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Abstract

State-of-the-art general purpose Blind Image Quality
Assessment (BIQA) models rely on examples of distorted
images and corresponding human opinion scores to learn
a regression function that maps image features to a qual-
ity score. These types of models are considered “opinion-
aware” (OA) BIQA models. A large set of human scored
training examples is usually required to train a reliable OA-
BIQA model. However, obtaining human opinion scores
through subjective testing is often expensive and time-
consuming. It is therefore desirable to develop “opinion-
free” (OF) BIQA models that do not require human opinion
scores for training.

This paper proposes BLISS (Blind Learning of Image
Quality using Synthetic Scores). BLISS is a simple, yet ef-
fective method for extending OA-BIQA models to OF-BIQA
models. Instead of training on human opinion scores, we
propose to train BIQA models on synthetic scores derived
from Full-Reference (FR) IQA measures. State-of-the-art
FR measures yield high correlation with human opinion
scores and can serve as approximations to human opinion
scores. Unsupervised rank aggregation is applied to com-
bine different FR measures to generate a synthetic score,
which serves as a better “gold standard”. Extensive ex-
periments on standard IQA datasets show that BLISS sig-
nificantly outperforms previous OF-BIQA methods and is
comparable to state-of-the-art OA-BIQA methods.

1. Introduction

With the development and popularity of digital imaging
devices, digital images have become an important vehicle
for representing and communicating information. Unfor-
tunately, digital images may be degraded at various stages
of their life cycle and these degradations may lead to the

loss of visual information, the poor experience of human
viewers and difficulties for image processing and analysis
at subsequent stages. The problem of visual information
quality assessment arises in numerous image/video pro-
cessing and computer vision applications, including image
compression, image transmission and image retrieval and it
plays an important role in these applications.

This paper addresses the problem of general-purpose
blind image quality assessment (BIQA). Unlike full-
reference IQA (FR-IQA) methods [12, 17, 19, 22], where
an undistorted reference image is used to quantify the differ-
ence between a distorted image and its corresponding ideal
version, BIQA does not require information from the refer-
ence image and can be used in applications when reference
images are not available. BIQA methods can be broadly
classified into two categories: distortion-specific (DS) ap-
proaches and general-purpose approaches. DS approaches
usually target one or two types of distortions and specific
properties of these distortions are examined and embedded
in IQA system designs. Meanwhile, general-purpose ap-
proaches do not investigate any particular type of distortion
but rather they build a general computational model to work
universally for different types of distortions.

Current state-of-the-art general purpose BIQA methods
[6, 9, 11, 20, 21] rely on examples of distorted images and
corresponding human opinion scores to learn a regression
function that maps image features to quality scores. This
type of model is considered “opinion-aware” (OA) because
human opinion scores are provided for the distorted images.
A large set of training images with scores is required to train
a reliable OA-BIQA model, but obtaining human opinion
scores can be time-consuming and expensive. To overcome
this limitation, there has been an increasing interest in learn-
ing “opinion-free” (OF) BIQA models [7, 8, 18], which do
not require human opinion scores for training.

This paper proposes a simple yet effective method for
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extending OA-BIQA models to OF-BIQA models. Instead
of training on human opinion scores, we propose to train
BIQA models on synthetic scores derived from FR-IQA
measures. FR measures quantify the differences between
distorted images and their undistorted reference images and
are easy to obtain. State-of-the-art FR measures yield high
correlation with human opinion scores, so they can be used
to approximate human opinion scores for training BIQA
models. Different FR measures may quantify visual qual-
ity in different ways and no single method typically gives
the best performance in all situations. We apply unsuper-
vised rank aggregation to combine FR measures for gen-
erating a better baseline with which to train. Extensive
experiments on three standard IQA datasets show that the
proposed method significantly outperforms previous OF-
BIQA methods. Furthermore, models trained on the syn-
thetic scores (including FR measures and combined syn-
thetic scores) are comparable to models trained on human
opinion scores. This observation implies that we may re-
place human opinion scores with synthetic scores in train-
ing BIQA models without performance loss. The strategy
of training on synthetic scores helps to overcome the bot-
tleneck arising from limited training data due to the lack of
expensive human opinion scores and allows to use a larger
set of data for training.

