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Abstract

With the goal of accelerating the training and test-
ing complexity of nonlinear kernel methods, several re-
cent papers have proposed explicit embeddings of the input
data into low-dimensional feature spaces, where fast linear
methods can instead be used to generate approximate so-
lutions. Analogous to random Fourier feature maps to ap-
proximate shift-invariant kernels, such as the Gaussian ker-
nel, on Rd, we develop a new randomized technique called
random Laplace features, to approximate a family of kernel
functions adapted to the semigroup structure of Rd+. This
is the natural algebraic structure on the set of histograms
and other non-negative data representations. We provide
theoretical results on the uniform convergence of random
Laplace features. Empirical analyses on image classifica-
tion and surveillance event detection tasks demonstrate the
attractiveness of using random Laplace features relative to
several other feature maps proposed in the literature.

1. Introduction
A wide spectrum of statistical learning problems in com-

puter vision have been elegantly framed within the frame-
work of kernel methods [19]. The algorithmic recipe in
this framework is as follows. A kernel function, k : X ×
X 7→ R, is defined on an input domain of visual features,
X ⊂ Rd. The kernel provides access to an implicit em-
bedding of the input domain, Ψ : X 7→ H, such that
k(x, z) = 〈Ψ(x),Ψ(z)〉H, where H is a possibly infinite-
dimensional inner product “feature space” (with inner prod-
uct 〈·, ·〉H). Regularized linear models in H then define
non-parametric, non-linear models with respect to the orig-
inal domain. Despite its conceptual simplicity, this idea is
highly generalizable and versatile: it leads to nonlinear al-
gorithms for supervised image classification and object de-
tection, unsupervised visual feature extraction, image de-

noising, action recognition in videos, integration of multiple
descriptors [10] , and many other tasks [14].

In the face of “big data” in computer vision [7, 20],
the scalability of kernel methods, which is typically super-
linear in the number of data points, is well-recognized as
a valid concern. In recent years, approximations to kernel
functions via explicit low-dimensional feature maps [18, 21,
15, 17, 12] have emerged as an appealing strategy to turn
the complexity of learning nonlinear kernel methods back
to that of training linear models, which typically scale lin-
early in the number of data points in a variety of settings
such as regression, classification [13] and principal compo-
nent analysis. Importantly, storage requirements and test-
time prediction speed can also be dramatically improved.
These feature maps provide a low-distortion embedding,
Ψ̂ : X 7→ Rs, such that,

k(x, z) ≈ 〈Ψ̂(x), Ψ̂(z)〉Rs . (1)

Shift-invariant kernels on Rd, such as the Gaussian ker-

nel, k(x, z) = e−
‖x−z‖22

2σ2 , can be written as k(x, z) =
φ(x − z), for a positive-definite function φ : Rd 7→ R. A
randomized construction of approximate feature maps for
this class of kernels was recently suggested by Rahimi and
Recht [18]. Their construction is based on a classical char-
acterization of the family of positive-definite functions on
Rd given by Bochner’s Theorem [2].

Theorem 1 (Bochner’s Theorem [2]). A continuous shift-
invariant kernel function k(x, z) ≡ φ(x− z) on Rd is pos-
itive definite if and only if it is the Fourier transform of a
unique finite non-negative measure on Rd. That is, for any
x, z ∈ Rd,

k(x, z) =

∫
Rs
e−i(x−z)Twp(w)dw = Ew∼p[e

−i(x−z)Tw] .

In the above, we assume, without loss of generality, that
the non-negative measure is a probability measure with the
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associated density p. Bochner’s theorem establishes one-
to-one correspondence between shift-invariant kernel func-
tions and probability densities on Rd, via the Fourier trans-
form. For the Gaussian kernel with bandwidth σ, the asso-
ciated density is again Gaussian with σ−2 times the identity
as the covariance matrix. The above result immediately sug-
gests a Monte Carlo approximation to the kernel function of
the form,

k(x, z) ≈ 1

s

s∑
j=1

e−ix
Twjeiz

Twj = 〈Ψ̄(x), Ψ̄(z)〉Cs , (2)

where the points wj are drawn from p, yielding a feature
map of the form Ψ̄(x) = 1√

s
[e−ix

Tw1 . . . e−ix
Tws ] from

which real-valued feature maps satisfying (1) can be de-
rived. Following Rahimi and Recht [18], this map is re-
ferred to as random Fourier feature map due to the cen-
tral role of the Fourier transform in characterizing shift-
invariant kernels on Rd.

