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Abstract

Driven by the wide range of applications, scene text de-

tection and recognition have become active research topics

in computer vision. Though extensively studied, localizing

and reading text in uncontrolled environments remain ex-

tremely challenging, due to various interference factors. In

this paper, we propose a novel multi-scale representation

for scene text recognition. This representation consists of

a set of detectable primitives, termed as strokelets, which

capture the essential substructures of characters at differ-

ent granularities. Strokelets possess four distinctive advan-

tages: (1) Usability: automatically learned from bounding

box labels; (2) Robustness: insensitive to interference fac-

tors; (3) Generality: applicable to variant languages; and

(4) Expressivity: effective at describing characters. Exten-

sive experiments on standard benchmarks verify the advan-

tages of strokelets and demonstrate the effectiveness of the

proposed algorithm for text recognition.

1. Introduction

As an important carrier of human thoughts and emo-

tions, text plays a crucial role in our daily lives. It is al-

most ubiquitous, especially in modern urban environments.

For example, product tags, license plates, guideposts and

billboards, all contain text. The rich information embedded

in text can be very beneficial, but the rapid growth of text

data has made it prohibitive to process, interpret and ap-

ply it manually. Consequently, automatic text detection and

recognition have become an irresistible general trend.

However, spotting and reading text in natural scenes are

extremely difficult for computers. Though considerable

progress has been achieved in recent years [8, 29, 35, 23, 25,

20, 34], detecting and recognizing text in uncontrolled envi-

ronments are still open problems in computer vision. Vari-

ous interference factors, such as variation, distortion, noise,

blur, non-uniform illumination, local distractor and com-

plex background, all may pose major challenges [36, 34].

To tackle these challenges, representation is lying in the

middle and core. Excellent representations should be able to

effectively describe the characteristics of characters in natu-
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Figure 1. Illustration of strokelets and character recognition. (a)

Strokelets learned on IIIT 5K-Word [20]. Strokelets capture the

structural characteristics of characters at multiple scales, ranging

from local primitives, like bar, arc and corner (top), to whole char-

acters (bottom). (b) Character recognition examples. Strokelets

produce accurate character identification and recognition.

ral images and meanwhile be robust to interference factors.

In this work, we are concerned with the problem of text

recognition in natural scenes (a.k.a. scene text recognition)

and propose a novel multi-scale representation. This rep-

resentation consists of a set of multi-scale mid-level primi-

tives, termed as strokelets, each of which under ideal condi-

tions represents a stroke shape.

In particular, strokelets possess four distinctive advan-

tages over conventional representations, which are called

the “URGE” properties:

• Usability: automatically learned from bounding box

labels, not requiring detailed annotations.

• Robustness: insensitive to interference factors, endow-

ing the system with the ability to deal with real-world

complexity.

• Generality: applicable to variant languages, as long as

sufficient training examples are available.

• Expressivity: effective at describing characters in nat-

ural scenes, bringing high recognition accuracy.

A subset of learned strokelets and several character

recognition examples by a system operating on those

strokelets are demonstrated in Fig. 1. Strokelets, as a uni-

versal representation for characters, faithfully seize the rep-

resentative parts of characters at multiple scales; and char-

acters in different fonts, scales, colors, and layouts can be
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Figure 2. Typical issues encountered in character identification.

(a) Noise. (b) Blur. (c) Shadow. (d) Unusual layout. (e) Local

distractor. (f) Broken strokes. (g) Connected characters.

successfully localized and read, even with the presence of

noise, blur and distractor.

Character identification1, the process of hunting each in-

dividual character and estimating the position and extent

of these characters, is a critical stage in text recognition,

as it constitutes the basis of subsequent feature computa-

tion, character classification and error correction. In this

sense, the quality of character identification largely deter-

mines the accuracy of text recognition. However, this stage

is very prone to failures, since numerous factors, for in-

stance, noise, blur, shadow, unusual layout, local distrac-

tor and connected characters (Fig. 2), might result in errors.

To address these issues, several approaches were proposed,

which employed adaptive binarization [19, 34], connected

component extraction [23, 25] or direct character detec-

tion [29, 20, 27]. These methods work well in certain cases,

but are still far from producing all satisfactory results. For

example, connected component extraction is unable to han-

dle broken strokes and connected characters, while direct

character detection may produce plenty of false alarms.