Our contributions are two-fold. First, we use FR mea-
sures to replace human opinion scores for training BIQA
models. This is an extremely flexible strategy and can be
used with any well established BIQA model. Second, we
develop an effective method to combine FR measures in
an unsupervised way. The combined synthetic scores yield
high correlation with human opinion scores and outperform
each individual FR measure anticipated in the combination.

The remainder of this paper describes our BLISS (Blind
Learning of Image Quality using Synthetic Scores) system
in detail. In Section 2, we briefly review previous work on
OF-BIQA and FR measure combination methods. Section 3
describes our unsupervised score combination method and
Section 4 provides experimental results on three different
IQA datasets. Finally, Section 5 concludes our work.

2. Related Work

2.1. OF-BIQA Models
The first OF-BIQA model seen in the literature was the

TMIQ model introduced by Mittal et al. [7]. TMIQ applies
probabilistic latent semantic analysis (pLSA) to quality-
aware visual words extracted from a large set of pristine and
distorted images to uncover latent characteristics or “top-
ics” that are essential for visual quality. The topic mixing
coefficients are estimated for the pristine images. Then,
given a test image, its estimated topic mixing coefficients
are compared to those for the pristine images and their dif-
ferences are used to infer the quality for the test image. This

method performs poorly compared to state-of-the-art OA-
BIQA models.

Later Mittal et al. introduced another OF-BIQA model
– NIQE [8]. NIQE builds a multivariate Gaussian (MVG)
model for natural scene statistic (NSS) features of sharp im-
age regions extracted from pristine images. For a test im-
age, the distance between the MVG constructed from the
NSS features of the test image and the MVG model con-
structed from pristine images is computed as the quality
measure. NIQE significantly outperforms TMIQ, yet it does
not require distorted images for training and thus is “distor-
tion unaware” and “completely blind”. NIQE was shown
to perform well on the five types of distortions in the LIVE
dataset. This method however may not work universally
well on all types of distortions, and when it fails, it is hard
to adjust the model to improve the performance since the
model does not incorporate examples of distorted images
during training.

Xue et al. proposed a quality-aware clustering (QAC)
method [18] for OF-BIQA. QAC assigns each image patch a
quality score based on a FR measure, then applies clustering
to patches at different quality levels. Each cluster centroid is
associated with a quality score. For a test image, overlapped
patches are extracted, then each patch is compared to the
quality aware cluster centroids and the quality score of its
nearest neighbor is assigned to the patch. The final quality
score for the test image is the weighted average of the patch
level quality score.

All these previous OF-BIQA models are inferior to state-
of-the-art OA-BIQA models. Our method can be applied to
extend existing OA-BIQA models to OF-BIQA models and
achieve comparable performance.

2.2. Combining Multiple Full-Reference Measures
FR-measure combination methods aim to combine mul-

tiple types of FR-measures to yield a better quality measure
[5]. Different FR measures quantify visual quality from
different aspects and typically no single method will give
the best performance in all situations. Therefore combining
multiple FR measures may produce a better IQA measure
which outperforms each individual FR measure used in the
combination.

Liu et al. [5] introduced a supervised FR measure com-
bination method. A nonlinear regression function is learned
to map a feature vector formed by multiple FR measures to a
human opinion score. This method requires human opinion
scores to train the regression model and thus is not suitable
to use in the “opinion-free” scenario.