Beyond shift-invariant kernels on Rd, several recent pa-
pers have attempted to develop explicit low-dimensional
feature maps to approximate specific kernels that excel in
computer vision applications [21, 15, 17, 16]. These kernels
are typically much better adapted to data representations
in the form of finite probability distributions or normalized
histograms, that common descriptors such as bag of visual
words [4] and spatial pyramids [11] assume. Vedaldi and
Zisserman [21] suggest approximate feature maps for the
additive family of Intersection, Hellinger’s, χ2 and Jensen-
Shannon kernels whose feature spaces respectively induce
well-known divergence measures on finite probability dis-
tributions. Li et al. [15] suggest approximate feature maps
for “skewed” multiplicative variants of the Intersection and
χ2 kernels, in an attempt to match the empirical perfor-
mance of the exponentiated-χ2 kernel, considered state of
the art [3] for histogram descriptors. Table 1 catalogues
these kernels and their associated approximate feature maps
obtained through a randomized or deterministic sampling
process.

The starting point of this paper is the observation that the
natural algebraic structure on the space of histograms and
other non-negative descriptors, is that of an abelian semi-
group.

Definition 2 (Abelian semigroup). A semigroup (S, ◦) is a
nonempty set S equipped with an associative composition
◦, i.e. for any x, y, z ∈ S : x ◦ (y ◦ z) = (x ◦ y) ◦ z and a
neutral/identity element e, i.e., for any x ∈ S : x ◦ e = x.
For an abelian semigroup, the composition is commutative,
i.e., for any x, y ∈ S : x ◦ y = y ◦ x.

In particular, (Rd+,+) forms an abelian semigroup with
0 ∈ Rd+ as the identity element. This basic definition is
sufficient to introduce the concept of kernels on semigroups.

Definition 3 (Kernels on Abelian semigroups [1]). A func-
tion k : S × S 7→ R is a positive definite kernel function
on an abelian semigroup (S, ◦) if k(s, t) = φ(s ◦ t) where
φ : S 7→ R is a positive definite function, i.e., for any
s1 . . . sn ∈ S, and any real-valued scalars c1 . . . cn, the
following holds1:

∑n
i,j=1 cicjφ(si ◦ sj) ≥ 0.

We now state our main contributions.
• We propose new randomized approximate feature maps

for kernels based on the semigroup structure of Rd+.
These semigroup kernels are characterized via extensions
of Bochner’s theorem [1] developed in the theory of har-
monic analysis for general algebraic structures such as
groups and semigroups. The Laplace transform assumes
the role of the Fourier transform in our setting. Our pro-
posed technique is therefore termed as random Laplace
features, analogous to random Fourier features for shift-
invariant kernels on Rd.

• We provide theoretical analysis on the uniform conver-
gence of random features associated with semigroup ker-
nels. In particular, we show that with high probability, for
all pairs of points drawn from a bounded input domain,
semigroup kernels can be approximated to within ε error
with O(dε−2 log(ε−2)) random Laplace features.

• Random Laplace features provide approximations to a
broad family of kernels on histograms, which includes
two kernels that we call Exponential-Semigroup and
Reciprocal-Semigroup. The definitions of these kernels
and their associated approximate feature maps are pro-
vided in Table 1 as well. We provide a thorough empirical
comparison of these feature maps on image classification
and surveillance event detection tasks. Results show fa-
vorable accuracy-time tradeoffs from using our random
Laplace feature maps.

2. Semigroup Kernels on Histograms

As per Definition 3, kernels respecting the algebraic
structure of the semigroup (Rd+,+) can be written as
k(x, z) = φ(x+z) where φ : Rd+ 7→ R is a positive definite
function in the sense of satisfying

∑n
i=1 cicjφ(xi+xj) ≥ 0

for any set of n non-negative vectors x1 . . .xn and choice
of real-valued scalars c1 . . . cn. The key observation is that
positive-definite functions onRd+ are characterized by a the-
orem similar to Bochner’s Theorem, in which the Laplace
transform replaces the Fourier transform.

