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Abstract

In this paper we present a novel real-time algorithm
for simultaneous pose and shape estimation for articu-
lated objects, such as human beings and animals. The
key of our pose estimation component is to embed the ar-
ticulated deformation model with exponential-maps-based
parametrization into a Gaussian Mixture Model. Benefiting
from the probabilistic measurement model, our algorithm
requires no explicit point correspondences as opposed to
most existing methods. Consequently, our approach is less
sensitive to local minimum and well handles fast and com-
plex motions. Extensive evaluations on publicly available
datasets demonstrate that our method outperforms most
state-of-art pose estimation algorithms with large margin,
especially in the case of challenging motions. Moreover,
our novel shape adaptation algorithm based on the same
probabilistic model automatically captures the shape of the
subjects during the dynamic pose estimation process. Ex-
periments show that our shape estimation method achieves
comparable accuracy with state of the arts, yet requires nei-
ther parametric model nor extra calibration procedure.

1. Introduction
The topic of pose estimation for articulated objects, in

particular human pose estimation [17, 22], has been actively
studied by the computer vision community for decades. In
recent years, due to the increasing popularity of depth sen-
sors, studies have been conducted to capture the pose of
articulated objects using one or more such depth sensors
(detailed in Sec. 2). Despite of the substantial progress that
have been achieved, there are still various limitations.

Discriminative approaches [23, 25, 21] in general are ca-
pable of handling large body shape variations. Yet it has
been shown that most existing discriminative and hybrid ap-
proaches cannot achieve high accuracy with complex mo-
tions [13]. The majority of generative approaches require
building point correspondences, mostly with variants of ICP
methods. Thus they are prone to be trapped in local mini-

Figure 1. Our novel algorithm effectively estimates the pose of
articulated objects using one single depth camera, such as human
and dogs, even with challenging cases.

mum, especially in the case of fast and complex motions.
When a template model is used, as in generative or hybrid
approaches, the consistency of body shape (limb lengths
and girths) between the model and the subject is critical
for accurate pose estimation. Most existing approaches ei-
ther require given shapes [11, 29], small variations from the
template [12], or specific initialization [27, 13]. Apparently,
these requirements limit the applicability of these methods
in home environments.

To overcome the limitations mentioned above, we pro-
pose a novel (generative) articulated pose estimation al-
gorithm that does not require explicit point correspon-
dences and captures the subject’s shape automatically
during the pose estimation process. Our algorithm relates
the observed data with our template using Gaussian Mix-
ture Model (GMM), without explicitly building point corre-
spondences. The pose is then estimated through probability
density estimation under articulated deformation model pa-
rameterized with exponential maps [2]. Consequently, the
algorithm is less sensitive to local minimum and well ac-
commodates fast and complex motions. In addition, we
develop a novel shape estimation algorithm within the same
probabilistic framework that is seamlessly combined with
our pose estimation component. Last but not the least, our
pipeline is implemented on GPU with CUDA, and achieves
real-time performance (> 30 frames per second).

We conduct extensive evaluations on publicly available
datasets. The experiments show that our algorithm outper-
forms most existing methods [11, 23, 30, 1, 12, 13] with
large margin, especially in the case of complex motions.
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Our method is flexible enough to handle animals as well, as
shown in Figure 1 and Figure 8.

2. Related Work

Pose Estimation from Depth Sensors The approaches
for depth-based pose estimation can be classified into dis-
criminative, generative and hybrid approaches. Existing
discriminative approaches either performed body part de-
tection by identifying salient points of the human body [20],
or relied on classifiers or regression machines trained of-
fline to infer the joint locations [23, 25]. Shotton et al. [23]
trained a Random Forest classifier for body part segmenta-
tion from a single depth image, and then estimated joint lo-
cations using mean shift algorithm. Also based on Random
Forest, Taylor et al. [25] directly inferred mode-to-depth
correspondences for off-line pose optimization. As will be
shown in Sec. 4, our algorithm achieves significantly higher
accuracy in the case of complex motions compared to [23]
and the KinectSDK [16].