We have developed an unsupervised FR measure com-
bination method. Given a set of images, we first apply un-
supervised rank aggregation to obtain a single consensus
ranking based on multiple FR measures. We then adjust a
given FR measure based on the consensus ranking to gen-



erate combined synthetic scores. To the best of our knowl-
edge, this is the first work that approaches FR measure com-
bination problem in an unsupervised way.

3. Unsupervised FR measure combination

In this section, we describe our unsupervised FR mea-
sure combination method, which involves two steps: gener-
ating consensus ranking and score adjustment, and is sum-
marized in Fig. 1.

Figure 1: Overview of the proposed unsupervised FR mea-
sure combination method.

3.1. Full-Reference Measures

FR IQA measures are computed based on the differences
between distorted images and their undistorted reference
images. Five different FR measures are used in our experi-
ments, including GMSD [19], VIF [12], FSIM, FSIMC [22]
and WSSIM [17]. GMSD (Gradient Magnitude Similar-
ity Deviation) computes the pixel-wise gradient magnitude
similarity (GMS) and uses this to generate the final measure
as the standard deviation of the GMS map. VIF (Visual
Information Fidelity Index) models image sources using a
wavelet domain Gaussian Scale Mixture (GSM) model. It
measures the information shared between the source image
and the distorted image based on an image distortion chan-
nel and a visual distortion model. FSIM (Feature Similar-
ity Index) measures similarities of distorted and reference
images based on two low-level features: gradient magni-
tude and phase congruency. Phase congruency is also used
to guide the pooling step. FSIMC is the FSIM with color
information incorporated. IW-SSIM (Information content
Weighted SSIM) is an enhanced version of the Structural
Similarity Index (SSIM) [16] measure, that performs pool-
ing over the SSIM map using weights that are proportional
to the local information content.

These five FR measures achieve state-of-the-art perfor-
mance on standard IQA datasets, so we select them to use
in our system.

3.2. Combining Full-Reference Measures

Different FR measures usually lie in different ranges,
therefore their values are not comparable and we cannot
combine them by simply averaging. Suppose we have
K different FR measures and N training images Ii, i =
1, ..., N . The first step in combining these FR measures is to

SROCC GMSD VIF FSIM FSIMC WSSIM RRF
GMSD – 0.9637 0.9896 0.9908 0.9769 0.9911

VIF 0.9637 – 0.9765 0.9745 0.9781 0.9844
FSIM 0.9896 0.9765 – 0.9986 0.9902 0.9978

FSIMC 0.9908 0.9745 0.9986 – 0.9897 0.9976
WSSIM 0.9769 0.9781 0.9902 0.9897 – 0.9939

RRF 0.9911 0.9844 0.9978 0.9976 0.9939 –

Table 1: Pair-wise SROCC between FR measures and RRF-
score.

construct a consensus ranking via unsupervised rank aggre-
gation. The rank aggregation problem is crucial for many
applications such as meta-search, crowdsourcing and social
choice. There are many well established methods for this
problem. We have selected and used the Reciprocal Rank
Fusion (RRF) to generate the consensus ranking.

RRF [2] was initially proposed for combining the doc-
ument rankings from multiple Information Retrieval (IR)
systems. Despite its simplicity, RRF is one of the top per-
forming unsupervised rank aggregation methods. Accord-
ing to a recent study in [14], RRF outperforms other com-
peting unsupervised rank aggregation methods on the MQ-
agg datasets. The RRF score for image Ii is given by

RRFscore(Ii) =

K∑
k=1

1

γ + rk(i)
(1)

where rk(i) is the rank of Ii given by the k-th FR mea-
sure and γ = 60 is a constant. According to [2], the constant
γ mitigates the impact of high rankings by outlier systems.
The rank of Ii given by the RRFscore(Ii) is denoted as
ti. It is worth noting that VIF, FSIM, FSIMC and WSSIM
are quality indexes for which a higher value indicates good
quality, while for GMSD, a smaller value indicates good
quality. We can negate the GMSD value to make it a quality
index.