The learned strokelets memorize the relative positions

and dimensions of characters in the training phase, which

can be used to predict these attributes of characters in test

images at runtime. Therefore, an alternative method for

character identification is introduced, leading to more ac-

curate and robust character candidate identification. More-

over, detection activations of strokelets compose a his-

togram representation, similar to Bag of Words [9] and Bag

of Parts [12], which provides extra discriminative power.

Based on strokelets, we devise an effective algorithm for

scene text recognition, which achieves much higher recog-

nition rate than existing systems.

To evaluate the effectiveness and robustness of the pro-

posed representation and text recognition algorithm, we

have conducted extensive experiments on standard bench-

marks for scene text recognition, including the challeng-

ing public datasets ICDAR 2003 [17], SVT [30] and IIIT

5K-Word [20]. The experiments verify the advantages of

strokelets and demonstrate that the proposed algorithm out-

performs the state-of-the-art methods in the literature.

To deliver reproducible research, we will make the

source code publicly available, and hope it would be use-

ful to other researchers.

1We intentionally avoid the term “character detection” as certain algo-

rithms (such as [19, 34]) utilize binarization to seek character candidates.

2. Related Work

There has been a rich body of works concerning text

recognition in natural images in recent years [30, 29, 23,

21, 37, 34]. Wang et al. [30, 29] used HOG templates [6] to

match character instances in test images with training exam-

ples. Neumann et al. [23] extracted connected components

(extremal regions) as building blocks to localize and recog-

nize characters. Weinman et al. [34] proposed to integrate

character segmentation and recognition.

Part based methods [27, 37, 32] have been very popular

in this field. Shi et al. [27] described a part-based model,

employing DPM [10] and CRF, for scene text recognition.

However, the structure of character models and parts of

each character class were manually designed and labeled.

In [37], Yildirim et al. developed a part-based algorithm

which adopted multi-class Hough Forest to detect and rec-

ognize characters in natural images. Neumann et al. [24]

introduced an approach combining the advantages of slid-

ing window and connected component methods, in which

character parts (strokes) are modelled by oriented bar filters.

The parts of [27, 37, 24] are essentially single scale rep-

resentation, though the multi-scale scanning strategy was

adopted. In contrast, the proposed representation is auto-

matically inferred from training data and represents charac-

ter parts at multiple scales.

The proposed representation is mainly inspired by the

renewed trend of automatically learning mid-level represen-

tation for detection and recognition [28, 16, 33]. Singh et

al. [28] presented a discriminative clustering approach for

discovering mid-level patches. In their work, a set of rep-

resentative patch clusters are automatically learned from a

large image database for scene classification. Lim et al. [16]

proposed a novel approach to learn local edge-based mid-

level features, called sketch tokens, by clustering patches of

human generated contours. In this paper, we learn a set of

multi-scale part prototypes to represent characters. Activa-

tions of such part prototypes compose a histogram feature,

which is akin to Bag of Words [9] and Bag of Parts [12].

The presented work is complementary to a line of re-

search efforts on error correction [25, 21, 20], which we

briefly review here. Novikova et al. [25] proposed a unified

probabilistic framework, which utilized Weighted Finite-

State Transducers [22] to simultaneously introduce lan-

guage prior and enforce attribute consistency within hy-

potheses. Mishra et al. [21] constructed a CRF model to

impose both bottom-up (i.e. character detections) and top-

down (i.e. language statistics) cues. In [20], Mishra et

al. extended this model by inducing higher order language

priors. These methods were built upon existing modules for

character identification (e.g. MSER extraction or sliding

window) and description (e.g. HOG templates). Replacing

such modules with those based on strokelets, these methods

could attain better performance.



3. Methodology

In this section, we describe the procedure for strokelet

generation and present the algorithm for text recognition.

3.1. Strokelet Generation
Given a set of training images containing scene text

S = {(Ii, Bi)}ni=1
, where Ii is an image and Bi is a set

of bounding boxes specifying the location and extent of the

characters in the image Ii, the goal of strokelet generation

is to learn a set of universal part prototypes Ω from S. The

part prototypes should be able to capture the essential sub-

structures of characters and be distinctive from local back-

ground and against each other.

As S only provides bounding box level annotations for

each character, the part prototypes should be automatically

discovered. The newly developed discriminative clustering

algorithm proposed by Singh et al. [28] meets the require-

ments well, since it learns visual primitives that are both

representative and discriminative from large image collec-

tions in an unsupervised manner. In this paper, we adopt

this algorithm to learn the strokelet set Ω from S.