The generative approaches fit a template, either para-
metric or non-parametric, to the observed data, mostly
with variants of ICP. Ganapathi et al. [12] used Dynamic
Bayesian Network (DBN) to model the motion states and
demonstrated good performance with an extend ICP mea-
surement model and free space constraint. Yet their over-
simplified cylindrical template cannot capture the subject’s
shape. The work by Gall et al. [9], built upon [10], used
both depth and edge information to guide the tracker also
within the ICP framework. Compared to this line of works,
our method does not require explicit point correspondences
and is more robust in dealing with fast complex motions.

The complementary characteristics of these two groups
of approaches have been combined to achieve higher accu-
racy. Ye et al. [30] and Baak et al. [1] use database lookup to
locate a similar pose, with PCA of normalized depth images
and salient point detection, respectively. Helten et al. [13]
extended [1] to obtain personalized tracker that can handle
larger body shape variations and achieves real-time perfor-
mance. Ganapathi et al. [11] use body part detector [20]
to guide their tracker within the DBN framework. This
DBN model is combined with the Random Forest classi-
fier [23] by Wei et al. [27] to achieve high accuracy with
real-time performance. The generative component of these
approaches [13, 11, 27] are also ICP-based.

Shape Estimation The topic of shape estimation has also
been extensively studied, however mainly for rigid bod-
ies [3, 15]. Some methods can deal with small degree
of motions for articulated objects [28, 5, 31]. Only a
few methods allow the subject to perform free movements.
Using multi-view setup, detailed geometry can be recov-
ered [7, 26, 14, 24]. High quality monocular scans of
strictly articulated objects under different poses can also be

accurately merged to obtain a complete shape [4]. How-
ever, the noise from current depth sensors could downgrade
the method’s accuracy by a large degree [5]. With a sin-
gle depth sensor, usually only the overall shapes are recov-
ered [28, 13]. Compared to these methods, our approach
does not require parametric models. Besides, our algorithm
adapts the template shape to the subject’s automatically dur-
ing the pose estimation process, without requiring the sub-
ject to perform extra specific motions. Experiments show
that our algorithm can deal with large shape variations.

3. GMM-based Pose and Shape Estimation
Our pose tracker uses a skinning mesh model as tem-

plate. Specifically, the template consists of four compo-
nents, the surface vertices V = {v0

m|m = 1, · · · ,M},
the surface mesh connectivity F , the skeleton J and the
skinning weights A. In general, the hierarchy of the joints
in the skeleton J forms a tree structure (kinematic tree).
The goal of pose estimation is to identify the pose Θ, under
which the deformed surface vertices, denoted as V(Θ) =
{vΘ

m|m = 0, · · · ,M}, best explain the observed point
cloud X = {xn|n = 1, · · · , N}.

3.1. The General Probabilistic Model

Our algorithm assumes that the observed point cloud X
follows a Gaussian Mixture Model (GMM) whose centroids
are the deformed template vertices V(Θ). Similar to [19],
an extra uniform distribution is included to account for out-
liers. Therefore, the probability of each observed point
xn ∈ X can be expressed as

p(xn) = (1− u)

M∑
m=1

p(vΘ
m)p(xn|vΘ

m) + u
1

N
(1)

p(xn|vΘ
m) =

1

(2πσ2)d/2
exp

(−‖xn − vΘ
m‖2

2σ2

)
(2)

where d is the dimensionality of the point set (d = 3 in our
case) and u is the weight of the uniform distribution that
roughly represents the percentage of the outliers in X . Here
a single variance parameter σ2 is used for all Gaussians for
simplicity. Similar to [19, 6], we assume uniform distribu-
tion for the prior, that is p(vΘ

m) = 1/M .
Under this probabilistic mode, pose estimation is cast as

a probability density estimation problem that minimizes the
following negative log-likelihood:

