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(a) Input image sequence (b) Foreground points of SfM (c) Dense reconstruction (d) Synthetic aperture

Figure 1: We investigate reconstruction from image sequence with very small motion as shown in (a), where the motion between images
are hard to observe. (b) and (c) shows our reconstruction results and our method leads to interesting applications such as synthetic aperture
effect as shown in (d), where the foreground object is in focus and the background is blurred.

Abstract

We have discovered that 3D reconstruction can be
achieved from a single still photographic capture due to ac-
cidental motions of the photographer, even while attempt-
ing to hold the camera still. Although these motions result
in little baseline and therefore high depth uncertainty, in
theory, we can combine many such measurements over the
duration of the capture process (a few seconds) to achieve
usable depth estimates. We present a novel 3D reconstruc-
tion system tailored for this problem that produces depth
maps from short video sequences from standard cameras
without the need for multi-lens optics, active sensors, or in-
tentional motions by the photographer. This result leads
to the possibility that depth maps of sufficient quality for
RGB-D photography applications like perspective change,
simulated aperture, and object segmentation, can come “for
free” for a significant fraction of still photographs under
reasonable conditions.

1. Introduction
When a person captures a still photo by hand, it usu-

ally takes several seconds between pointing the camera to
the scene and pressing the shutter button. During this time,
while one intends to hold the camera still, there is inevitable
motion due to hand shaking or heart beating, especially
when a lightweight camera like a smartphone, is used. We
call this type of motion accidental motion. If a camera were
to capture a short video before and/or after the capture of
a still, would it be possible to use the baseline (translation)

from accidental motion for 3D reconstruction? We demon-
strate in this paper that indeed 3D reconstruction can be
achieved, and that the resulting reconstruction can be used
for a variety of applications.

In this paper we investigate the properties of accidental
motion and find a method to reconstruct 3D information of
the image sequences. There are two main challenges to this
problem. First, the commonly used Structure from Motion
(SfM) approaches assume that a good two-view reconstruc-
tion can be obtained with algebraic methods, which in turn
depend on adequate baseline between overlapping views.
In accidental motion, the maximum viewing angle for a 3D
point is usually less than 0.2 degrees, where algebraic meth-
ods are very unstable. Second, the depth uncertainty is very
large due to small baseline and, therefore, the previous mul-
tiview stereo methods can produce serious artifacts.

To address these issues, we find that we can use multi-
ple images together to do SfM directly. Due to accidental
motion, we use inverse depth relative to a reference view to
parameterize the 3D points, which helps regularize bundle
adjustment. We find that random depth and identical camera
poses are good initialization for bundle adjustment with all
the images. We also find that many images can help reduce
uncertainty.

Given camera poses, the depth estimation of most of the
pixels is noisy and has high uncertainty. Because the depth
signal is weak and noisy, we find that the popular first-order
CRF is not very effective in regularizing depth, and can of-
ten result in an oversmoothed depth map, as shown in Fig-
ure 2. We propose to use long range connections, and we
show that direct connections between a pixel and its bigger
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neighborhood can improve the dense reconstruction in our
case.

We have conducted a user study that yields empirical evi-
dence that there is several-millimeter translation throughout
the capture of a still photo. Under reasonable conditions,
such as 3-meter depth, focal length of 2000 pixels, and lo-
calization standard deviation of 1 pixel, a baseline of 3 mm
over 100 frames (a few seconds at 30 fps) is enough to es-
timate depth with a standard deviation of 150 mm, which is
low enough uncertainty for many applications.

We test our algorithm on a variety of scenes captured by
a variety of users. The proposed method can indeed pro-
duce high quality depth maps, and these depth maps are
good enough for RGB-D photography applications, such as
synthetic aperture (focus change) and parallax effects.

2. Previous Work

We follow the common pipeline to build dense 3D mod-
els from a collection of images. We first do SfM to esti-
mate the viewing parameters of each image and then use
them to do multiview stereo to get dense reconstruction. A
wealth of previous work has studied this two problems, and
we mention some of them here to show the difference of our
system.

