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Abstract

We present a machine-learned ranking approach for au-
tomatically enhancing the color of a photograph. Unlike
previous techniques that train on pairs of images before and
after adjustment by a human user, our method takes into
account the intermediate steps taken in the enhancement
process, which provide detailed information on the person’s
color preferences. To make use of this data, we formulate
the color enhancement task as a learning-to-rank problem
in which ordered pairs of images are used for training, and
then various color enhancements of a novel input image can
be evaluated from their corresponding rank values. From
the parallels between the decision tree structures we use
for ranking and the decisions made by a human during the
editing process, we posit that breaking a full enhancement
sequence into individual steps can facilitate training. Our
experiments show that this approach compares well to ex-
isting methods for automatic color enhancement.

1. Introduction
With the growth of digital photography, photo retouch-

ing tools have come into common use, as they provide an
effective way to improve the visual quality of images. Re-
touching large sets of images with software tools such as
Adobe Photoshop, however, can be complicated and time-
consuming for amateur photographers with little experience
in photo editing. This problem underscores the need for au-
tomatic photo enhancement tools. Enhancements can target
various aspects of a photograph, including its content, com-
position and color. We focus in this work on image color,
which has a significant impact on a photo’s appearance.

Recent methods for enhancing the color of digital pho-
tographs have utilized image pairs for training, where each
pair consists of an image before and after color adjustment
by a human user [6, 11, 3, 4]. With such a training set, a
regression function is learned that maps the feature vector
of a pre-adjusted image to its corresponding enhancements
in color. Image features that have been used in this context
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include color histograms, bags-of-words, and spatial distri-
butions of intensity. The color adjustments to these images
have mostly been represented in terms of color parameter
changes.

In this paper, we present a new approach that learns not
only from images before and after adjustment, but also from
the process an expert photographer takes in between. As the
expert adjusts various color controls to progress from the
original to the final image, she makes a series of decisions
that gradually enhance the color in the photograph, as illus-
trated in Fig. 1. For example, at one point in the process
she may decide to change the color saturation of the image
by decreasing it a certain amount, and then next she may
choose to increase contrast to particular value. As the edit-
ing continues, a given color control may be adjusted multi-
ple times at different points in the sequence. The steps that
are taken in this manual optimization process shed light on
the coloring preferences of the photographer, and we aim in
this work to take advantage of this information.

This information, however, is challenging to incorporate
into the regression frameworks of recent color enhancement
methods. One reason is that each intermediate step itself
does not bring an image to its final state. Though apply-
ing a regression function in an iterative manner may bring
an image towards a solution, there is no guarantee of con-
vergence, particularly for images that are distant from the
training images in the image feature space. Another reason
is that applying a sequence of intermediate steps may have
some susceptibility to error accumulation for the approxi-
mate mappings provided by a regression function.

To benefit from this intermediate data, we propose to
treat color enhancement as a learning-to-rank (LTR) prob-
lem. In LTR, the goal is to automatically construct a ranking
model from training data consisting of partial ordering in-
formation among a set of training elements. Ranking is a
central component of many information retrieval (IR) sys-
tems, where a query is given and the most relevant elements
are returned in ranked order. More specifically, IR models
learn an association of different values to different elements
according to their relevance to a query, and these values in-
duce a ranking among a set of elements. For our application
of color enhancement, we adapt this approach by using the
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Figure 1. A sequence of enhancement steps by an expert photographer.

feature vector of the input image as the query, and evalu-
ate possible color enhancement solutions according to their
ranking values. We employ a pairwise approach [15] for
rank learning, in which the training data consists of element
pairs with an ordering given between the elements of each
pair. For our case, the element pairs are the image feature
vectors from the intermediate steps of the expert photog-
rapher’s enhancement process (e.g., before and after each
color adjustment step). In addition, other ordered pairs that
can be inferred from the optimization sequence are included
for training. To obtain the enhancement result, we sample
various series of color adjustments on the input image and
take the one that yields the highest rank value.