E
(
Θ, σ2

)
= −

N∑
n=1

log
( M∑
m=1

1− u
M

p(xn|vΘ
m) +

u

N

)
(3)

which is normally solved iteratively using the Expectation-
Maximization (EM) algorithm [8]. During the E-step, the
posteriors pold(vΘ

m|xn) are calculated using the parameters
estimated from the previous iteration based on Bayes rule:



pmn ≡ pold(vΘ
m|xn) =

exp
(
−‖xn−vΘ

m‖
2

2σ2

)
∑M
m=1 exp

(
−‖xn−vΘ

m‖2
2σ2

)
+ uc

(4)

where uc = (2πσ2)d/2uM
(1−u)N . During the M-step, the parame-

ters are updated via minimizing the following complete neg-
ative log-likelihood (upper bound of Eq. 3):

Q
(
Θ, σ2

)
= −

∑
n,m

pmn

(
log
(1− u
M

p(xn|vΘ
m)
)

+ log
u

N

)
∝ 1

2σ2

∑
n,m

pmn‖xn − vΘ
m‖2 +

d

2
P log σ2 (5)

where P =
∑
n,m

pmn;
∑
n,m

≡
∑N

n=1

∑M

m=1
(6)

So far, the probabilistic model is independent of the form
of deformation model in V(Θ). Cui et al. [6] and Myro-
nenko et al. [19] used this model for rigid and non-rigid
point set registration. Different from their work, we derive
the pose estimation formulation under the articulated defor-
mation model, which is more suitable for a large variety of
articulated-like objects (e.g., human and many animals).

3.2. Twist-based Articulated Deformation Model
We use twist and exponential maps to represent the 3D

transformations of each joint in the skeleton, similar to [2,
10, 13]. With this parametrization, the transformation of a
joint in the kinematic tree can be represented as:

Ti = eξ̂g
∏K

k=1
eδkiξ̂kθk (7)

where δki =
{

1 joint k is an ancestor of joint i
0 otherwise (8)

Here ξ̂g and ξ̂kθk represent the global transformation and
local rotation of joint k respectively (see [18] for details).
Without loss of generality, we assume the index of a joint is
smaller than its children throughout this paper.

The skinning model deforms a vertex vm ∈ V with the
weighted sum of the transformations of its controlling joints
as follows:

vΘ
m =

K∑
k=1

αmkT
Θ
i v

0
m (9)

where {αmk ∈ A} are the skinning weights from our tem-
plate. Notice that throughout the texts, homogeneous and
inhomogeneous coordinates are used interchangeably with-
out explicit differentiation for notational simplicity.

As shown in Section 3.1, the pose will be updated in
an iterative fashion. At iteration t, with the assumption of
small changes of both joints angles {∆θtk} and global trans-
formation ∆ξtg , the deformation model in Eq. 9 can be lin-
earized (see supplemental materials for derivation):

vt+1
m ≈ vtm + Itm∆ξtg +

K∑
k=1

βmk ξ̂
′t
k v

t
m∆θtk (10)

where Itm =
[
I3 [vtm]×

]
; (11)

βmk =
∑K

i=1
δkiαmi; ξ̂′tk = T tk ξ̂k(T tk)−1 (12)

Here I3 is a 3 × 3 identity matrix, and the operator [·]×
converts a vector to a skew-symmetric matrix. The weight
βmk accumulates the corresponding skinning weights along
all joints and represents the global influence of joint k over
vertex vm. The term ξ̂′tk is a coordinate transformed twist
of ξ̂k via the transformation of joint k, namely T tk.

3.3. The Tracking Algorithm

The core of our tracking algorithm is the combination
of the articulated deformation model in Sec. 3.2 with the
probabilistic framework in Sec. 3.1. Plugging Eq. 10 into
Eq. 5, we get the following objective function (superscript
ignored for notational simplicity):

Q(∆Θ, σ2) =
1

2σ2

∑
n,m

(
pmn‖xn − vm − Im∆ξg

−
K∑
k=1

βmk ξ̂
′
kvm∆θk‖2

)
+
d

2
P log σ2

=
∑
n,m

pmn
2σ2
‖xn − vm −Am∆Θ‖2 +

d

2
P log σ2 (13)

where Am =
[
Im βm1ξ̂

′
1vm · · · βmK ξ̂′Kvm

]
(14)

