 73.50
LocalPair 81.53 77.13 83.53 82.60 78.70 89.40 80.63 82.40 78.17 79.77 82.13

FG-LocalPair 91.77 87.43 91.87 87.00 87.37 94.00 89.83 91.40 89.07 90.43 86.70

Table 3: Accuracy comparison for the PubFig dataset. FG-LocalPair denotes the proposed approach.

Natrl Open Persp. LgSize Diag ClsDepth
RelTree [23] 95.24 92.39 87.58 88.34 89.34 89.54
Global [28] 95.03 90.77 86.73 86.23 86.50 87.53
RandPair 92.97 89.40 84.80 84.67 84.27 85.47
LocalPair 94.63 93.27 88.33 89.40 90.70 89.53

FG-LocalPair 95.70 94.10 90.43 91.10 92.43 90.47

Table 4: Accuracy comparison for the OSR dataset.
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Figure 7: Precision-recall for OSR (top) and PubFig (bottom).

and is liable to find images of the same person as more rele-
vant, regardless of their properties in that image (Figure 4).

6. Conclusion
Fine-grained visual comparisons have many compelling

applications, yet traditional global learning methods can fail
to capture their subtleties. We proposed a local learning-
to-rank approach based on analogous training comparisons,
and we introduced a new dataset specialized to the problem.
With three attribute datasets, we find our idea improves the
state of the art. In future work, we plan to explore ways
to pre-compute local models to reduce run-time and inves-
tigate generalizations to higher-order comparisons.
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