Given a “discovery” image set D and a “natural

world” image set N , the algorithm of Singh et al. [28]

aims at discovering a set of representative patch clusters

that are discriminative against other clusters in D, as well

as the rest visual world modelled by N . The algorithm is

an iterative procedure which alternates between two phases:

clustering and training. The output of the algorithm is a set

of top-ranked patch clusters K and a set of classifiers C.

Each cluster Kj corresponds to a classifier Cj that can de-

tect patches similar to those in Kj in novel images. These

classifiers will serve as part detectors at runtime. For more

details, please refer to [28].

The algorithm of Singh et al. [28] was originally de-

signed for discovering discriminative patches from generic

natural images. To adopt it to learn part prototypes

(strokelets) for characters, we made the following cus-

tomizations:

• The regions within the bounding boxes B constitute

the discovery set D as we aim to discover discrimina-

tive parts for characters. The rest regions of the train-

ing images are taken as the natural world set N .

• To learn multi-scale parts for characters, the training

examples (patches) are randomly drawn from the dis-

covery set D. The scales of these patches (follow-

ing [28], we also use square patches, i.e. the width w

and height h are equal and w = h = s) are random and

proportional to the scale of the bounding box bb. The

scale of a specific patch is s = r ·max(w(bb), h(bb)).
The ratio r is a random variable in the interval [a, b]
and 0 < a ≤ b ≤ 1. a and b control the scale of the

learned strokelets. If a = b, single-scale strokelets will

be generated.

• To make the learned strokelets robust to interference

factors from local background, we also randomly draw

examples (patches) from the natural world set N at dif-

ferent scales.

• At the initial clustering stage, each patch pk from the

discover set is represented by a scale and location aug-

mented descriptor, which is the concatenation of the

appearance descriptor d(pk), the relative scale r and

the normalized coordinates (xpk
, ypk

), following [18].

This forces the patches in each cluster to be compact

in configuration space.

• The SVM classifier used in [28] was replaced by Ran-

dom Forest [4] because the latter can achieve similarly

high accuracy as SVM and directly gives probabilities,

which are more intuitive and interpretable.

• The size of the patch descriptors (HOG [6]) is 3 × 3
(rather than 8 × 8) cells as they are sufficient for de-

scribing character parts.

The whole procedure for learning strokelets is summa-

rized in Algorithm 1. The learned strokelet set can be ex-

pressed as Ω = {(Kj, Cj)}Γj=1
, where K and C are the

discovered part prototypes and corresponding classifiers re-

spectively, and Γ is the size of the strokelet set. For each

cluster Kj , the following information is stored: The set of

all the members (patches) Mj , their offset vectors to object

centroid Vj , and the average width w̄j and height h̄j of the

parent rectangles, from which the members Mj originate.

Vj , w̄j and h̄j
2 will be used to estimate the location and

extent of objects in the character identification stage (see

Sec. 3.2.1).

Fig. 3 depicts the strokelets (classifiers not shown)

learned on the IIIT 5K-Word dataset [20]. As can be seen,

strokelets, as a universal representation, express part pro-

totypes of characters at different granularities, ranging from

simple micro-structures to entire characters. Moreover, they

are able to capture the parts that are common across differ-

ent character classes (see the top rows of Fig. 3 (b)) as well

as those unique to certain character classes (see the bottom

row of Fig. 3 (b)).

In principle, strokelets are an over-complete represen-

tation, but this is not guaranteed in reality, because of

the greedy pursuit strategy in strokelet generation and the

limited diversity in training data. However, the learned

strokelets are sufficient for the task of text recognition and

work well in practice (see Sec. 4).

Strokelets are by construction detectable primitives, as

they are generated via discriminative learning. Moreover,

the learned strokelets are tightly clustered in both appear-

ance and configuration space (see Fig. 3 (b)). These prop-

erties make strokelets closely analogous to poselets [3, 2].

2We assume that Vj , w̄j and h̄j have been normalized with respect to

the members Mj .