Theorem 4 (Berg et al.[1]). A bounded continuous kernel
function k(x, z) ≡ φ(x + z) on the Abelian semigroup
(Rd+,+) is positive definite if and only if it is the Laplace
transform of a unique non-negative measure on Rd+. That

1For semigroups with involution operator ∗, the condition is∑n
i,j=1 cicjφ(s

∗
i ◦ sj); see Berg et al. [1].



Kernel k(x, z) Ψ̂(x) Sampling Ref

Gaussian e
‖x−z‖22

2σ2
⊕s
j=1

√
1
s e
−ixTwj 1√

(2πσ2)
e−

σ2w2

2 (Normal) [18]

Laplacian e
‖x−z‖1

σ
⊕s
j=1

√
1
s e
−xTwj σ

π(1+σ2w2)
(Cauchy) [18]

Hellinger
∑d
j=1

√
xjzj

⊕d
j=1

√
xj – [21]

χ2 2
∑d
j=1

xjzj
xj+zj

⊕d
j=1,k e

iwk log xj
√
xjsech(πwk) wk = kL,−r ≤ k ≤ r [21]

Intersection
∑s
j=1 min(xj , zj)

⊕d
j=1,k e

iwk log xj

√
2xj

π(1+4w2
k

)
wk = kL,−r ≤ k ≤ r [21]

Jensen-Shannon
∑d
j=1 h(xj , zj)

⊕d
j=1,k e

iwk log xj

√
2xj sech(πwk)

log 4(1+4w2
k

)
wk = kL,−r ≤ k ≤ r [21]

Exponentiated-χ2 e
−σ−2 ∑d

j=1

(xj−zj)2

xj+zj
⊕s
j=1

√
1
s e
−iΨ̂

χ2 (x)Twj 1√
(2πσ2)

e−
σ2w2

2 (Normal) [21]

Jensen-Shannon
∑d
j=1 h(xj , zj)

⊕d
j=1,k e

iwk log xj

√
2xj sech(πwk)

log 4(1+4w2
k

)
wk = kL,−r ≤ k ≤ r [21]

Skewed-χ2 ∏d
j=1

2
√
xj+ε
√
zj+ε

xj+zj+2ε

⊕s
j=1

√
1
s e
−i log(x+ε)Twj sech(πw) (Hyperbolic-secant) [15]

Skewed-Interection
∏d
j=1 min

(√
xj+ε

zj+ε ,

√
zj+ε

xj+ε

) ⊕s
j=1

√
1
s e
−i log(x+ε)Twj 2

π(1+4w2)
(Cauchy) [15]

Exponential-Semigroup [1, 9] e
−β

∑d
j=1
√
xj+zj

⊕s
j=1

√
1
s e
−xTwj β

2
√
π
w−

3
2 e
−β2

4w (Lévy) This Paper

Reciprocal-Semigroup [1, 9]
∏d
j=1

λ
xj+zj+λ

⊕s
j=1

√
1
s e
−xTwj λe−λw (Exponential) This Paper

Table 1. Summary of kernels and associated approximate feature maps. Above,
⊕s

j=1 xj = (x1, . . . , xs) , i =
√
−1, h(x, z) =

x
2
log2

x+z
2

+ y
2
log2

x+z
z
, log(x) = [log(x1) . . . log(xd)]. The feature map for Exponentiated-χ2 is a composition of feature maps for

the χ2 and Gaussian kernels.

is, for any x, z ∈ Rd+,

k(x, z) =

∫
Rd+
e−(x+z)Twp(w)dw = Ew∼pe

−(x+z)Tw .

This theorem should be contrasted with the Bochner’s
characterization for shift-invariant kernels on Rd (Theo-
rem 1). As before, we assume without loss of generality that
the non-negative measure above is a probability measure
with associated density p. This result establishes one-to-
one correspondence between semigroup kernels and prob-
ability densities on Rd, via the Laplace transform. Exactly
analogous to the random Fourier construction, we can now
develop random Laplace feature maps via a Monte Carlo
approximation,

k(x, z) ≈ 1

s

s∑
j=1

e−x
Twje−z

Twj = 〈Ψ̂(x), Ψ̂(z)〉 , (3)

where the points wj are drawn from p, yielding a feature
map of the form

Ψ̂(x) =
1√
s

[e−x
Tw1 . . . e−x

Tws ] . (4)

This simple algorithm is summarized in the Algorithm 1.
When the density p corresponds to Lévy or Exponential

distributions, the Laplace transform provides the associated
Exponential-Semigroup and Reciprocal-Semigroup kernels,
respectively. The exact form of these kernels is given in Ta-
ble 1. These kernels have also been studied in the context
of injective Reproducing Kernel Hilbert Space (RKHS) em-
beddings of probability distributions on groups and semi-
groups [9, 6]. Through random Laplace features, one can

Algorithm 1 Random Laplace Features
Require: Characteristic kernel k on (Rd+,+), size s.
Ensure: Feature map Ψ̂(x) : Rd 7→ Rs.