Structure from motion has been actively studied for a long
time and we have got a good understanding of the geo-
metric properties of estimating sparse structure and camera
poses [10]. Bundle adjustment is commonly used to obtain
the optimal estimates [31]. Nonlinear least squares is used
to measure the projection errors because of its nice error
modeling properties. But it is usually difficult to optimize
the nonlinear cost function and a good initialization is criti-
cal. [26] presents a successful way to do incremental bundle
adjustment, which relies on two-view reconstruction. How-
ever, when the motion is very small as in our case, the two-
view reconstruction is ill conditioned and therefore it can’t
provide reliable initialization. Discrete optimization [7] is
also proposed to initialize structure and camera parameters.
But the optimization itself is a hard problem and there is a
tradeoff between accuracy and complexity. To work around
the nonlinearity of the cost functions, some other error mea-
sures are also proposed. [12, 25, 13] propose to use L∞
norm instead of L2 to measure the reprojection error be-
cause the resulting cost function is convex. But L∞ is not
robust to outliers, which are unavoidable in most of the ap-
plications. We will show that even in our case, where the
feature matching is supposed to be easier than the general
case due to little view point and illumination change, we
still need to deal with outliers in feature matching. Robus-
tifing the cost function can help improve the reconstruction
result.

Instead of doing bundle adjustment with multiple im-

ages, some works [29, 5, 27, 30, 20] propose factorization
methods to do multiview SfM directly. Potentially, those
methods should be used as initialization for bundle adjust-
ment. However, in our experiments, we find that in presence
of feature localization noise and outliers, these methods are
unstable and our proposed initialization is the most effec-
tive.

Several works [19, 21, 4] study the ambiguity proper-
ties of structure from small motion and propose some algo-
rithms. But the analysis of the bundle adjustment is mainly
for two-view case. In this paper, we will present analysis
for the multiview case and show that with the assumption
of small motion, tasks such as estimating point depth can
be easier to solve. Although several researchers [20, 4]
have proposed methods to reconstruct sparse structure, to
our knowledge, our method is the first to deal successfully
with outliers and to work in practice. A recent work [18]
proposes to use a similar initialization approach to ours to
initialize a tracking system. But their goal is not to find a 3D
structure and we find that random depth initialization works
better than their proposed constant depth initialization.

Multiview stereo When the camera motion is very small,
the view change is very small. We aim to estimate depth for
each pixel in the reference view instead of a complete 3D
model. Therefore stereo methods are more relevant here.
Even if SfM can provide perfect camera parameters, the
photo-consistency measurement at each pixel can still be
noisy due to various reasons such as image noise and the
aperture problem. Various methods have been proposed to
solve this problem by smoothing or regularizing the depth
estimation. The Conditional Random Field (CRF) frame-
work is one of the most successful methods [3, 11]. A
probabilistic model is used to associate adjacent pixels to
encourage them to have similar depth values. Second order
Markov Random Field (MRF) is also proposed [14, 32, 15]
to avoid the fronto-parallel bias. However, those methods
can only connect adjacent pixels, although they are global
methods. In our experiments, we find that the low order
connection can’t regularize our depth effectively. There-
fore, we propose to connect pixels over even longer ranges.
The inference is made possible by the recent development
of high dimensional Gaussian Filtering [1] and the mean
field method [16]. We will show that this method can ef-
fectively regularize noisy depth maps estimated from weak
data terms. Some local methods [22] based on cost-volume
filtering have also been proposed to solve the stereo prob-
lem. Our method bears a similarity to the filtering meth-
ods, but our method is based on a global formulation, which
usually performs better than local methods, as evaluated on
Middlebury benchmark [23].