Algorithm 1 Algorithm for strokelet generation

Require: Training set S, interval [a, b], strokelet count Γ
1: {D,N} ⇐ construct(S) ⊲ Construct Discovery set D and Natural World set N from S

2: D ⇒ {D1, D2}; N ⇒ {N1, N2} ⊲ Split D and N into equal sized disjoint subsets

3: R ⇐ random sample(D1, [a, b]) ⊲ Sample patches with scale ratio randomly drawn from [a, b]
4: K ⇐ cluster(R, λΓ) ⊲ Cluster sampled patches, the initial cluster number is set to λΓ (λ > 1)

5: repeat ⊲ Iterate until convergence

6: for all i such that size(K[i]) ≥ τ do ⊲ Maintain clusters with enough members, τ is a predefined threshold

7: Cnew[i] ⇐ train(K[i], N1) ⊲ Train classifier for each cluster

8: Knew[i] ⇐ detect top(C[i], D2, q) ⊲ Find top q new members in the other discovery subset

9: end for

10: K ⇐ Knew; C ⇐ Cnew ⊲ Update clusters and classifiers

11: swap(D1, D2); swap(N1, N2) ⊲ Swap the two subsets

12: until converged

13: A[i] ⇐ score(K[i]) ∀i ⊲ Compute score for each cluster, see [28] for details

14: Ω ⇐ select top(K,C,A,Γ) ⊲ Sort according to scores and select top Γ clusters and classifiers

15: return Ω

Figure 3. Learned strokelets on the IIIT 5K-Word dataset [20]. (a)

Each row illustrates a cluster of part instances that constitute a

strokelet. The images in the first column (orange rectangle) are

the average of all the instances of that strokelet. The rest are top-

ranked part instances. (b) Discovered part instances in original

images. The learned part prototypes are tightly clustered in both

appearance and configuration space.

However, different from poselets, which are obtained us-

ing manually labeled data (part regions and keypoints),

strokelets are automatically learned using bounding box

level annotations.

3.2. Recognition Algorithm

The algorithmic pipeline for scene text recognition is

fairly straightforward: Character candidates are first sought

from the image via a voting based scheme for character

identification (Sec. 3.2.1); these candidates are then de-

scribed by a histogram feature based on strokelets and a

holistic descriptor (Sec. 3.2.2); and character classification

is applied to assign the most probable class label to each

character (Sec. 3.2.3). Optionally, the inferred word is re-

placed by the most similar item in a given dictionary, fol-

lowing [29, 21].

The algorithm described above is quite effective, even

though without sophisticated approaches to error correc-

tion [25, 20]. We believe better performance could be

achieved if such error correction methods are incorporated.

3.2.1 Character Identification

As stated in Sec. 1, character identification is a key stage

in scene text recognition. However, binarization based

methods [19, 34] are sensitive to noise, blur and non-

uniform illumination; connected component based meth-

ods [23, 25] are unable to handle connected characters and

broken strokes; and direct character detection based meth-

ods [30, 20] usually produce a lot of false alarms. In this pa-

per, we propose a voting scheme to seek characters, based

on multi-scale strokelet detection.

This scheme shares the idea of estimating character cen-

ters through voting with the work of Yildirim et al. [37].

However, the work in [37] is essentially a patch based

method, which does not explicitly infer character parts,

but simply learns the mapping relations (multi-class Hough

Forests) between local patches and character center; be-

sides, it only performs voting at single scale (though multi-

scale scanning is used), while the proposed strategy casts

votes from multiple scales.

Firstly, the original image (Fig. 4 (a)) is resized to a stan-

dard height (64 pixels in this paper) with aspect ratio kept



Figure 4. Character identification. (a) Original image. (b) De-

tections of strokelets at different scales. Activations of different

types of strokelets are marked in different colors. For better visu-

alization, the images are rescaled and non-maximum suppression

is applied to the activation windows. (c) Hough map. (d) Iden-

tified characters. Different from [21], non-maximum suppression

for false alarm removal is not a tough task in our work, as multi-

scale strokelet detection and voting generate high-quality Hough

maps.

unchanged; since strokelets are naturally multi-scale rep-

resentation, a multi-scale sliding-window paradigm is per-

formed to detect strokelets (Fig. 4 (b)); a Hough map (Fig. 4

(c)) is then generated by casting and accumulating the votes

from the detected strokelets, similar to [15]; finally, the cen-

ters of the character candidates are found by seeking max-

ima in the Hough map using Mean Shift [5] and the ex-

tents of these candidates are determined by computing the

weighted average of the attributes of the clusters (average

width w̄j and height h̄j), which have been stored in the

training phase (Sec. 3.1).