The LTR method employed in our work is Multiple Ad-
ditive Regression Trees (MART) [8], a boosted prediction
model formed from an ensemble of decision trees. We note
an interesting parallel between a human’s enhancement pro-
cess and the operation of decision trees. In the enhancement
process, the human makes a series of decisions on what
color adjustment to apply, depending on the current appear-
ance of the photograph. Analogously, traversal down a de-
cision tree involves decisions at each node on which branch
to take, based on the attribute values of the input. We hy-
pothesize that the training pairs of ordered feature vectors
in our work may be well-suited for MART learning because
of the similar nature of their intermediate decisions.

In comparison to other regression-based color enhance-
ment methods, our LTR approach has the advantage of uti-
lizing greater data from a given training image, which can
be especially beneficial in this application where training
sets often provide only a sparse sampling over the space
of image feature vectors. We moreover believe that the
step-by-step data from an enhancement sequence represents
more manageable chunks for training than the conventional
image pairs before and after the full series of various ad-
justments. In our experiments, the effectiveness of this ap-
proach is supported through comparisons with state-of-the-
art color enhancement techniques.

2. Related Work
Various techniques have been proposed for automatic

color enhancement or correction. In the area of color con-
stancy, there exist many works that seek to remove the color
cast of an image, which is caused by the color of the scene’s
lighting. Such methods often employ certain assumptions
about scene color, such as the gray-world model [7] or gray-
edge hypothesis [20]. Rather than removing color casts, our
work aims to improve the perceptual appeal of a photograph
through color enhancements.

Numerous methods have also been presented for improv-
ing image quality through changes in tone. Most of them
specifically target the conversion of high dynamic range
(HDR) images into a low dynamic range (24-bit RGB) suit-
able for conventional display devices [18]. These HDR tone
mapping techniques have also been used to enhance local
contrast in standard RGB images. Bychkovsky et al. [3]
presented a method for learning global tonal adjustments
from a database of input-output image pairs. Different from
the more general problem of color enhancement, tone map-
ping deals only with manipulating the luminance channel,
mainly for the purpose of improving contrast.

For improving image color, content-aware approaches
have applied enhancements targeted to specific objects or
regions in a photograph. For example, Kaufman et al. [12]
detect and enhance the appearance of human faces, blue
skies with or without clouds, and underexposed salient
regions. Berthouzoz et al. [1] transfer photo manipula-
tions learned for particular types of image regions. While
these methods effectively enhance areas that contain the
targeted content, they rely heavily on accurate detec-
tion/segmentation of landmarks or regions, and may pro-
vide only basic adjustments such as detail enhancement to
other image regions. Instead of operating on particular re-
gions, Hwang et al. [9] determine pixel-level adjustments
based on local scene descriptors. Since this approach lacks
the high-level scene context of content-based methods, the
local decisions that are made may not be correct in a global
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Figure 2. An overview of our learning-to-rank approach for image color enhancement.

sense.
More closely related to our work are global image en-

hancement methods guided by training images. Dale et
al. [6] restore images by finding the closest images in a large
database, generating an intermediate solution by transfer-
ring the color distributions of corresponding regions, and
then determining the restoration operations that bring the
input image closest to this intermediate solution. Kang et
al. [11] use an examplar-based method that searches for the
closest image in a database in terms of enhancement param-
eter similarity, and then applies its enhancement parameters
to the input image. The enhancement is tailored to a given
individual, since the database is trained for personal use.
The idea of personalized enhancement is advanced further
by Caicedo et al. [4], who propose collaborative filtering for
revealing clusters of user preferences. In our work, color
enhancements are learned from an individual expert pho-
tographer, though we believe that the approach we present
here may also benefit from personalization.

3. Approach

We treat the color enhancement process as a search for
the most visually appealing image after a series of color pa-
rameter adjustments. To model this, we regard the feature
vector of the input image as a query, and sample various
sets of parameter adjustments to find the one that yields a
feature vector with the best enhancement result. The en-
hancement quality of a feature vector is determined from
a learning-to-rank model trained on the recorded enhance-
ment processes of an expert photographer on a large dataset
of images. Figure 2 presents an overview of our approach.