3. Structure from Motion
Given feature correspondences between images, we use

bundle adjustment to get the 3D structure and camera poses
of these images. It is well known that the cost function of
bundle adjustment is nonlinear and it is easy to get stuck
in a local minimum that is far away from the global mini-
mum. It is hard to even solve part of the problem [9]. Incre-
mental bundle adjustment based on two view reconstruction
is often used to get a good initialization. Surprisingly, we
find experimentally that in the small motion case, identical
camera poses and random point depth are good initializa-
tion for the cost function. What’s more, because the view
change is small, we can parameterize the 3D point position
as depth in the reference view, which also contributes to the
success of bundle adjustment. The small motion assump-
tion also makes the analysis of the cost function in bundle
adjustment easier. In this section, we first analyze the cost
function of bundle adjustment with the assumption of small
motion (both rotation and translation). Although the bun-
dle adjustment is still a complicated optimization problem
under this assumption, we can show that it has some nice
properties. When the camera poses are fixed, it is convex to
get the depth of a feature relative to a reference view. Also,
it is convex to optimize the rotation for the points at infinity
when an approximation is used. We will present our method
after proofs of the properties. In Section 5, we demonstrate
that our method is effective in reasonably restricted envi-
ronments.

3.1. Definitions

Assume we have an image sequence with Nc images
and Np points in 3D, where every point is visible to all
the images. Let the camera of the first image be the ref-
erence view, and the i-th camera is related to it by a rel-
ative rotation matrix Ri followed by relative translation
Ti = [T x

i , T
y
i , T

z
i ]T . Assume Pj is the position of the j-

th point in the coordinate system of the reference camera.
Its position in the coordinate system of the i-th camera is
RiPj + Ti.

Let Θ = [θxi , θ
y
i , θ

y
i ] be the rotation angles of the i-th

camera. With the assumption of small angles, Ri can be
approximated by

Ri =

 1 −θzi θyi
θzi 1 −θxi
−θyi θxi 1

 . (1)

To make the resulting optimization easier, we param-
eterize each 3D point by its inverse depth. so we have
Pj = 1

wj
[xj , yj , 1]T , where (xj , yj) is the projection of

Pj in the reference image. The projection of Pj on the i-
th image is pij = [pxij , p

y
ij ]

T . Let π : R3 → R2 be the
projection function, that is, π([x, y, z]T ) = [x/z, y/z]T .

3.2. Analysis

We use the L2 norm to measure the reprojection error
because it has nice statistical interpretation and can be ro-
bustified [31].

Based on the above definitions, we can define the cost
function of bundle adjustment in the retina plane as

F =

Nc∑
i=1

Np∑
j=1

||pij − π(RiPj + Ti)||2,

=

Nc∑
i=1

Np∑
j=1

(
exij + fxijwj

cij + dijwj
)2 + (

eyij + fyijwj

cij + dijwj
)2,

(2)

where
axij = xj − θzi yj + θyi ,

bxij = T x
i ,

ayij = yj − θxi + θzi xj ,

byij = T y
i ,

cij = −θyi xj + θxi yj + 1,

dij = T z
i ,

exij = pxijcij − axij ,
fxij = pxijdij − bxij ,
eyij = pyijcij − a

y
ij ,

fyij = pyijdij − b
y
ij .

(3)

Depth Estimation Assume that the correct camera poses
are given and fixed. The depth estimation is to find the depth
of a point minimizing

Fi(wj) =

Nc∑
i=1

fxj (wj) + fyj (wj), (4)

where fxj (wj) = (
exij+fx

ijwj

cij+dijwj
)2 and fyj (wj) = (

eyij+fy
ijwj

cij+dijwj
)2.

We will prove estimating the depth is easier in the context
of small motion.

First, consider the general form of fxj and fyj , f(x) =

(x−a
x−b )2, where a and b are the zero and pole of the function,

respectively. When a > b, the function is convex in (b, 3a2 −
b
2 ). When a < b, the function is convex in ( 3a

2 −
b
2 , b).

Assume that fxj (w̄x
j ) = 0, that is, w̄x

j = − eij
fij

. Be-
cause cij ≈ 1 and |dij | � 1

wj
, wj � | cijdij

|. So fxj (wj) is
convex in (0, | cij2dij

|), so is fyj (wj). Hence, F (wj) is con-
vex in (0,mini | cij2dij

|). Since | cij2dij
| is supposed to be far

greater than reasonable values of wj , we can easily opti-
mize wj for the reprojection error in Equation 4. Also, note
that if there is noise in the detection pij , it doesn’t change
cij and dij , and hence the convex interval (0,mini | cij2dij

|)
of Fi(wj). What’s more, the convexity analysis of the cost
function doesn’t depend on the approximation of the rota-
tion matrix. It is an exact property of depth estimation with
small motion.