The pair-wise spearman rank order correlation coeffi-
cient (SROCC) between FR measures and RRF scores are
shown in Table 1. It can be seen that the RRF score has a
high SROCC with each individual FR measure. This means
that the rank given by the RRF is consistent with all five FR
measures.

We note that the RRFscore cannot be directly used as
an image quality score, because the RRFscore(Ii) is a
quality indicator of Ii relative to other images in the dataset.
It does not directly reflect the quality of Ii. In order to gen-
erate a valid quality measure, we propose to adjust the score
of a base FR measure according to the RRF rank. Suppose
the score of a base FR measure for Ii is yi and a higher
score indicates better quality and a smaller rank ti. The fi-
nal combined quality score s is obtained by minimizing the



following objective function.

L(s) =
∑N
i=1(si − yi)2+

λ
∑
i<j(si − sj)1(ti > tj) + (sj − si)1(ti < tj)

(2)
where λ = (max(y)−min(y))λ0

N is a constant balancing
factor and 1(x) = 1 if x is true, 1(x) = 0 otherwise. The
first term in the above equation tends to minimize the mean
squared error between the s and y. The second term penal-
izes the inconsistency of pair-wise preferences between s
and t. An optimal s can be found by setting the derivative
of L(s) with respect to s equal to 0, which yields a simple
closed form solution as follows:

∂L(s)

∂s
= 0⇒ si = yi −

(max(y)−min(y))λ0
2N

ni (3)

where ni = |{j : tj < ti}| − |{j : tj > ti}|. The
proposed method requires the sorting of K FR measures
for N images, therefore the computational complexity is
O(KNlog(N)).

The success of the combination method relies on the uni-
formity of the score distribution. This condition is a typi-
cal property of image quality datasets, since if the quality
distribution is imbalanced, it would not be a good bench-
mark for evaluating IQA systems and it would be hard to
use the dataset to train any BIQA model to achieve good
performance. The proposed method works the best when
all FR measures involved in the combination have similar
performance. We can compute the pair-wise SROCC be-
tween different FR measures, and FR measures that have
low correlation with other measures may be removed. We
show experimentally in Section 4 that the synthetic scores
defined in Eq. 3 have higher correlation with human opin-
ion scores compared to their base FR measures on multiple
IQA datasets.

3.3. Training

Once the combined synthetic scores are computed, we
can use them to replace human opinion scores for train-
ing a BIQA model, and the original OA-BIQA models
will become “opinion-free”. For training BIQA models,
we use Support Vector Regression (SVR). The computa-
tional complexity during testing is determined by the base
BIQA method. No additional overhead will be introduced
by BLISS. We can also use a single FR measure for training,
but as will be shown later, moderate performance improve-
ments can be achieved by training on combined synthetic
scores.

4. Experiments
4.1. Experimental Protocol

Datasets: Three IQA databases were used in the exper-
iments to demonstrate the effectiveness of the proposed

method.
(1) LIVE [13]: The LIVE dataset contains a total of 779

distorted images derived from 29 reference images. Each
reference image is distorted by five different distortions
– JP2k compression (JP2K), JPEG compression (JPEG),
White Gaussian (WN), Gaussian blur (BLUR) and Fast
Fading (FF) at 7-8 different levels.

(2) TID2008 [10]: The TID2008 dataset contains 1700
distorted images derived from 25 reference images. A total
of 17 different distortions at four degradation levels are in-
cluded in this dataset. In our experiments, we only examine
the four common distortions that are shared by the LIVE
dataset, i.e. JP2k, JPEG, WN and BLUR.