3.1. Dataset

We collected a dataset that includes about 1,300
expertly-enhanced images from six different categories,

namely animal, architecture, human, landscape, man-made
object, and plant. The number of images recorded in these
categories is 130, 297, 351, 308, 106 and 121, respec-
tively. An example from each category is displayed in
Fig. 3. Detailed information on the manual enhancement
process of an expert photographer is also recorded for each
image. This data is collected from a user interface, shown
in Fig. 4. On the left side of the interface is the input im-
age, which is updated as the photographer makes adjust-
ments to color parameters. On the right side are ten slide-
bars for manipulating these parameters, which correspond
to ten popular color controls: Contrast for adjusting the
contrast of the image; Brightness for adjusting the over-
all image brightness; Saturation for adjusting the satura-
tion of colors throughout the image; Shadow for adjusting
the darkness of shadows; Highlight for adjusting highlight
brightness; Red for adjusting the red component; Green for
adjusting the green component; Blue for adjusting the blue
component; Sharpen for adjusting the level of sharpness;
and Hue for globally adjusting the hues in the image. We
record the movements of each slider, including the incre-
mental time spent at each position within the slider range
during movement.

3.2. Extraction of Ordered Pairs

To obtain data that reflects the user’s decision process,
we extract ordered pairs of image feature vectors based on
the movements of the sliders. These ordered pairs are deter-
mined according to a couple of basic rules:
a. As a slider is moved around to adjust an image, we

record each point at which it stops or changes direc-
tion. For the images that correspond to these points, we
have a sequence of feature vectors, (va1, va2, ..., van).
Since the feature vector of the final position (van)
should be higher in ranking than those from other
positions, we generate the following ordered pairs:
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Figure 3. Example training set photos. Top row: Original photos.
Bottom row: Photos after manual enhancement by an expert pho-
tographer. The intermediate steps of the enhancement process are
recorded as well.

Figure 4. User interface for data collection.
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Figure 5. Illustration of implicit human decisions during slider
movement, as described in Sec. 3.2.

{(van > va1), (van > va2), ..., (van > va(n−1))}. If
the same slider is adjusted again later, an additional
sequence is produced and also used for extraction of
additional ordered pairs. Moreover, the final feature
vector should be higher in ranking than those for slider
positions not examined by the user. Ordered pairs that
correspond to this are added for ten evenly sampled
slide bar positions within its total range.

b. At each change in slider direction, the human expert im-
plicitly decides that the new direction is better than the
point at which the change is made. To model this, we
include an ordered pair {(vb2 > vb1)} as illustrated
in Fig. 5, where the point b2 is displaced from b1 in
the direction of change by an amount equal to 5% of
the total slider range. Likewise, a decision is made
when the user hesitates at a position d1 (for an amount
of time greater than a prescribed threshold) and then
moves the slider in one direction (past point d2). For
such cases, we include the ordered pair {(vd2 > vd1)}
as shown in Fig. 5. For both cases, an exception occurs
if point b1 or d1 is passed again later in the adjustment

sequence, since the ordered pair then loses its validity.
The pair is discarded in such instances.

3.3. Pairwise Rank Learning

With the extracted ordered pairs {(vg1 > vb1), (vg2 >
vb2), ..., (vgn > vbn)}, we use Multiple Additive Regres-
sion Trees (MART) [8] to train a ranking model. This pair-
wise training minimizes the loss function:

L(F (x), y) =
n∑

i=1

l(sign(ygi−ybi), f(xbi)−f(xgi)) (1)

where xbi is the feature vector of the image with parameter
value vgi, ygi is the label of feature xgi, and ygi > ybi in
our case where the order within pairs is known.

In MART, the decision tree structure, where at each
node a decision is made on which branch to follow, resem-
bles the enhancement process of humans, in which deci-
sions are made on whether to adjust a slide bar to the left
or right. This similar operating principle may potentially
help MART to more accurately model the human’s pro-
cess, as indicated in comparisons of MART to other pair-
wise learning-to-rank algorithms (RankSVM and RankNet)
in Sec. 4.