∆Θ =
[
∆ξTg ∆θ1 · · · ∆θK

]T
(15)

In order to solve for the parameters {∆Θ, σ2}, the par-
tial derivatives of Q(∆Θ, σ2) over the parameters are set
to zero to obtain the following equations:∑

n,m

pmn
σ2

ATmAm∆Θ =
∑
n,m

pmn
σ2

ATm(xn − vm) (16)

σ2 =
1

dP

∑
n,m

pmn‖xn − vm‖2 (17)

These two equations comprise the core of our novel
tracking algorithm. To better regularize the optimization,
we add the following two terms to the objective function:

Er(∆Θ) = ‖∆Θ‖2 (18)

Ep(∆Θ) =

K∑
k=1

(
θprev
k +

t∑
τ=1

∆θτk − θ
pred
k

)2
(19)

The term Er ensures that the solution complies with
the small pose change assumption during linearization in
Eq. 10. In Ep, {θprev

k } are the joint angles from previous
frame, and {θpred

k } are the predicted joints angles using lin-
ear third order autoregression similar to [10]. The second
term penalizes a solution’s large deviation from the pre-
diction, assuming relatively continuous motions in tracking
scenario. This term is helpful in dealing with occlusions, in
which case the joints corresponding to invisible parts can be
relatively well constrained.



Initialize the template with previous pose
Sample a subset of points from each point set
while Pose not converged do

E-step: Compute posteriors via Eq. 4.
M-Step:
• Minimize Eq. 20 for (∆Θ, σ2).
• Update template vertices via Eq. 9.

end
Algorithm 1: The pose estimation procedure.

Our complete objective function is the weighted sum of
these three terms:

E = Q(∆Θ, σ2) + λrEr(∆Θ) + λpEp(∆Θ) (20)

The partial derivative of Er and Ep over ∆Θ are added
to Eq. 16 and the entire linear system is solved at each it-
eration for the pose update ∆Θ. Eq. 17 is solved for the
Gaussian variance σ2. After each pose update, the sur-
face vertices are updated via the skinning deformation in
Eq. 9. In the E-step, the posteriors are calculated according
to Eq. 4. The procedure iterates until the maximum surface
vertex movements is below a certain threshold (1mm in our
experiments). Note that the small pose update is only en-
forced between two iterations, while large pose change
between two frames is allowed (see our video).

Since the computational complexity is in the order of
MN , we use only a subset from each point cloud during
the optimization. For the template mesh, random sampling
strategy is used. The observed point set is uniformly sub-
sampled based on the regular image grid. The pose estima-
tion process for each new frame is summarized in Alg. 1.

3.4. Monocular Scenario

In monocular setup, the missing data introduces addi-
tional difficulties for the algorithm above. Specifically the
algorithm attempts to use all given template vertices to fit
the observed data. However, since the template surface is
complete while the observed surface is partial, the observed
partial surface will typically end up inside the complete
template surface (between frontal and back surfaces). An
intuitive strategy is to use only the visible part of the tem-
plate from previous frame, as being adopted by Helten et
al. [13]. However, such strategy can not well handle rota-
tion of body parts, as the visible parts will change. Towards
this end, we propose a two-step coarse-to-fine strategy to
handle this situation. In the first step, the entire set of tem-
plate vertices are used for sampling, and the pose are up-
dated until convergence. In most cases, the body parts will
be very close to their correct places. Then the visibility of
the template surface is determined and only the visible part
are used to refine the pose.

Another type of missing data is the occlusion of an entire
body segment, either due to self occlusion or camera field of

begin Step One
Exclude template points outside the camera view;
Perform Alg. 1;

end
begin Step Two

Perform visibility test and exclude invisible points
from the template;
Perform Alg. 1;

end
Algorithm 2: Pose estimation for monocular data.

view limitation. By using only visible points in the second
refining step, these two issues could be partially resolve, as
the joint angles of the corresponding invisible parts will not
be updated. However, they might still be affected during the
first step. Therefore, we limit our sampling candidates to the
set of template vertices inside the camera view. Besides, we
rely on the autoregression prediction in Eq. 19 to constraint
the occluded parts that are inside the camera view. With
these strategies, our algorithm can effectively and reliably
estimate the pose using only one single depth camera. The
entire pose estimation procedure is summarized in Alg. 2.