1: Find p, the inverse Laplace transform of k.
2: Draw sequence w1, . . . ,ws from p.

3: Set Ψ̂(x) =
√

1
s

[
e−x

Tw1 , . . . , e−x
Tws

]
.

expect to approximate these kernels well and deploy them
for large-scale applications.

In the next section we bound the approximation er-
ror |k(x, z) − 〈Ψ̂(x), Ψ̂(z)〉| for inputs x, z drawn from a
bounded domain in Rd+; we then study the empirical be-
haviour of the random Laplace feature map with respect to
predictive tasks at hand, and benchmark its performance
against several alternative approximate feature maps de-
tailed in Table 1.

3. Uniform Convergence of Random Laplace
Features

In this section, we assume that the density function can
be written as p(w) =

∏d
j=1 q(wj), where q(·) is a univari-

ate density function. The kernel function can be written as
k(x, z) = φ(x + z). We assume that φ is a differentiable
function in R+

d /{0}. Proofs for all the assertions are pro-
vided in Appendix A.

The following is a general result characterizing the error
in approximating the kernel function using random Laplace
features (Algorithm 1). The proof follows a similar strategy
to the one used by Rahimi and Recht [18].



Theorem 5. LetM be the set consisting of all the points in
Rd satisfying ‖x‖2 ≤ R and xi ≥ r ≥ 0, i = 1, . . . , d.
Then, provided that Lq,r ≡ Ew∼q[e−2wrw2] < ∞ and
Lq,rR > ε, then for the mapping Ψ̂ defined in Algorithm 1,
we have

P
[

sup
x,z∈M

|〈Ψ̂(x), Ψ̂(z)〉 − k(x, z)| ≥ ε
]

≤ 26

(
dR2Lq,r

ε2

)
exp

(
− sε2

d+ 2

)
, (5)

Furthermore,

sup
x,z∈M

|〈Ψ̂(x), Ψ̂(z)〉 − k(x, z)| < ε

with any constant probability when s = Ω
(
d
ε2 log R2L

ε2

)
.

Note that the quantity Lq,r depends on the specific
choice of kernel. We now give explicit expression for Lq,r
for q corresponding to two popular semigroup kernels.

The following lemma gives an explicit expression for the
Exponential-Semigroup kernel.

Lemma 6. Let β > 0, and let q(w) = β
2
√
π
w−3/2e−β

2/4w

(this corresponds to the kernel k(x, z) = e−β
∑d
i=1

√
xi+zi ).

For r > 0 we have Lq,r = β
4

√
2rβ+1

(2r)
3
2 e
√

2rβ
.

In the above we require all the coordinates of x and z
to be positive. Furthermore, if β is fixed, Lq,r will go to
infinity as r approaches zero. To get an approximate feature
map with finite error bound for the Exponential-Semigroup
kernel even when some coordinates of x or z are zero, it
is natural to consider building a feature map on perturbed
dataset, i.e., on x+δ and z+δ for some small δ (the addition
here denotes a component-wise addition of the scalar).

Let x′ = x + δ and z′ = z + δ. For any approximate
kernel c(·, ·), by the triangle inequality we have,

|k(x, z)− c(x′, z′)| ≤ |k(x, z)− k(x′, z′)|+
|k(x′, z′)− c(x′, z′)| . (6)

So, if the kernel function is sufficiently smooth and c(x +
δ, z + δ) approximates k(x + δ, z + δ) well, then c(x +
δ, z + δ) will approximate k(x, z) well. In particular, for
the Exponential-Semigroup kernel we have the following
lemma.