Since categorization provides some high-level infor-
mation about an image and has been shown to improve
learning in the related problem of photo quality assess-
ment [13][16][19], we conduct our training and testing on
the separate categories of the image dataset.

3.3.1 Color Features

For describing the color characteristics of an image, we
extract a set of color features. In this feature representa-
tion, we include not only global properties, but also sepa-
rate color properties of the image foreground, image back-
ground, and human faces (if any), since these regions have
their own distinct influences on the visual perception of an
image.

The extracted color features are listed below:
- Foreground Histogram and Moments We extract the
foreground of an image using the method described in [5].
As claimed in [14], the combination of a color histogram
and color moments is more descriptive than an individual
color descriptor. So we use both a histogram in HSV space
(12 bins) and moments in RGB space to describe the fore-
ground color.
- Background Histogram and Moments Similar to the
foreground color descriptor, we also use an HSV histogram
(6 bins) and RGB moments as color features of the back-
ground.
- Face Histogram and Moments We employ the face de-
tector of [21] to locate face regions in an image. The com-
bination of an HSV histogram (6 bins) and RGB color mo-
ments is used as a descriptor. When there is no face in



the image, we instead compute the histogram and moments
over the entire image as done in [3].
- Clipped Pixels An important consideration in color en-
hancement is the amount of clipping of highlights and shad-
ows. For this, we compute the percentage of pixel values
that are clipped.
- Brightness Range We calculate the range of image inten-
sity values in the foreground, background, and face regions.
- Spatial Distributions of Brightness The distribution of
brightness over an image has an effect on visual perception.
For this, we use the 2D spatial Gaussian model of [3], fit to
four intensity intervals but with four bins instead of ten.
- Sharpness The sharpness of an image reflects the magni-
tude of local color differences. We model an image’s sharp-
ness as done in [17], by taking the ratio of the region’s high
frequency power to its total power:

fsharpness =
||C||
||R||

(2)

where R denotes the whole image, C = {(u, v) :
|F (u, v)| > θ} for a predefined threshold θ, and F =
FFT (R).

3.4. Sampling of Parameter Sequences

The trained ranking model outputs a rank score for the
feature vector of any given image. To obtain an enhance-
ment result, we take the input image and sample various
sets of color parameter adjustments to generate a set of en-
hancement candidates. The candidate whose feature vector
results in the highest score is taken as the final color en-
hancement result.

There are different ways to sample sequences of param-
eter adjustments. One method is to uniformly sample the
space of parameter values (i.e., with each axis of the space
representing one of the adjustable color parameters), and
then compute each candidate by applying the parameter
changes in a pre-specified order. But since the number of
samples generated in this way would be exponentially re-
lated to the number of color properties, we instead opti-
mize for each parameter sequentially, with the training set
used to guide the sampling. Specifically, we first take the
K = 10 nearest neighbors in the training set to the input
image in terms of L2 distance in our color feature vector
space. Then for the first color parameter, we compute from
the K images a weighted sum of time distributions, which
record the amount of time spent at a given slider position
within its range. The time distributions among the K=10
nearest neighbors to the input image are weighted inversely
proportional to their L2 distance from the input image in
the color feature vector space. The sum of these weighted
time distributions gives a weighted average time distribu-
tion from which we sample parameter values. We uniformly
sample the inverse cumulative distribution function because
this yields denser sampling around values on which more

time is spent. (Since the user spent more time around these
values, we consider them to be more significant in decision-
making, and thus we extract more samples around them.)
And then we find which of the sampled values leads to the
best image, by applying them and evaluating the resulting
image with the ranking model. This process is repeated for
each of the color parameters in the order they appear on the
user interface, and we reiterate through all the parameters
until the parameter change drops below a threshold.

4. Experiments
To assess our technique, we conducted comparisons of

our results to those of alternative methods. A total of 124
test images were randomly selected from multiple image
categories of our dataset, with none of the test images used
in training. Of these, there were 25 images compared to the
automatic image enhancer of Google’s Picasa, and 24 im-
ages compared to the recent technique of Hwang et al. [9],
whose results were generated from code provided by the
authors. Another 25 images were used in a comparison of
our method trained separately on different categories and
trained jointly on all the categories together. The remain-
ing 50 images were used to compare our MART-based im-
plementation to versions of our method using two other
pairwise ranking algorithms, namely RankSVM [10] and
RankNet [2], with 25 images for each comparison.