3.5. Template Shape Adaptation and Initialization

The consistency of body shape (limb lengths and body
part girths) between the template and the subject plays a
critical role in pose estimation. In this section, we describe
our novel algorithm for automatic body shape estimation,
followed by the initialization procedure of our tracker.

3.5.1 Limb Lengths Estimation

In order to adjust the limb lengths of template to fit the sub-
ject, existing methods either assume presence of a person-
alized template model [10] or estimate the body size before
tracking [27, 13]. We follow the later strategy because ap-
parently it is more general. However, our method requires
neither parametric model as in [13], nor body part detectors
as in [27]. Instead, we parameterize the template vertices on
limb lengths and utilize the probabilistic model in Sec. 3.1
to estimate the optimal body size.

To achieve linear parametrization, we adopt the differen-
tial bone coordinates introduced by Straka et al. [24], which
is defined in a way similar to the Laplacian coordinates:

ηm =

K∑
k=1

αmkηmk; ηmk = vm−(gk−(1−γmk)dk) (21)

As explained in Fig. 2, the local geometric shape informa-
tion is encoded inside these coordinates.

The adjustment of the limb lengths are achieved by in-
troducing a scale for each bone, denoted as S = {sk}. The
scaled bone vectors become {skdk}, assuming unchanged
pose. Consequently, the scaled joint positions can be com-
puted as:
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Figure 2. The differential bone coordinates [24]. gk is the location
of joint k and dk is the vector from parent of joint k to itself. Each
vector ηm,k encodes the relative position of the vertex vm with re-
spect to bone k. The differential bone coordinate defined in Eq. 21
accumulates such relative positions along all controlling bones of
this vertex and encodes the information of surface geometry.

gk(S) = gr +
∑K

j=1
δjksjdj (22)

where gr is the position of the root that only changes with
pose. Combining Eq. 22 and Eq. 21, we can reconstruct the
vertex positions for the scaled template with the following
equation:

vm(S) = ηm + gr +
∑K

k=1
ρmkskdk (23)

where ρmk = βmk − αmk(1− γmk) (24)

The idea of our limb lengths adaptation is to estimate
the scales, such that the vertices of the scaled template de-
fined in Eq. 23 maximizes the objective function defined in
Eq. 13. Therefore, plugging Eq. 23 into Eq. 13 and chang-
ing the unknown from pose to the scales, we obtain the fol-
lowing objective function for limb length scales estimation:

Q(S) =
∑
nm

pmn
2σ2

( K∑
k=1

ρmkskdk + ηm + gr − xn
)

(25)

Again, setting the partial derivatives of the above objective
function over the scales to zero yields:∑K

j=1

( 1

σ2
dTk dj

∑
n,m

pmnρmjρmk

)
sj =

dTk
σ2
·

∑
n,m

pmnρmk(xn − ηm − gr); k = 1, · · · ,K (26)

In order to assure a reasonable overall shape of the scaled
template, we further enforce consistency of the estimated
scales for a set of joints pairs:

λsωi,jsi = λsωi,jsj ; < i, j >∈ B (27)

Here the global weight λs leverages the relative importance
of this regularization term with respect to the data term in
Eq. 26, and ωi,j represents the relative strength of the sim-
ilarity for the pair (si, sj) among others. For human and
animals, we set ωi,j = 1 for symmetric parts (e.g left/right
arm) and 0.5 for connected bones. Combining Eq. 26 and
Eq. 27, we can solve for the scales so that the template is
best fit to the observed points under our probabilistic model.