For a character candidate α, assume a set of strokelet

detections {dl(α)}
m
l=1

have contributed to it, then the width

and height of α are calculated as:

w(α) =

∑m

l=1
ρ(dl) · w(dl) · w̄dl∑m

l=1
ρ(dl)

, (1)

h(α) =

∑m

l=1
ρ(dl) · h(dl) · h̄dl∑m

l=1
ρ(dl)

, (2)

where ρ(dl) is the detection score of dl, w(dl) and h(dl)
stand for the width and height of dl, and w̄dl

and h̄dl
denote

the average width and height of the cluster corresponding to

dl, respectively.

Several examples of character identification by the pro-

posed scheme are shown in Fig. 5. By adopting discrimina-

tive training and multi-scale voting, the proposed scheme is

capable of handling issues like noise, blur, local distractor

and connected characters.

Figure 5. Examples of character identification. The scheme for

character identification is able to hunt characters of different fonts,

sizes, colors and layouts with the presence of noise, blur and local

distractor.

3.2.2 Character Description

It has been widely accepted in the community that informa-

tive features promise high performance. Based on detection

activations of strokelets, we introduce a histogram feature

called Bag of Strokelets, in addition to the traditional fea-

ture HOG [6].

Bag of Strokelets. For each identified character candi-

date, all the strokelets that have voted for it are sought via

back-projection. A histogram feature is formed by binning

the strokelets. Strokelets of all scales (see Fig. 4 (b)) are

assembled together. Each strokelet contributes to the his-

togram feature according to its detection score. To incorpo-

rate spatial information, the Spatial Pyramid strategy [13]

(1× 1 and 2× 2 grids) is also adopted.

HOG. Following [21, 25], we also adopt the HOG de-

scriptor (the version proposed in [10]) to describe charac-

ters. A template with 5 × 7 cells is constructed for each

character candidate.

The Bag of Strokelets feature is complementary to HOG,

as it conveys information from different levels and is robust

to font variation, subtle deformation and partial occlusion.

We will evaluate the effectiveness of these two types of fea-

tures and compare their contributions to recognition accu-

racy in Sec. 4.

3.2.3 Character Classification

In this paper, we consider English letters (52 classes)

and Arabic numbers (10 classes), i.e. the alphabet Φ =
{a, . . . , z;A, . . . , Z; 0, . . . , 9} and |Φ| = 62. To handle in-

valid characters (e.g. punctuations, partial of valid char-

acters, and background components), we also introduce a

special class, so there are 63 classes in total.

We train 63 character recognizers (binary classifiers),

one for each character class, in a one-vs-all manner. Ran-

dom Forest [4] is adopted as the strong classifier because

of its high performance and efficiency. Training examples

are harvested by applying the strokelets to the images in the



Γ 100 200 300 400 500 600 700

Accuracy(%) 71.4 75.9 78.1 77.1 80.2 79.0 78.3

Table 1. Impact of strokelet count Γ on the IIIT 5K-Word dataset.

training set and compare the identified rectangles with the

ground truth annotations. At runtime, the character candi-

dates are classified by the trained recognizers; for each char-

acter, the class label with the highest probability is assigned

as the recognition consequence.

4. Experiments

We have evaluated the proposed representation and text

recognition algorithm on several standard benchmarks, and

compared it to other competing methods, including the

leading algorithms in this field. All the experiments were

conducted on a regular PC (2.8GHz 8-core CPU, 16G RAM

and Windows 64-bit OS).

For all the Random Forest classifiers, 200 trees were

used. The windows for strokelet detection were sampled

at 12 scales. a = 0.2 and b = 1.0 for all the experiments

unless specifically stated.

4.1. Datasets

IIIT 5K-Word. The IIIT 5K-Word dataset [20] is the

largest and most challenging benchmark in this field to date.

This database includes 5000 images with text in both natu-

ral scenes and born-digital images. It is challenging because

of the variation in font, color, size, layout and the presence

of noise, blur, distortion and varying illumination. 2000 im-

ages are used for training and 3000 images for testing. This

dataset comes with three types of lexicons (small, medium,

and large) for each test image.

ICDAR 2003. The ICDAR 2003 Robust Word Recog-

nition Competition [17] was held to track the advances

in word recognition in natural images. This dataset is

widely used in the community to evaluate algorithms for

text recognition in cropped images. Following previous

works [25, 20, 27], we skipped the words with two or fewer

characters, as well as those with non-alphanumeric charac-

ters.