Lemma 7. LetM be the set consisting of all the points in
Rd satisfying ‖x‖2 ≤ R and xi ≥ 0, i = 1, . . . , d. Let β >
0, and let q(w) = β

2
√
π
w−3/2e−β

2/4w (this corresponds to

the kernel k(x, z) = e−β
∑d
i=1

√
xi+zi ). For δ = ε2

4d2 we
have

P
[
supx,z∈M|k(x, z)− 〈Ψ̂(x + δ), Ψ̂(z + δ)〉| ≥ ε

]
≤ 1− 26

(
d(R+δ)2Lq,δ

ε2/4

)
exp

(
− sε

2/4
d+2

)
, (7)

where Lq,δ = β
4

√
2δβ+1

(2δ)
3
2 e
√

2δβ
.

The following lemma gives an explicit expression for the
Reciprocal-Semigroup kernel.

Lemma 8. Let λ > 0, r ≥ 0, and let q(w) = λe−λw (this

corresponds to the kernel k(x, z) =
∏d
i=1

(
λ

xi+zi+λ

)
). We

have, Lq,r = 2λ
(λ+2r)3 .

4. Empirical Analysis
The number of random features controls the kernel ap-

proximation quality and the computational cost of solving
a downstream task such as classification. Several empirical
questions are of interest: For the same number of random
features, how well do random Laplace features perform rel-
ative to other alternative feature maps on a given predic-
tive task? How well is the underlying exact semigroup ker-
nel approximated? Do histogram-based kernels outperform
common shift-invariant kernels on Rd for problems of in-
terest?

In the results reported in this section, we use the kernel
name to denote the associated feature map. For example,
by “Exp-Semigroup”, we mean the use of random Laplace
features to approximate the Exponential-Semigroup ker-
nel. We report experiments on an image classification task
(Caltech-101 [8]) and a surveillance event detection task
(TRECVID SED).

4.1. Caltech-101

For this dataset, we evaluate how well inner products
in the Euclidean space induced by random Laplace fea-
tures approximates the true semigroup kernel; we also com-
pare random Laplace features with other approximate fea-
ture maps on the predictive problem of classifying the 102
(101 + background) classes of the Caltech-101 benchmark
dataset [8]. Our data preparation follows the one used by
Vedaldi and Zisserman [21]. In particular, our results are
competitive with the state of the art on this dataset for meth-
ods that use a single but strong image feature (multi-scale
dense SIFT). We use the phow caltech function of VLFeat2

which rescales images to have a largest side of 480 pixels;
dense SIFT features are extracted every four pixels at four
scales and quantized into a 200 visual words dictionary es-
timated using k-means. Each image is described by a 4200-
dimensional histogram of visual words with 1×1, 2×2 and
4× 4 spatial subdivisions.

Quality of Gram matrix approximation
Given data points {xi}ni=1, the Gram matrix K ∈ Rn×n

is defined as Kij = k(xi,xj). Suppose Z ∈ Rn×s is the
data matrix in the induced feature space, with the i-th row

2http://www.vlfeat.org

http://www.vlfeat.org
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Figure 1. Gram matrix approximation relative error on Caltech-
101 by using random Laplace features with s ranging from 100 to
1500. The two plots correspond to Exponential-Semigroup and
Reciprocal-Semigroup kernel, respectively (see Table 1). Each
curve corresponds to one value of β or λ. For the fixed pair of
parameter, ten independent trials are executed and the mean is re-
ported.

Z(i) = Ψ̂(xi) where Ψ̂(xi) is the random Laplace feature
of xi generated from Algorithm 1. We will evaluate relative
error in terms of Frobenius norm, ‖K − ZZT ‖F /‖K‖F ,
as a function of s, as this provides an overall measure of
approximation quality over the entire set of points. We con-
sider both Exp-Semigroup and Rec-Semigroup kernels.

In Figure 1, we show the relative error of random
Laplace feature with the number of random features s rang-
ing from 100 to 1500 on the full Caltech-101 dataset com-
prising of n = 3060 samples. We can see that as s
grows, random Laplace feature converges to the exact ker-
nel quickly, meaning the relative approximation error goes
to zero fast in practice. As expected, the rate of convergence
depends on the choice of the kernel parameters.

Classification performance
Next, we compare SVM classification accuracies on

Caltech-101 by using approximate feature maps associated
with different kernels as described in Table 1. We use
the usual training-test splitting protocol with 15-images per
class in the training set and an equal number in the test set.
SVM parameters are tuned with cross-validation. Figure 2
reports mean test set accuracy as a function of the num-
ber of random features s. We include the original input
features (i.e., using linear kernel) as a baseline. Among
the semigroup kernels, the Exponential-Semigroup signif-
icantly outperforms the reciprocal semigroup whose perfor-
mance is below baseline levels, and hence results for the
latter are ommited.