Notice that the parametrization in Eq. 23 requires un-
changed pose. However, before the template is appropri-
ately scaled, the pose might not be well estimated. There-
fore, we iterate between pose estimation and scale estima-
tion until the estimated scales converge. The procedure is

while Scales not converged do
Estimate pose Θ using Alg. 2;
Calculate the joints {gk, gr} and {dk} from Θ;
Compute {ηm} according to Eq. 21;
Estimate scales S via Eq. 26 and Eq. 27;
Update the template with the scales S

end
Algorithm 3: Limb lengths estimation procedure.

summarized in Alg. 3. The effectiveness of our template
limb length adaptation is illustrated in Fig. 9 and our sup-
plemental video.

3.5.2 Geometric Shape Adaptation

Besides limb length adaptation, we further develop an auto-
matic method to capture the overall geometry of the subject
directly inside the pose estimation process, which does not
require the subject to perform any additional specific mo-
tions as in [13]. The key insight is that upon convergence of
pose estimation, the maximum of posteriors p(vm|xn) over
all {xn} naturally provide information about the point cor-
respondences. Moreover, the corresponding posteriors can
serve as a measure of uncertainty. With a sequence of data,
we can treat each such correspondence as an observed sam-
ples of our target adapted surface vertex v̂m. Consequently,
the weighted average over all the samples can be used to
represent our adapted template:

v̄m =
∑

f
ω(xf(m))x

f
(m)

/∑
f
ω(xf(m)) (28)

where xf(m) is the correspondence identified via maximum

of posteriors at frame f . The weight ω(xf(m)) is designed
to take into account both the uncertainty based on the pos-
terior and the sensor noise based on depth, and is defined as
follows:

ω(xf(m)) = p(vm|xf(m))
/

[xf(m)]
2
z (29)

where the quantity [·]z denotes the z (depth) component.
In order to ensure smoothness of final adapted surface

and to further handle noises, we allow the movement of a
surface vertex only along its original normal. Consequently,
a displacement dm is estimated for each vertex vm, by op-
timizing the following objective function:

Ed =
∑M

m=1

(
ωm‖dmnm − (v̄m − v0

m)‖2 + λd‖dm‖2
)

+ λe
∑

<m,l>∈F

‖dm − dl‖2 (30)

where the weight ωm = 1 if the vertex has correspondence
up to the current frame and 0 otherwise. The first term
moves the vertex to the projection of the weighted sum de-
fined in Eq. 28 on the normal nm. The second term penal-
izes large movements and the third one enforces smoothness



SMMC-10 EVAL PDT 

Subjects One male Two males, one 
female 

Three males, one 
female 

Data size 28 Sequences, 100 
or 400 frames each 
(~50% each case) 

7 sequences per 
subject, around 500 
frames per sequence 

4 sequences per 
subject, 1000~2000 
frames per sequence 

Motion 
complexity 

Relatively simple Moderate to complex 
(cart-wheels, hand 
standing, sitting on 
floor, etc.) 

Moderate to complex 
(jumping, sitting on 
floor, dancing, etc.) 

Ground 
truth data 

Markers Joints Joints + Transformations 

Figure 3. The three datasets we use for quantitative evaluations.

between connected vertex pairs. In our implementation, we
prune correspondences based on euclidean distance in each
frame to remove noises, and perform this adaptation only
every L (L = 5 in our experiments) frames because nearby
frames in general provide little new information.

3.5.3 Template Initialization

As opposed to most existing methods that require prior
knowledge of initial pose, our method can handle large pose
variations. In general, our tracker only requires knowledge
of the rough global orientation of the subject, for example,
whether the subject is facing towards the camera or to the
left, etc. The local configuration of each limb can be effec-
tively derived using our tracking algorithm in most cases.
Please see our supplemental materials for examples. For
pose tracking applications, the limb length estimation pro-
cess described in Sec. 3.5.1 is performed using the first F
frames (F = 5 in our experiments), as it requires repeated
pose estimation and is relatively more time-consuming. No-
tice that the algorithm favors all segments of the articulated
object being visible, as the scales of the invisible parts can
only be estimated via the regularization term in Eq. 27 and
might not be accurate. In addition, poses that resolves more
joint ambiguities are preferred in this process. For example,
an arm bending pose better defines the length of both the
upper arm and forearm than a T-pose.