(3) CSIQ [4]: The CSIQ dataset consists of 30 refer-
ence images and their distorted versions with 6 different
types of distortions at 4 to 5 different levels. For the CSIQ
dataset, we consider the same four types of distortions –
JP2k, JPEG, WN and BLUR.
Evaluation: The performances of IQA measures are evalu-
ated using Linear Correlation Coefficient (LCC) and Spear-
man Rank Order Correlation Coefficient (SROCC). It is a
common practice to evaluate the FR-IQA measures with a
curve-fitting procedure [15], since different IQA measures
may not lie in the same range. A similar procedure may also
be applied to OF-BIQA models. A logistic regression func-
tion, Qp = β1(

1
2 −

1
exp(β2(Q−β3))

) + β4Q + β5, is used to
map the original IQA measures to the range of human opin-
ion scores. In our experiments, we randomly select 80% of
the reference images and their associated distorted versions
for training to obtain βi, i = 1, ..., 5 and use the remaining
20% of the reference images and their associated distorted
versions for testing. This procedure is repeated 1000 times
and the median values of LCC and SROCC are reported.

4.2. Implementation Details

Training Set Construction: We downloaded 100 high
resolution images under the Attribution License from
flickr.com. The topics of these images include animal,
building, indoor scene, forest, human, plant, man-made ob-
ject, food, sports, etc. The 100 images form our reference
image set. Then from each reference image, we generate
distorted images with four types of distortions including
JPEG and JPEG2k compression, white Gaussian noise and
Gaussian blurring. For each distortion, 8 distortion levels
are considered. A total of 3300 images are generated to
form our training set including 3200 distorted images and
100 reference images. FR measures and combined synthetic
scores are computed as groundtruth for the training set. In
particular, these scores are mapped to the range of [0, 100]
(the lower the better) by a linear function to make it consis-
tent with the range of DMOS in the LIVE dataset and the
quality scores of reference images are set to −1.
Base BIQA model: We use CORNIA [20] as the base



BS cbsize C ε λ0

5 10000 100 1 4

Table 2: Parameters used in our experiments.

BIQA method because it gives state-of-the-art performance
with the use of a linear regression function. Our training set
contains 3300 images and training a nonlinear SVR would
be time consuming. To speed up the training process, we
use the fast liblinear library [3].
Base FR measure: Among the five types of FR measures
anticipated in the score combination, we select GMSD as
the base FR measure because GMSD [19] yields high linear
correlation with human opinion scores without applying any
nonlinear fitting and it is very efficient to compute.
Parameters: Several parameters have to be specified for
our experiments. (1) In CORNIA feature extraction: BS -
patch size; cbsize - codebook size. (2) For learning the re-
gression function using liblinear: C - cost in the loss func-
tion; ε - parameter in ε-insensitive loss function used in ε-
SVR. The solver we used in liblinear is the L2-regularized
L2-loss support vector regression (primal). (3) In Eq. 2:
λ0 the balancing factor. Table 2 shows the values of these
parameters.

4.3. Evaluation

4.3.1 Comparison with FR and OF-BIQA Algorithms

We compare our method with previous FR measures: PSNR
(Peak Signal to Noise Ratio) and SSIM [16] and state-of-
the-art OF-BIQA methods: QAC [18] and NIQE [8]. We
test on the four types of distortions which are shared by
the LIVE, CISQ and TID2008 datasets (JPEG2K, JPEG,
WN and Gaussian BLUR). BLISS is trained on our 3300
flickr image dataset. Test results on each subset and all four
subsets combined are reported. BLISS-S is trained using
GMSD, which yields the best performance among all the
five FR measures. BLISS-C is trained on the combination
of five FR measures using Eq. 3. It is worth noting that the
same parameters specified in Table 2 are used for experi-
ments on all three datasets.

Results on the LIVE, the CSIQ and the TID2008 datasets
are presented in Tables 3, 4 and 5 respectively. We can see
that BLISS significantly outperforms the other two com-
peting OF-BIQA models. BLISS-C slightly outperforms
BLISS-S. Table 6 shows results from a two sample T-test
with 5% significance level, showing the combined score for
training outperforms the use of a single FR measure. We
also compute the standard deviation (STD) of the SROCC
and LCC obtained from 1000-fold cross-validation experi-
ments on the LIVE dataset. As is shown in Table 7, BLISS-
C and BLISS-S tend to have smaller STD compared to other
methods. This demonstrates the consistency of the pro-
posed method.