Among the seven feature maps compared in Figure 2,
the random Laplace features for the Exponential-Semigroup
(β = 0.01) consistently yield the highest accuracy, outper-
forming the Exponentiated-χ2 kernel which is widely con-
sidered state of the art on histogram descriptors.

The Gaussian kernel does not improve over the lin-
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Figure 2. Prediction accuracy on Caltech-101 by using random
feature maps associated to different kernels with s ranging from
1000 to 10000. The results are generated by using SVM. For
a feature map and an s, five independent trials are executed and
the mean is reported. For comparisons with χ2, Intersection and
Jensen-Shannon, see Table 2.

ear kernel baseline, while kernels such as the skewed-
Intersection kernel [15] perform significantly better, con-
firming the need to design kernels better adapted to
histogram-like data.

The computation time for generating random features
and solving the resulting classification problem is near-
identical for all feature maps shown in Figure 2, except
for the Exponentiated-χ2. While Exponentiated-χ2 yields
the second highest accuracy, its running time is six times
higher than the rest, since it generates a much higher di-
mensional intermediate χ2 feature map, which is then com-
posed with the feature map for the Gaussian kernel. For
the feature maps of the homogeneous additive kernels [21]
which include χ2, the number of random features that can
be generated is of the form (2r + 1)d where d is the di-
mension of the original feature and r is a parameter. For
high-dimensional input spaces, the resulting feature maps
can be very high-dimensional and hence costly for down-
stream processing. For the Exponentiated-χ2 feature map,
we used r = 3 which corresponds to 29400 intermediate χ2

features. The comparison with homogeneous additive ker-
nels [21] is reported in Table 2 for s = 12600, 21000, 29400
corresponding to r = 1, 2, 3. Again, the proposed random
Laplace feature maps for the Exponential-Semigroup kernel
are significantly better.

KERNEL s=12600 s=21000 s=29400
EXP-SEMIGROUP 0.6536 0.6627 0.6643

χ2 0.6510 0.6497 0.6471
INTERSECTION 0.6399 0.6392 0.635

JENSEN-SHANNON 0.6510 0.6477 0.6477

Table 2. Caltech 101 SVM accuracies: Comparison against
χ2, Intersection and Jensen-Shannon can only be done for s =
(2r + 1)d. Here, r = 1, 2, 3. For a feature map and an s, five
independent trials are executed and the mean is reported.
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Figure 3. Prediction accuracy and F1 score on SED by using
random feature maps associated to different kernels with s ranging
from 3000 to 9000. The two subplots are results of Prediction
accuracy and F1 score respectively. For a feature map and an s,
five independent trials are executed and the mean is reported.

4.2. Surveillance Event Detection (SED)

There are seven target events in the TRECVED Surveil-
lance Event Detection (SED) dataset, i.e., CellToEar, Em-
brace, ObjectPut, Pointing, PeopleMeet, PeopleSplitUp and
PersonRuns. The dataset was captured in five locations at a
busy airport. Many confounding issues exist in this dataset
such as high activity levels, camera view changes, large
variances in how events play out (e.g., “PeopleMeet”) and
small objects carrying predictive signals (i.e., “CellToEar”).
The development set consists of 100 hours of video and the
evaluation set has an additional 50 hours of data. The an-
notations of the dataset only include temporal extents and
event labels, and no localization information is provided for
events. We used the development set in our experiments,
and divided it into two equal part for validation.

The training size of SED is 7024, containing approxi-
mately even number of event and non-event samples. The
test size is 22437, containing 5381 events instances. By
event sample, we mean an observation coming from any
of the seven events described above. We use bag of visual
words on motion-SIFT features resulting in final dimension-
ality of d = 24000.

Due to the high dimensionality of the SED dataset, we do
not generate the homogeneous additive and Exponentiated-
χ2 kernels in this case. We report the results for a regular-
ized least squares classification model (SVMs perform sim-
ilarly) with parameters tuned using cross-validation. The
test accuracies and F1 scores are shown in Figure 3. As
before, random Laplace feature maps for the exponential
semigroup kernel (β = 0.001) outperform other feature
maps in this task.