4. Experiments
In order to take advantage of the parallelism of the com-

putations in our algorithm, especially the calculation of pos-
teriors, we implement our pipeline on GPU with CUDA.
With our current un-optimized implementation, each iter-
ation of our pose estimation together with geometric shape
adaptation takes about 1.5ms on average, with sub-sampling
of around 1000 points for each point set. The running time
is measured on a machine with Intel Core i7 3.4GHz CPU
and Geforce GTX 560 Ti graphics card. Since our algo-
rithm normally requires < 15 iterations in total to converge
during tracking, the entire pipeline runs at real time. In our
experiments, we assume segmentation of the target subject
is relatively simple using depth information. Therefore, the
computational time for segmentation is not considered here.

Parameters: The parameters in our algorithm are empiri-
cally set to fixed values throughout our experiments and are
listed in Table 1. The only exception is the u in Eq. 1, which
denotes the degree of noise and is data dependent. It is set
to 0.01 unless significant noises are present. Although in
other related methods[19, 6], σ2 is initialized from the input
data directly, we found that such strategy generally largely
overestimates the value of σ2 and will try to collapse the
template to fit the input point cloud. Different from shape
registration applications, for articulated shapes tracking, it
would destroy the temporal information and introduce extra
ambiguities. Therefore we use a fixed value instead. Due to
the multiplier 1

σ2 in Eq. 13, which is normally ≥ 104, the
regularization terms generally require large global weights.

Eq. 20 Eq. 27 Eq. 30
Initial σ2 λr λp λs λd λe

0.022(m2) 1000 500 1000 1 0.1
Table 1. The parameter settings for our experiments.

4.1. Tracking Accuracy Evaluations

The accuracy of our algorithm is evaluated on three pub-
licly available datasets, namely SMMC-10 [11], EVAL [12]
and PDT [13], that contain ground truth joint (marker) lo-
cations. A summary of these datasets is provided in Fig. 3.
Due to the discrepancy of ground truth data format provided
and joint definitions across trackers, different methods for
accuracy measurement are needed. For the SMMC-10 and
EVAL datasets, we use the same strategy as in [30]. Specif-
ically, we align our template to one single frame and mount
the corresponding markers to our template. The markers are
then transformed with our estimated pose and directly com-
pared with the ground truth. For the PDT dataset, we follow
the strategy described in their paper [13]. The estimated
joints are transformed via the provided transformations to

0.7
0.75

0.8
0.85

0.9
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1

Articulated ICP Ganapathi et al. [11] Shotton et al. [24]

Wei et al. [28] Ganapathi et al. [12] Ours
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0.04
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0.08

Ganapathi et
al. [11]

Ye et al. [31] Baak et al. [1] Helten et al.
[14]

Ours

(a) Comparison in terms of prediction precision 

(b) Comparison in terms of marker distance errors (unit = meter) 

Figure 4. Quantitative evaluation of our tracker on the SMMC-10
dataset [11] with two error metrics. Notice that in (b), although
the method by Ye et al. [30] achieves comparative accuracy, their
reported computation time is much higher.
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Figure 5. Quantitative evaluations of our tracker’s accuracy with
comparisons with the state of the arts.

local coordinate system of each corresponding joint, and the
mean of displacement vectors for each joint is subtracted to
account for joint definition difference.

Previous methods reported their accuracy according to
two different error metrics, directly measurement of the eu-
clidean distance between estimated and ground truth joints,
or the percentage of correctly estimated joints (euclidean
distance error within 0.1m). Therefore, we show our re-
sults in both ways for comparison purpose. The accuracy
of our tracker on the SMMC-10 dataset is shown in Fig. 4.
In this relatively simple dataset, our method outperforms
most existing methods, and is comparable with two recent
work [12, 27]. The comparisons on the other two more chal-
lenging datasets are shown in Fig. 5. The results clearly
show that our method outperforms all the compared meth-
ods by a large margin. That means our approaches can han-
dle complex motions more accurately and robustly, while
still achieves real-time performance. (The numbers for the
compared methods are reproduced from their own papers,
except for the Articulated ICP and the KinectSDK of which
the numbers are obtained from [12] and [13], respectively.)