Points at Infinity If the points are approximately at infinity,
the cost function in Equation 2 can be approximated by

F ≈
Nc∑
i=1

Np∑
j=1

(exij)
2 + (eyij)

2. (5)

It is a convex function of the camera rotation angles on the
domain around 0.

Depth Uncertainty Consider a rectified stereo pair sepa-
rated by a baseline b, observing a point at inverse depth w.
The relationship between disparity and depth is given by
w = d

fb , where d is the disparity and f is the focal length.
Ignoring quantization errors and mismatches, we can obtain
the inverse depth estimation at any single pixel, namely

Var[ŵ] = IE[(
d+ ε

fb
− d

fb
)2] =

Var[ε]

f2b2
, (6)

where ε is the feature localization error. Unlike analyz-
ing the variance of depth, we don’t have to take first-order
approximation here. Similarly, assuming that we have n
observations of the point and they have the same vari-
ance, we can get the variance of the combined estimation
ŵ = 1

n

∑n
i=1 ŵi:

Var[ŵ] =
1

n2f2b2
IE[(

n∑
i=1

εi)
2]

=
1

f2b2
(

1

n
+ ρ(1− 1

n
))Var[ε],

(7)

where Cov[εi, εj ] = ρVar[ε] for all i, j between 1 and n
and i 6= j, and Var[εi] = Var[ε]. This indicates that if the
feature detection errors are independent, the standard devi-
ation of the inverse depth estimation decrease linearly with√
n. However, if the feature detection errors are fully corre-

lated, multiple observations don’t help reduce uncertainty.
Similar conclusion can be drawn for depth [8].

3.3. Initialization

A good initialization is crucial to finding good minima
of reprojection errors. Because of the results in Section, 3.2
we conjecture that a random initialization for structure may
give good results. Given a sequence of images, we select a
reference view and initialize all the camera poses with zero
rotation and translation. As mentioned above, the points are
parameterized by inverse depth. The projections of the 3D
points are proposed by feature tracking across the images.
First, corner features [24] are detected in the reference im-
age. Then, instead of tracking the corners in the image se-
quence order, we track all the corners from the reference im-
age to each of the other images with Kanade-Lucas-Tomasi
(KLT) [17, 28] feature tracker. This can effectively reduce
the accumulative localization error of feature tracking. To
remove the tracking outliers, we require that all the features

can be tracked to all the non-reference images and the max-
imum color gradient difference per pixel between the two
patches should be under a threshold. KLT method can pro-
vide subpixel accuracy, and this is critical when the camera
motion and therefore the feature movement are small.

3.4. Optimization

We optimize the cost function of bundle adjustment in
Equation 2 with Ceres Solver [2]. Robustifiers are option-
ally used in the cost function. The camera of the reference
view is fixed at the coordinate origin. Usually, the outliers
can be neglected after the feature tracking and selection in
initialization. However, we find cases where robustifiers can
improve the reconstruction results. On the other hand, af-
ter each optimization, we remove the points with negative
depth and optimize again with the remaining points.

4. Dense Reconstruction
After getting structure from motion, we want to densely

reconstruct the 3D scene by estimating the depth of the im-
ages. Because all the input images capture the scene from a
similar viewpoint, we can only get a 3D structure seen from
the common viewpoint. Therefore, we aim to get a depth
map of a reference view as the 3D reconstruction output.
Because the depth signal at each pixel tends to be noisy in
our case, we adopt plane sweeping together with the CRF
framework [11] to solve a smooth depth map.

One distinct attribute of multiview stereo from small
baseline images is that the confidence of depth minima is
low in general instead of just in textureless areas. There-
fore, the details can be easily smoothed out, as shown in
Figure 2. To preserve the details while smoothing the depth
map, we propose to use long range connection between pix-
els in the CRF energy function, which can pass information
to a pixel effectively.