SROCC JP2K JPEG WN BLUR ALL4
PSNR 0.870 0.885 0.942 0.761 0.867
SSIM 0.939 0.946 0.964 0.907 0.910
NIQE 0.924 0.944 0.972 0.939 0.922
QAC 0.868 0.938 0.952 0.918 0.877

BLISS-S 0.911 0.935 0.965 0.954 0.935
BLISS-C 0.928 0.946 0.970 0.959 0.943

LCC JP2K JPEG WN BLUR ALL4
PSNR 0.873 0.876 0.926 0.766 0.853
SSIM 0.921 0.955 0.982 0.891 0.900
NIQE 0.931 0.957 0.955 0.950 0.919
QAC 0.851 0.943 0.924 0.919 0.863

BLISS-S 0.911 0.958 0.974 0.958 0.933
BLISS-C 0.933 0.965 0.976 0.967 0.939

Table 3: Results on LIVE.

SROCC JP2K JPEG WN BLUR ALL4
PSNR 0.910 0.891 0.933 0.809 0.885
SSIM 0.962 0.954 0.912 0.960 0.934
NIQE 0.925 0.883 0.835 0.907 0.887
QAC 0.888 0.912 0.865 0.852 0.858

BLISS-S 0.935 0.889 0.815 0.913 0.899
BLISS-C 0.949 0.910 0.848 0.917 0.918

LCC JP2K JPEG WN BLUR ALL4
PSNR 0.861 0.887 0.946 0.771 0.856
SSIM 0.906 0.982 0.910 0.945 0.930
NIQE 0.934 0.945 0.834 0.929 0.904
QAC 0.896 0.947 0.911 0.861 0.890

BLISS-S 0.951 0.952 0.833 0.944 0.927
BLISS-C 0.965 0.959 0.863 0.945 0.938

Table 4: Results on CSIQ.

SROCC JP2K JPEG WN BLUR ALL4
PSNR 0.838 0.887 0.917 0.929 0.869
SSIM 0.962 0.932 0.847 0.959 0.905
NIQE 0.887 0.875 0.817 0.845 0.795
QAC 0.890 0.887 0.717 0.856 0.861

BLISS-S 0.919 0.922 0.779 0.869 0.898
BLISS-C 0.923 0.926 0.807 0.880 0.899

LCC JP2K JPEG WN BLUR ALL4
PSNR 0.888 0.880 0.945 0.914 0.845
SSIM 0.971 0.964 0.816 0.954 0.902
NIQE 0.911 0.921 0.796 0.849 0.804
QAC 0.878 0.917 0.736 0.842 0.842

BLISS-S 0.945 0.955 0.748 0.875 0.910
BLISS-C 0.941 0.952 0.770 0.880 0.917

Table 5: Results on TID2008.

SROCC PSNR SSIM NIQE QAC BLISS-S BLISS-C
PSNR 0 -1 -1 -1 -1 -1
SSIM 1 0 -1 1 -1 -1
NIQE 1 1 0 1 -1 -1
QAC 1 -1 -1 0 -1 -1

BLISS-S 1 1 1 1 0 -1
BLISS-C 1 1 1 1 1 0

Table 6: Results of the two sample T-test performed be-
tween SROCC values obtained by different measures. 1 (-
1) implies the algorithm in the row is statistically superior
(inferior) to the algorithm in the column. 0 indicates the al-
gorithm in the row is statistically equivalent to the algorithm
in the column.



PSNR SSIM NIQE QAC BLISS-S BLISS-C
SROCC 0.0328 0.0175 0.0180 0.0237 0.0164 0.0143

LCC 0.0302 0.0181 0.0160 0.0243 0.0152 0.0137

Table 7: Standard deviation of SROCC and LCC for 1000
iterations of experiments on LIVE.