5. Conclusions
Our empirical results strongly suggest that the proposed

random Laplace features for semigroup kernels are a valu-

able addition to the library of approximate feature maps pro-
posed in the literature for scaling up kernel methods. These
semigroup kernels are particularly well-suited to data rep-
resentations in the form of non-negative attributes and his-
tograms. The scalability of this approach can be further
improved via design of specialized parallel solvers [12] to
handle a larger number of random features, while replacing
Monte Carlo approximations with more efficient numerical
integration techniques [22]. We plan to investigate a broader
family of semigroup kernels on Rd+ and benchmark their
performance across several applications.

A. Technical Details
In this section we provide the proofs of Theorem 5,

Lemma 6, Lemma 7 and Lemma 8.

A.1. Proof of Theorem 5

Let c(σ) = 1
s

∑s
i=1 gi(σ) where gi(σ) = e−σ

Twi . It
is easy to see that for any x + z = σ we have c(σ) =
〈Ψ̂(x), Ψ̂(z)〉. The function k is additive-invariant, so we
can abuse notation and write k(σ) = k(x, z) for x+z = σ.
Now, let us denote f(σ) = c(σ)− k(σ).

Let Mσ = {x + z | x, z ∈ M}. It is easy to see
that Mσ is a subset of T = {σ | ‖σ‖ ≤ 2R and σi ≥
r, i = 1, . . . , d }. Our goal is to show that with probability
specified in (5),

|f(σ)| < ε, ∀σ ∈ T . (8)
Since diam(T ) ≤ 4R and it is closed in Rd, and hence it

is compact. We can construct an ε-net over T using less than
J = (4diam(T )/γ)d balls with radius γ [5]. Denote the
anchors of the net by {ηi}Ji=1. We bound |f(σ)| uniformly
(with high probability) by showing that the following two
claims hold with high probability:
• For i = 1, . . . , J , |f(ηi)| < ε/2 ;
• For ∀σ ∈Mσ , ‖∇f(σ)‖ < ε/2γ .

These are sufficient, since for any σ ∈ T , let ηi be the
nearest anchor to σ. It satisfies ‖σ − ηi‖ < γ, so,

‖f(σ)‖ = ‖f(ηi) + f(σ)− f(ηi)‖
≤ ‖f(ηi)‖+ ‖f(σ)− f(ηi)‖
= ‖f(ηi)‖+ ‖∇f(ξ)T (σ − ηi)‖
≤ ‖f(ηi)‖+ ‖∇f(ξ)‖ · ‖σ − ηi‖
≤ ε/2 + γ · ε/2γ = ε (9)

for some ξ on the line connecting σ and ηi (note that T is
convex, so the line is contained in it). The second equality
uses the mean-value theorem.

To show the first claim, it is sufficient to show |f(σ)| < ε
holds with high probability for any (fixed) σ. The claim
then follows using a union bound. For any σ ∈ T , we have

f(σ) = c(σ)− k(σ) =
1

s

s∑
i=1

(gi(σ)− k(σ)) . (10)



From Theorem 4, it is not hard to show that Ewi [gi(σ)] =
k(σ), for i = 1, . . . , s. Also, |gi(σ)| ≤ 1. By Hoeffding
inequality, we have

P

{∣∣∣∣∣1s
s∑
i=1

gi(σ)− k(σ)

∣∣∣∣∣ > ε

}
≤ 2e−2sε2 . (11)

By a union bound, the first claim holds with probability
at least 1− 2Je−sε

2/2.
To show the second claim, we need to bound

the Lipschitz constant of f uniformly. Let λ =
arg maxσ∈T ‖∇f(σ)‖. Since E[c(λ)] = k(λ), we have
E[∇c(λ)] = ∇k(λ), as

∂k(λ)

∂λi
=

∂

∂λi

∫
Rd+
e−λ

Twp(w)dw

=

∫
Rd+
wie
−λTwp(w)dw

= E[wie
−λTw] = E

[
∂c(λ)

∂λi

]
. (12)

The interchange between the integral and derivative is al-
lowed since the functions w, λ 7→ e−λ

Twp(w) and w, λ 7→
wie
−λTwp(w) are both continuous on λ and w.