4.1. Formulation

The input is a set of images. Let I be the index set of
the pixels in a reference view I, and I(i), i ∈ I, is the color
of the i-th pixel. The goal is to determine a dense depth
map, D, of the reference view. Let L map each pixel in-
dex i ∈ I to a 2D location in the image. Let P be the
photo-consistency function such that P(i, d) is the photo-
consistency score of the i-th pixel at distance d.

The energy we intend to minimize is
E(D) = Ep(D) + αEs(D). (8)

Ep is the standard photo-consistency term of the form

Ep(D) =
∑
i∈I

P(i,D(i)), (9)

which can be obtained by plane sweeping algorithm [6].
Es is the smoothness term to regularize the depth es-

timation. It often represents first-order or second-order



(a) Reference View (b) WTA (c) Long Range Connection

(d) Less first-order Smoothness (e) First-order Smoothness (f) More first-order Smoothness

Figure 2: Comparison of first-order and long range connection. (b) shows the data term. (c) is the result optimized based on the long
range connected model. (d) to (f) shows the graph cut solution of the first-order smoothness with increasing regularization. Because the
data term is very noisy, first-order regularization always oversmooth the estimated depth to reduce noise.

CRF model to connect and pass information between ad-
jacent pixels. However, we find that those adjacent con-
nected model can’t effectively regularize the noisy data
term. Hence, we propose to connect pixels with longer
range so that the photo-consistency measurement can be ef-
fectively aggregated from an area to a pixel in it.

To build a connection between pixels that are not adja-
cent, we introduce the function C(i, j, I,L,D), which gives
a score for the depth assignment of the i-th and the j-th pix-
els based on the color intensities and their locations in the
reference images. So Es is the long range connection term
of the form

Es(D) =
∑

i∈I,j∈I,i6=j

C(i, j, I,L,D), (10)

and

C(i, j, I,L,D) = ρc(D(i),D(j))×

exp(−||I(i)− I(j)||2

θc
− ||L(i)− L(j)||2

θp
), (11)

where ρc is robust measurement of depth difference, and θc
and θp are parameters to control the connection strength and
range. We choose ρc to be the truncated linear function, i.e.,
ρc = min(t, |D(i)−D(j)|), where t is a threshold. The pur-
pose of Ec is to connect pixels within an area with similar
colors such that they can have consistent depth, since they
are more likely to belong to the same object.

4.2. Optimization

We use the mean field method with an efficient imple-
mentation proposed in [16] to optimize Equation 8. It can
solve the dense CRF model and give a smooth depth map
efficiently.

5. Experiments

We evaluate our methods on both synthetic and real data.
The real data is collected by a smartphone camera, and it is
captured in the video mode at 24 frames per second. To
make our system practical to real world applications, we
limit the number of images to 100, which is about a 4-
second video. The camera intrinsic parameters are calcu-
lated from the factory specification of the phone and the
image distortion is not accounted for. Better results are
expected when a better camera is used. More results are
shown in the supplemental material.

Google Nexus 4 (smartphone)
Translation

All Translation stdev. (mm) after
users speed (mm/s) 1s 2s 3s
Mean 18.07 2.18 3.35 3.81
Stdev. 6.67 1.11 1.99 2.31

Canon PowerShot S95 (point-and-shoot)
Translation

All Translation stdev. (mm) after
users speed (mm/s) 1s 2s 3s
Mean 9.23 1.71 3.02 3.99
Stdev. 2.10 0.65 1.23 1.88

Figure 4: Camera translation statistics obtained from a user study
of 9 participants. Users were asked to record video of a calibra-
tion pattern and hold the camera steady, as if they were capturing a
photograph. Although the smartphone moves faster than the point-
and-shoot (perhaps due to the weight and form), both cameras ex-
hibit similar standard deviation of translation (camera centers).



(a) Corner Features (b) SfM Bird’s Eye View (c) SfM Side View

(d) WTA depth estimation (e) Smoothed depth estimation (f) Synthetic aperture

Figure 3: Pipeline of our system. (a) We select the first image in a sequence as the reference view. Corner features (Red dots) are extracted
in the reference view and tracked to the other images. (b) and (c) show the SfM result with initialization of random structure and identical
camera poses. (d) WTA of the photo-consistency at each pixel (e) The smoothed depth estimation based on our proposed energy function
with long range connections. (f) Given the depth map, we can refocus on part of the image.