4.1. L2 Error Comparison

In Table 1, we report a comparison of results in terms of
L2 error in L*ab space. The enhancement results produced
by the expert photographer were used as the ground truth.
Our method (with category-specific training and MART)
obtains a lower L2 error than the three comparison versions
of our method: category-specific training with RankSVM,
category-specific training with RankNet, and all-category
training with MART. The table also shows lower L2 error
in comparison to Hwang et al. [9] and higher L2 error com-
pared to Picasa. We note as in [9] that L2 error with respect
to manual ground truth does not necessarily provide a good
predictor of visual quality, but is reported here for reference.
In the following subsection, a more informative comparison
based on human users is presented.

4.2. User Study

We also evaluated our method through a user study, with
34 participants in total. In the study, each user is shown the
sequence of 124 image pairs described above for the five
comparisons. Each pair is enhanced from the same original
image, with one image being the result of our method, and
the other being the result of a comparison method. The left-
right order of the images in each pair is randomized, and
the images are not labeled by their enhancement method.
The users were instructed to double-click the image they



Picasa Hwang et
al. [9]

Ours (all-
cat. MART)

Ours
(cat.-spec.
RankSVM)

Ours
(cat.-spec.
RankNet)

Ours
(cat.-spec.
MART)

L2 Error 7.0506 9.2774 8.3468 8.8010 11.7591 8.3445
Table 1. Comparison of L2 Error.
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Figure 6. Results of our user study, which include comparisons
to Picasa (Section 1, p < 0.05), Hwang et al. [9] (Section 2,
p < 0.01), our method trained with images from all categories im-
ages together (Section 3, p < 0.05), our method with RankSVM
(Section 4, p < 0.01), and our method with RankNet (Section 5,
p < 0.01).

prefer, and no time constraints were placed on making these
selections.

The result for each set of comparisons is shown in Fig-
ure 6. For each section of the user study, the graph displays
the number of times a given method’s enhancement result
was selected as the better choice. In this comparison, our
method trained for individual categories outperforms the
other techniques. The study also indicates a slight prefer-
ence for category-specific training of our method over the
training using images from all categories together. A strong
preference is shown for our method with MART over the
versions with RankSVM or RankNet. To indicate the statis-
tical significance of this study, paired t-test values are given
for each comparison.

5. Discussion
Comparisons to other methods From the user study, it
was found that users have some preference for the color en-
hancements of our method over those of Picasa and Hwang
et al. [9]. Some example results are shown in Figure 7.
We observed that Picasa tends to make relatively conserva-
tive color adjustments, with changes mostly to contrast and
brightness. This may limit to some degree the range of en-
hancements obtainable by Picasa. In the results of Hwang
et al. [9], we saw a trend towards brightening the images,
which at times may lead to some apparent loss of contrast.
Since the technique does not include contrast adjustment in
its model, a tradeoff in contrast may exist for certain color
changes. It may be noticed from the results that our ex-
pert photographer tends to favor some boost in the red com-
ponent for plant and landscape scenes. Though the users
in our study appear to generally support such changes, we
note that this might not be agreeable to some. These per-

sonal differences in color preferences could potentially be
accounted for in our method through a user clustering ap-
proach as described in [4].

The comparisons indicate some improvement of
category-specific training over that with training on all cat-
egories together. We found such categorization helpful for
images of landscape as they often contain similar elements.
For images with man-made objects, categorization appeared
to be less helpful, perhaps because of the much broader
range of color characteristics among them. We note that
the method of Hwang et al. [9], and possibly Picasa as well,
do not benefit from the high-level scene context given by
categorization. The performance of these methods could
potentially improve with category-specific training, though
the overall improvement for our method in the user study
was modest.