Taking the expectation on ‖∇f(λ)‖2 = ‖∇c(λ) −
∇k(λ)‖2, we have
E[‖∇f(λ)‖2] = E[‖∇c(λ)‖2 − 2∇c(λ)T∇f(λ) +

‖∇k(λ)‖2]

= E[‖∇c(λ)‖2]− ‖∇k(λ)‖2

≤ E[‖∇c(λ)‖2]

= E

 d∑
j=1

(
∂c(λ)

∂λj

)2
 . (13)

Recall that c(λ) = 1
s

∑s
i=1 gi(λ), so ∂c(λ)

∂λj
=

1
s

∑s
i=1

∂gi(λ)
∂λi

. As gi(λ) = e−λ
Twi , we have

∂gi(λ)

∂λj
= −e−λ

Twiwij . (14)

Hence, continuing (13), we have

E[‖∇f(λ)‖2] ≤ 1

s2
E

 d∑
j=1

(
s∑
i=1

e−λ
Twiwij

)2


≤ 1

s2
E

 d∑
j=1

(
s∑
i=1

e−wijλjwij

)2


≤ 1

s2
E

 d∑
j=1

(
s∑
i=1

e−wijrwij

)2


=
1

s2

d∑
j=1

E

( s∑
i=1

e−wijrwij

)2
 . (15)

In the above inequalities we used the facts that wij , λj are
positive and λj ≥ r.

By our assumption, wij are i.i.d. variables with density
q. Hence the expectations in the summand above are iden-
tical. Let ν be a random variable with density function q.
We have

E[‖∇f(λ)‖2] ≤ d

s2
E

( s∑
i=1

e−νirνi

)2
 . (16)

Expanding the last inequality and using Jensen’s inequal-
ity, we have

E[‖∇f(λ)‖2] =
d

s2

(
sE[(e−νrν)2] + (s2 − s)(E[e−νrν])2

)
≤d · E[e−2νrν2]

=dLq,r . (17)

By Markov’s inequality, we have

P{‖∇f(λ)‖2 > ε2/4γ2} ≤ 4γ2Lq,r/ε
2 . (18)

Overall, with probability at least 1−2
(

16R
γ

)d
e−sε

2/2−
4γ2Lq,r/ε

2, the two events will hold simultaneously. By
setting γ = (16R)

d
d+2 (2e−sε

2/2γ2Lq,r)
1
d+2 , and since

Lq,rR > ε, the success probability is at least

1− 26

(
R2Lq,r
ε2

)2

e−
sε2

d+2 . (19)

The second part of the theorem follows by fixing the fail-
ure probability and solving for s.

A.2. Proof of Lemma 6

By the definition of Lq,r, we have

Lq,r = E[e−2wrw2]

=
β

2
√
π

∫ ∞
0

e−2wrw2w−
3
2 e−β

2/4wdw

=
β

2
√
π

∫ ∞
0

e−2wr−β2/4ww
1
2 dw

=
β

2
√
π
c

3
2

∫ ∞
0

e−(2rc)(w+1/w)w
1
2 dw

=
β

4

√
2rβ + 1

(2r)
3
2 e
√

2rβ
. (20)

Above, c = β
2
√

2σi
and we use the fact that∫

e−a(x+1/x)x1/2dx

= −
√
πe−2a

4a3/2

(
(2a+ 1)erf(

√
a(1/
√
x−
√
x)
)
−

√
πe−2a

4a3/2

(
(2a− 1)e4aerf(

√
a(1/
√
x+
√
x))
)
−

√
xe−a(x+1/x)

a
+ C . (21)



A.3. Proof of Lemma 7

Let φ(σ) = e−β
∑d
i=1

√
σi . It is easy to verify that for ρ =

ε2/d2, we have |φ(σ + ρ)− φ(σ)| < ε for σ ∈ Rd+. Hence,
for δ = ε2

4d2 we have |k(x, z)−k(x+δ, z+δ)| < ε/2. Now,
applying Lemma 5 to the set M + δ shows that with the
specified probability, |k(x+δ, z+δ)−c(x+δ, z+δ)| < ε/2.
The bound now follows from (6).

A.4. Proof of Lemma 8

By the definition of Lq,r, we have

Lq,r = E[e−2wrw2]

= λ

∫ ∞
0

e−2wre−λww2dw

= λ

∫ ∞
0

e−(2r+λ)ww2dw

=
2λ

(λ+ 2r)3
. (22)

In the above, we use the fact that∫
eaxx2dx =

eax(a2x2 − 2ax+ 2)

a3
+ C . (23)
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