As mentioned before, our tracker well handles complex
motions. The tracking results of various complex poses
from our own data and the publicly available datasets are
shown in Fig. 1 and in Fig. 6 respectively. Furthermore, vi-
sual comparisons between our results and the skeletons es-
timated by KinectSDK are shown in Fig. 7. (More results
are provided in our supplemental materials.)

Figure 7. Visual comparison of our results (second row) with
KinectSDK [16] (first row) on some relatively complex poses.

Figure 8. Example results of our algorithm applied to dog data.

Non-human Subjects Our algorithm can also be applied
to articulated objects other than human beings. To demon-
strate its applicability, we test on data captured from a dog.
A major challenge in this data is the severe self occlusions.
Some of our results are show in Fig. 1 and Fig. 8. Note that
for discriminative and hybrid approaches, a database of this
animal will be needed; while we only need a skinning tem-
plate. Besides, none of existing generative methods have
reported results on this type of data, except with multi-view
setup that resolves the severe occlusion [10].

4.2. Shape Adaptation Accuracy
To quantitatively evaluate the performance of our body

shape adaptation algorithm, we compare our results on the
PDT dataset [13] with their ground truth shape data. Note
that in our pipeline, the body shapes are automatically de-
duced during the tracking process, while a specific calibra-
tion procedure is required in [13]. To measure fitting errors,
we estimate the pose of the ground truth shape using our
algorithm and deform our template accordingly. On aver-
age, we achieve comparative accuracy as Heltel et al. [13]:
0.012m v.s 0.010m. To compare, the mean fitting error re-
ported by Weiss et al. [28] on their own test data is around
0.010m. It should be emphasized that [13] requires an ex-
tra calibration procedure and [28] assumes small motion be-
tween their input, while our method directly operates on the
dynamic input. It should also be pointed out that the ground
truth shapes from [13] were obtained by fitting SCAPE
models to data from scanner. Thus they do not well cap-
ture the effects of subject’s clothing, which is captured by
our algorithm through fitting with the input data. In Fig. 9,
the effectiveness of our adaptation procedure is visualized.

(a) (b) (c) (d) 

Figure 9. Visual results of our shape adaptation algorithm. (a) and
(c) are results of only pose estimation (male and female respec-
tively), while (b) and (d) are results with shape adaptation during
tracking. Input meshes are overlaid on each result. Notice the
adjustment of limb lengths, in particular the arms and feet of the
male subject.



Figure 6. Visualization of example tracking results on the publicly available datasets.

5. Conclusion and Future Work
In this paper, we proposed a novel algorithm for simulta-

neous pose and shape estimation for articulated objects us-
ing one single depth camera. Our pipeline is fully automatic
and runs in real time. Through extensive experiments, we
have demonstrated the effectiveness of our algorithm, espe-
cially in handling complex motions. In particular, we have
shown results of tracking an animal, which have not been
demonstrated in previous methods with monocular setup.

Our pose tracker could be further improved, for example
by taking into account free space constraints as in [12]. Be-
sides, the computational complexity can be greatly reduced
through fast Gauss transform during computation of the
posteriors [19]. Looking into the future, we would like to
explore schemes for adaptive limb lengths estimation along
with pose estimation, instead of simply using the first few
frames, which usually does not provide complete desired
information. Besides, with dynamic scenes, similar to most
existing techniques, our method only captures the subject’s
overall shape. The challenging problem of reconstructing
detailed geometry is also interesting.
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shape and pose adaption of articulated models using linear optimiza-
tion. In ECCV, volume 7572, pages 724–737. 2012.

[25] J. Taylor, J. Shotton, T. Sharp, and A. Fitzgibbon. The vitruvian
manifold: Inferring dense correspondences for one-shot human pose
estimation. In CVPR, 2012.

[26] D. Vlasic, I. Baran, W. Matusik, and J. Popović. Articulated mesh
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