Example results that compare our method with different
pairwise ranking algorithms are exhibited in Figure 8. From
the user study, a clear preference for MART over RankSVM
and RankNet was found. This suggests a greater compati-
bility between the decision trees of MART and the interme-
diate decision data collected from the human user.

Training data The number of images in our dataset is
smaller than that in others (e.g., 1,300 in ours vs. 5,000
used in [9] from the MIT FiveK dataset [3]). However,
our method gathers significantly more information per im-
age than just input/output pairs. Categorization reduces the
number of these images used for training, but the included
images generally provide the most relevant data for photos
in the category. We believe that the man-made object cat-
egory in our dataset may benefit from further division into
sub-categories, due to the breadth of image content within
this class. Adding more images to that category would
likely also help.

Our method assumes that the expert photographer exer-
cises care in making the color adjustments for our dataset
images. Haphazard modifications that do not reflect mind-
ful decisions may introduce poor data into the training. Be-
cause of this, the rules in our method for selecting ordered
pairs are formulated toward including data that is likely to
be reliable. Additional rules could potentially be included
to extract a larger set of training pairs.

There are a few interesting observations that can be made
from our dataset. One is that there are significant differ-
ences among the color parameters with regard to the amount
of adjustment time spent by our expert. The parameter that
commanded the most time overall was hue, perhaps because



(a) (b) (c) (d)

Figure 7. Comparisons with existing methods. (a) Original im-
ages. (b) From Picasa. (c) From Hwang et al. [9]. (d) From our
method.

hue manipulations can lead to relatively dramatic changes
in visual appearance that require examination of each re-
gion in an image. The differences in adjustment time also
vary among the image categories. For example, our pho-
tographer spent more time in the human category on the
highlight parameter than on saturation, and vice versa for
the man-made object category. This might be because high-
lights on faces are an important cue for inferring shape and
identity, while natural-looking saturation levels are easier
to determine for human skin than for man-made objects in
general.

From the dataset, we also noticed some patterns in the
sequence that color parameters were adjusted. Our expert
appeared to be influenced by the ordering of the color pa-
rameters in the user interface, as this order was roughly fol-
lowed on many of the images, with certain sliders some-
times skipped and the user often going back through the
parameters to make additional changes. This observation
was used to order the parameter adjustments for candidate
sampling in Section 3.4. However, we also saw that some
parameters tend to be adjusted one after the other. For ex-
ample, the expert often modified contrast after changing
brightness, which could be explained by the reduction of
apparent contrast after brightening an image. A few other
parameter pairs that also were adjusted together with some
frequency are brightness after saturation, red after green,
and sharpness after hue. These pairings may arise due to
the cross-influence one color property may have on the per-
ception of another. They also suggest that color enhance-
ment by humans is driven by the current appearance of an
image, rather than just the appearance of the original im-
age, and this would make knowledge on intermediate edit-
ing steps important in modeling color enhancements by hu-
mans. Data on how people search through the color pa-
rameter space is a valuable source of information that we
capitalize on in this work.

6. Conclusion
We presented a technique for automatic image color en-

hancement that accounts for the intermediate decisions of a
human user in the color editing process. This information
is utilized by treating image enhancement as a learning-to-
rank problem, and it is indicated through our experiments
that decision tree based ranking may be particularly suitable
for our training data. The results of a user study support the
use of the intermediate data that we collected from an expert
photographer.

As our work relies on existing techniques for foreground
detection and face detection, shortcomings in these meth-
ods can degrade the quality of our results. Both of these
problems, however, have been receiving considerable atten-
tion in recent years, and further advancements in these ar-
eas should benefit our algorithm. In future work, we plan
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Figure 8. Comparisons of different versions of our method. (a)
Original images. (b) Enhancement results using our method
trained with the images from all categories together. (c) Enhanced
images using our category-specific method with RankSVM.
(d) Enhanced images using our category-specific method with
RankNet. (e) Our results with MART and category-specific train-
ing.
to investigate other color features for image representation,
and consider local color enhancements in addition to our
global adjustments. We also would like to gather and study
the color enhancement data of other expert photographers,
for the purpose of personalizing color enhancements and
to gain additional insight into the enhancement process of
people.
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