5.1. User Behavior

We have conducted a user study to determine the magni-
tude of accidental translational motion during still photog-
raphy. To measure camera motion, we asked users to cap-
ture videos of a calibration pattern at a distance of roughly
0.5 meters. Users were instructed to hold the camera steady,
as if they were capturing a photograph, for a duration of 5
seconds. We evaluated 9 participants and two cameras: a
Google Nexus 4 smartphone, and a Canon PowerShot S95
point-and-shoot. The results are shown in Figure 4. From
this study, we observe that after 3 seconds, the camera cen-
ters exhibit a standard deviation of 3.9 mm, which yields
sufficient baseline to obtain a good reconstruction under
reasonable conditions. For example, for a scene depth of
3 meters, 100 frames of video, feature localization (or dis-
parity) standard deviation of 1 pixel, and a focal length of
2000 pixels, we would expect a depth standard deviation
of 0.115 meters, assuming measurements are uncorrelated.
We have asked several users to capture a 4-second video of
a natural scene using a Galaxy Nexus smartphone, and our
algorithm generates similar results shown in this paper.

5.2. Structure from Motion

We follow the method described in Section 3 in our ex-
periments. An image sequence of a video is taken as the
input. The first image of a sequence is selected as the refer-
ence view. When we remove the feature tracking outliers by
average pixel difference in a patch, we usually use 6 as the
threshold for a 8-bit encoded gray image. All the 3D posi-
tions of the feature points are parametrized by their inverse
depth relative to the reference view. Before the bundle ad-

justment, all the cameras have zero rotation and translation,
and all the points have uniformly random depth between 2
and 4 meters.

SfM Results The bundle adjustment results are shown in
Figure 3b and 3c. It demonstrates that our simple initializa-
tion method is effective in the small motion scenario. Since
we don’t have to do two-view reconstruction for each pair of
images or solve hard optimization problem [7], SfM is very
fast. With about 1000 points and 100 cameras, it usually
takes several seconds on a modern desktop.

Feature tracking outliers are inevitable, but in most of
the cases, they don’t affect the result. However, when there
are too many outliers, a robustifier can be used as in the
general structure from motion problem. We observe that
when the robustifier is not necessary, the SfM results look
better without it.

Multiple Images To understand how the multiple images
help the reconstruction, we can first look at the depth esti-
mation uncertainty. As shown in Figure 5e, the depth uncer-
tainty of the 3D points decreases with more input images. It
shows that in the case of KLT tracked features, more images
can help reduce the tracking noise.

To understand how different numbers of images change
final structure, we did bundle adjustment with different
number of images while fixing the detected features and
their matching. Since the camera intrinsic paramters are
known and the 3D points are reconstructed up to scale, we
first normalize the inverse depth values to have the same
mean and variance. One of the results is shown in Figure 6.
The blue curve shows the structure error measured by sum
of squared difference between the models reconstructed by



(a) Reference Image (b) 10 Images (c) 50 Images (d) 100 Images
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Figure 5: Change of smoothed depth maps with different number of images. Darker color indicates closer depth. More images decrease
the uncertainty of the reconstruction and also reduce the influence of outliers. (b) to (d) show the change the structure with their smoothed
depth map. (e) shows the change of depth estimation uncertainty with number of cameras in this example. The Y axis shows the standard
deviation of the inverse depth. The maximum and minimum of the uncertainty continue decreasing with addition of images. The depth
uncertainty is measured with camera poses fixed. Please note darker means closer.

certain number of images and all the images. The green
curve shows the baseline between a camera and the refer-
ence camera in the model reconstructed by all the images.
only the points with middle 90% depth ranking are consid-
ered in normalization to reduce the effects of outliers. As
we can observe in Figure 6a, there is a big error jump be-
tween 60 and 70 cameras. Since the baseline doesn’t sig-
nificantly increase, the error change may be because of the
matching outliers. If robustifier is added to the cost func-
tion, there is no sudden error change, as shown in Figure 6b.
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Figure 6: How multiple images help the reconstructed result. (a)
shows that there is a sudden change in the reconstruction error. (b)
shows that this sudden change is due to matching outliers and in
general, multiple images can help reduce the effect of outliers.