SROCC CORNIA BRISQUE LCC CORNIA BRISQUE
DMOS 0.881 0.882 DMOS 0.883 0.892

SS 0.905 0.897 SS 0.925 0.893

Table 8: Train on LIVE and test on TID2008

SROCC CORNIA BRISQUE LCC CORNIA BRISQUE
DMOS 0.899 0.899 DMOS 0.914 0.927

SS 0.908 0.895 SS 0.928 0.912

Table 9: Train on LIVE and test on CSIQ

4.3.2 Comparison with OA-BIQA Algorithms

In the second set of experiments, we use human opinion
scores (DMOS) and synthetic scores (SS) to train two state-
of-the-art BIQA models BRISQE [6] and CORNIA [20]
respectively. We train these models on images with JP2k,
JPEG, WN and GBLUR distortions in the LIVE dataset and
test on the images with the same four types of distortions
in the TID2008 dataset and the CSIQ dataset. The median
SROCC and LCC evaluated on all four types of distortions
from 1000-fold cross-validation experiments are reported in
Tables 8 and 9. In this experiment, CORNIA is trained us-
ing a linear SVR with the parameters specified in Table 2
and BRISQUE is trained using SVR with a RBF kernel1.
As is shown in Tables 8 and 9, models trained on the syn-
thetic scores2 are comparable to models trained on the hu-
man opinion score. BLISS works well with both CORNIA
and BRISQUE. The best performance is achieved by train-
ing on the synthetic scores. This result implies that we can
replace human opinion scores with synthetic scores without
loss of performance.

4.3.3 Comparison of the combined synthetic score and
FR measures

Evaluation on LIVE To demonstrate the effectiveness of
our score combination method, we tested the five FR mea-
sures and the combined measures on the LIVE dataset [13].
Table 10 shows the LCC and SROCC obtained using each
FR measure independently and the synthetic score based on
the corresponding FR measures3. As is shown in this ta-
ble, by exploiting the overall rank information, combined
measures consistently improve over each individual mea-

1Parameters for training BRISQUE model using libsvm are suggested
by the author as “-b 1 -s 3 -g 0.05 -c 1024 -p 1”.

2Note that CORNIA+SS is equivalent to BLISS-C in Tables 3, 4 and 5.
3No nonlinear fitting procedure is applied in this experiment.

SROCC GMSD VIF FSIM FSIMC WSSIM
original 0.960 0.964 0.963 0.965 0.957

SS, λ0 = 1 0.967 0.970 0.968 0.968 0.966
SS, λ0 = 4 0.969 0.970 0.969 0.968 0.968

LCC GMSD VIF FSIM FSIMC WSSIM
original 0.942 0.941 0.859 0.860 0.803

SS, λ0 = 1 0.965 0.958 0.956 0.956 0.945
SS, λ0 = 4 0.967 0.963 0.967 0.967 0.966

Table 10: Test FR measures on LIVE (779 distorted im-
ages): ‘original’–correlation between original FR measures
and DMOS; ‘SS’–correlation between synthetic scores and
DMOS.

sure. All five FR measures have high SROCC on LIVE,
but the combined measures slightly outperform their base
measures in SROCC. The LCC values are significantly im-
proved. The conventional method for improving the LCC of
a FR measure relies on fitting a nonlinear logistic function,
but human opinion scores are required to find the optimal
parameters in the logistics function. The proposed method
improves LCC in a fully unsupervised way. One key factor
to the success of BLISS is that BLISS use synthetic scores
that have high linear correlation with human opinion scores
to train the BIQA model.