SVT. The Street View Text (SVT) dataset [30, 29] is a

collection of outdoor images with scene texts of high vari-

ability. This dataset can be used for both cropped word

recognition and full image word detection and recognition.

We adopted the SVT-WORD subset, which contains 647

word images, to evaluate the proposed algorithm, as we fo-

cus on word recognition in cropped images.

For fair comparison, the lexicons for the ICDAR 2003

and SVT dataset provided in [29] are also used in this work.

4.2. Experimental Results

Strokelet count Γ is a key parameter as it determines the

number of learned strokelets. We first investigated the im-

Lexicon Small Medium Large

Proposed 80.2 69.3 38.3

Higher Order [20](with edit distance) 68.25 55.50 28

Higher Order [20](without edit distance) 64.10 53.16 44.30

Pairwise CRF [21](with edit distance) 66 57.5 24.25

Pairwise CRF [21](without edit distance) 55.50 51.25 20.25

ABBYY9.0 [1] 24.33 - -

Table 2. Performances of different algorithms evaluated on the IIIT

5K-Word dataset.

pact of strokelet count on the IIIT 5K-Word dataset. As

can be seen from Tab. 1, the recognition rate increases with

strokelet count Γ upto a certain point and then slightly de-

creases. The highest accuracy was achieved with Γ =
500. In all the following experiments except the last one,

strokelet count Γ is fixed at 500.

We learned a set of strokelets on the IIIT 5K-Word

dataset and evaluated the proposed algorithm on it. The

performances of the proposed algorithm and other recently

published works are illustrated in Tab. 2. In general, the

proposed algorithm outperforms all the competing meth-

ods. With small lexicon, the proposed algorithm achieves

a recognition accuracy of 80.2%, which is 12% higher than

that of the closest competitor Higher Order [20] without edit

distance (68.25%); with medium lexicon, the improvement

(13.8%) is even more notable; with large lexicon, the pro-

posed algorithm is comparable to Higher Order without edit

distance, but behind it. This is reasonable as the large lex-

icon is independent from IIIT 5K-Word3 and Higher Or-

der [20] without edit distance incorporated statistical lan-

guage model for error correction. The comparison between

the proposed approach and Higher Order with edit dis-

tance is much fairer, where the improvement (from 28% to

38.3%) is also very significant.

The IIIT 5K-Word dataset is the largest and most

challenging benchmark in this field. The comparisons

above demonstrate that the proposed representation and text

recognition method are both effective and robust. More-

over, the proposed method can be integrated with those

of [20] and [21], which will create a more powerful system

for scene text recognition.

We also applied the learned strokelets to the test images

of the ICDAR 2003 and SVT dataset. Fig. 6 shows sev-

eral character recognition examples on these two datasets.

The strokelets generalize well to novel images from other

databases. The proposed algorithm is able to handle chal-

lenges like font variation, scale change, noise, connected

characters, non-uniform illumination and partial occlusion.

The performances of the proposed algorithm as well

as other competing methods on the ICDAR 2003 and

SVT dataset are depicted in Tab. 3. The proposed algo-

3This means the large lexicon does not necessarily contain the ground

truth words.



Dataset ICDAR 2003(FULL) ICDAR 2003(50) SVT

Proposed 80.33 88.48 75.89

CNN [31] 84 90 70

Whole [11] - 89.69 77.28

TSM+CRF [27] 79.30 87.44 73.51

TSM+PLEX [27] 70.47 80.70 69.51

Multi-Class Hough Forests [37] - 85.70 -

Large-Lexicon Attribute-Consistent [25] 82.8 - 72.9

Higher Order [20](with edit distance) - 80.28 73.57

Higher Order [20](without edit distance) - 72.01 68.00

Pairwise CRF [21](with edit distance) - 81.78 73.26

Pairwise CRF [21](without edit distance) - 69.90 62.28

SYNTH+PLEX [29] 62 76 57

ICDAR+PLEX [29] 57 72 56

ABBYY9.0 [1] 55 56 35

Table 3. Performances of different algorithms evaluated on the ICDAR 2003 and SVT dataset.

Figure 6. Examples of character recognition on the ICDAR 2003

and SVT dataset. Though only trained on the IIIT 5K-Word

dataset, the strokelets generalize well to the images from ICDAR

2003 and SVT.

rithm achieves recognition accuracy of 80.33%, 88.48%

and 75.89% on ICDAR 2003(FULL), ICDAR 2003(50) and

SVT respectively, outperforming the competing methods

of [29, 25, 21, 20, 37, 27], but still behind those in [31, 11].