Figure 5 shows the evolution of the structure in 2D with
depth maps. When more images are used, the structure
gradually becomes better. In some cases, we observe that
the structure is already good enough when 50 images are
used, although more images can decrease the point position
uncertainty.

Therefore, more images can help reduce the recon-
structed depth uncertainty and the effects of possible out-
liers.

Points at Infinity In Section 3, we mentioned that optimiz-
ing with points at infinity is equivalent to convex optimiza-
tion of rotation. In practice, as the distant points are approx-
imately at infinity, they play an important role in resolving
the ambiguities between camera rotation and translation. If
we remove the distant points, the bundle adjustment can
easily get stuck in a local minimum. Even if we initial-
ize the bundle adjustment with a good structure, the bundle

adjustment can still distort the structure due to feature noise.

5.3. Dense Reconstruction

After getting camera poses from SfM, we can do a dense
reconstruction using the method in Section 4. We will show
the role of each term in the energy function in Equation 8
and argue that the terms are necessary to get plausible depth
map.

Data Term If we only optimize Ea of the energy function
in Equation 8, we will get the noisy depth map that optimize
the photo consistency at each pixel, which is winner-take-all
(WTA), as shown in Figure 3d. We observe that the planes,
such as the ground and the wall, present consistent depth
values in general, though the values are noisy.

First-Order Smoothness Figure 2d-f show regularized
depth maps with first-order smoothness. We observe that al-
though some areas of the depth map are still noisy, part of it
is already oversmoothed. When the regularization is weak,
the estimated depth is still noisy. When the noise is reduced
to a good level, the estimated depth is oversmoothed and an
object is reconstructed to several layers. This motivates us
to seek long connection between pixels to pass the informa-
tion more effectively.

Long Range Connection Instead of only connecting adja-
cent pixels for smoothness, we connect pixels with longer
range. This can effectively accumulate the information
from a selected neighborhood. Inspired by the recent works
of joint segmentation and stereo estimation, we first smooth
the reference image with mean shift before using its color
to compute the pixel connection weight in Equation 11. For
an image of size 480 by 270, we normally choose θc from
20 to 30 and θp from 5 to 9. Greater θp should be used
for higher resolution image. Because of the efficient imple-
mentation of mean field inference, the running time doesn’t
change with the values of θc and θp. The connection thresh-
old t used in Equation 11 is chosen to be a fixed percentage
of the total label number, which is 15% in our system. Be-
cause the truncated linear function can be implemented as
two convolutions of 1D box filtering, the running time is
linear to the number of depth labels. The results are shown
in Figure 3e.



5.4. Application

The reconstructed depth map can facilitate a lot of appli-
cations that are nearly impossible with a single color image.
For example, we can use the 3D information to simulate dif-
ferent aperture effects or synthesize new views. To test our
depth map is good enough for such applications, we can do
refocus of the reference image. As shown in Figure 3f, the
generated depth map can clearly show the depth change of
the objects in the scene.

6. Conclusion
We propose the first practical system to reconstruct 3D

structure from small motion image sequences. We discover
that in the case of small motion, random point depth rel-
ative to a reference view and identical camera poses are
good initialization for the bundle adjustment cost function,
even in presence of outliers. Although the reconstructed
3D points at the background have very high uncertainty,
the foreground points clearly show the 3D structure. We
provide some analysis of the cost function and find some
of its nice properties with the assumption of small motion.
Further, based on the noisy nature of the photo consistency
measurement, we propose to use long range connection be-
tween pixels to regularize the depth map, and the resulted
depth map looks much better than only using connections
between adjacent pixels. We also demonstrate that the re-
sulting depth map has enough quality to make perceptualy
plausible refocused images.

7. Future Work
The proposed method works well in practice but more

theoretical work is necessary to analyze the ambiguities of
multiview reconstruction with small motion and find exact
conditions when the method works. Also, we want to know
more about how people capture the scene and the success
rate of our methods under different conditions.
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