Next we examined the effect of the balancing constant
λ0. Figs. 2 and 3 show how the SROCC and LCC of the
combined scores change with different values of λ0. FR-
SS represents the synthetic score with FR as the base mea-
sure. λ0 = 0 corresponds to using the original FR measures.
When λ0 is very small, the synthetic score is dominated by
the base FR measure and the performance is primarily deter-
mined by the base FR measure. As we increase the value of
λ0, the importance of the rank information increases. When
λ0 ≥ 1, the value of LCC and SROCC is not very sensitive
to the value of λ0.

Figure 2: Effect of λ0 on SROCC (Tested on LIVE).

To demonstrate that the proposed method is robust to



Figure 3: Effect of λ0 on LCC (Tested on LIVE).

changes in the dataset size, we randomly sample a subset
of the LIVE dataset and apply our method on the subset.
This process is repeated 1000 times and median values of
SROCC and LCC are presented in Figs. 4 and 5. We can
see that the performance decreases only slightly as we re-
duce the dataset size to 10% of original size.

Figure 4: Effect of dataset size on LCC (Tested on LIVE,
λ0 = 4).

Evaluation on TID2008 All the five FR measures have
similar performance in terms of SROCC on the LIVE
dataset. However, on the TID2008 dataset, the performance
of the five FR measures varies a lot. We compute the pair-
wise SROCC between FR measures and look at the aver-
age value of the SROCC. For GMSD, VIF, FISM, FSIMC
and WSSIM, the average SROCCs are 0.891, 0.784, 0.930,
0.930, 0.900 respectively. It is obvious that VIF is not con-
sistent with the other four types of FR measures. Therefore,
VIF is discarded for computing the RRF score. Table 11
presents the evaluation results on 1700 distorted images in
the TID2008 dataset. We see that GMSD performs the best

Figure 5: Effect of dataset size on SROCC (Tested on LIVE,
λ0 = 4).

SROCC GMSD FSIM FSIMC WSSIM
original 0.891 0.881 0.884 0.856

SS, λ0 = 1 0.898 0.892 0.892 0.887
SS, λ0 = 4 0.896 0.893 0.893 0.892

LCC GMSD FSIM FSIMC WSSIM
original 0.872 0.830 0.834 0.809

SS, λ0 = 1 0.885 0.884 0.884 0.884
SS, λ0 = 4 0.878 0.878 0.878 0.878

Table 11: Test FR measures on TID2008 (1700 dis-
torted images): ‘original’–correlation between original FR
measures and DMOS; ‘SS’–correlation between synthetic
scores and DMOS.

among all FR measures and the synthetic scores slightly
outperform GMSD.

4.4. The ambiguity of human opinion score
As shown in our experimental results in Section 4.3.2,

often times models trained on the synthetic scores can out-
perform models trained on human opinion scores. This re-
sult may be explained by the inherent ambiguity of human
opinion scores. The mean opinion score (MOS) test is the
most widely used subjective test for obtaining groundtruth
data for image quality dataset. However, there are many
known problems with the MOS test and pair-wise compar-
ison based tests have been proposed as an alternative to the
MOS test [1]. How to properly design the subjective IQA
test is still an open problem. We may consider the current
ground-truth labels in the IQA dataset as a noisy approxi-
mation to the unknown “gold-standard”.

Furthermore, human opinion scores in different datasets
were obtained under different experimental conditions.
Therefore, the MOS labels in different datasets may not
be consistent. On the other hand, FR measures are objec-
tive measures that capture the inherent properties of image
distortion which do not vary from dataset to dataset. It is



therefore possible to train a better prediction model using
synthetic scores.

5. Conclusions
An unsupervised method is presented which combines

multiple FR measures into a single synthetic score. The
combined synthetic score outperforms each individual FR
measure. We use the combined synthetic score or a single
FR measure to replace the human opinion score in training
conventional OA-BIQA model. In both cases, the results
are obtained at significantly reduced cost. The BIQA mod-
els trained on synthetic scores are comparable to models
trained on human opinion scores and significantly outper-
form previous OF-BIQA models.
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