Note that the amount of training data used in [31] is far more

than that of our algorithm, while [11] cannot handle words

out of the given dictionary. Compared to these methods, the

proposed algorithm requires less training examples and has

a broader scope of application.

It is worth mentioning that the proposed algorithm is su-

perior to the best performer [27], which employed manually

designed character models and detailed part annotations.

This proves automatically learned parts can work better than

those defined and labeled by human.

The performance gains achieved by the proposed method

are mainly due to two reasons: (1) Compared to other ap-

proaches, strokelets produce more accurate and robust char-

acter identification; (2) The proposed Bag of Strokelets fea-

ture offers extra discriminative power, further boosting the

recognition rate.

Feature HOG Bag of Strokelets HOG+Bag of Strokelets

Accuracy(%) 78.6 73.7 80.2

Table 4. Performances of different types of features.

Scale(a=b) 0.2 0.3 0.4 0.5 0.6 0.7 multi-scale

Accuracy(%) 59.9 71.9 74.1 74.4 74.8 74.3 80.2

Table 5. Advantage of multi-scale representation.

We validated the excellent ability of strokelets in charac-

ter identification. For character localization, strokelets ob-

tain precision of 45% at recall=78% and precision of 64% at

EER on IIIT 5K-Word, far surpassing [20] (precision≈17%

at recall=78% and precision≈35% at EER). For character

classification, strokelets obtain 60%, 67% and 64% (case

insensitive) on Chars74K [7], ICDAR-CHAR and SVT-

CHAR [29], respectively, outperforming [21, 29]. The work

in [27] used a different evaluation protocol, thus is not di-

rectly comparable.

We also evaluated the effectiveness of the Bag of

Strokelets feature and compared it with HOG. The recogni-

tion rates of different types of features on the IIIT 5K-Word

dataset are shown in Tab. 4. The conventional feature HOG

is quite informative, achieving a recognition rate of 78.6%,

while that of Bag of Strokelets is 73.7%. These two types

of features are complementary. Their combination leads to

higher performance (80.2%).

To verify the advantage of multi-scale representation, we

also trained several sets of single-scale strokelets with dif-

ferent scales on the IIIT 5K-Word dataset. The recognition

rates of those strokelets as well as multi-scale strokelets are

shown in Tab. 5. As can be observed, even single-scale

strokelets perform fairly well on this challenging bench-

mark, while multi-scale strokelets bring further improve-

ment. Multi-scale representation, being able to capture

the characteristics of characters at different granularities

and convey more information, performs much better than

single-scale representations.



Figure 7. Learned strokelets (Γ = 100) on different languages.

(a) Chinese. Original images are from [26]. (b) Korean. Original

images are from [14]. (c) Russian. Original images are harvested

from the Internet.

The previous qualitative and quantitative results have

confirmed the usability, robustness and expressivity prop-

erties of strokelets. To verify the generality property, we

demonstrate three sets of strokelets learned on different lan-

guages in Fig. 7. The learned strokelets faithfully reflect

the characteristics of the corresponding languages. For ex-

ample, the strokelets learned on Chinese capture the rich

horizontal and vertical structures, while those on Korean

additionally highlight the arc structures. In order to cope

with multilingual scenarios, we could learn a hybrid set of

strokelets on multiple languages.

5. Conclusions and Future Work

We have introduced strokelets, a novel presentation au-

tomatically learned from bounding box labels, for the pur-

pose of capturing the underlying substructures of charac-

ters at different granularities. Strokelets provide an alter-

native way to accurately identify individual characters and

compose a histogram feature to effectively describe char-

acters in natural scenes. The scene text recognition algo-

rithm based on strokelets is both effective and robust. Ex-

tensive experiments on standard benchmarks verify the ad-

vantages of strokelets and demonstrate that the proposed al-

gorithm consistently outperforms the current state-of-the-

art approaches in the literature.

In this paper, we only demonstrated the strengths of

strokelets on the task of text recognition in cropped images.

The idea is actually quite general and can be employed to

perform both text detection and recognition in full images.

This is an ongoing work. Furthermore, we could extend the

applicability of this idea by learning multi-scale prototypes

for other object classes (e.g. cars, persons, and faces) and

using them to detect and recognize such object classes.
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