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Abstract

In this paper, we present a novel method to synthe-
size dynamic texture sequences from extremely few samples,
e.g., merely two possibly disparate frames, leveraging both
Markov Random Fields (MRFs) and manifold learning. De-
composing a textural image as a set of patches, we achieve
dynamic texture synthesis by estimating sequences of tem-
poral patches. We select candidates for each temporal patch
from spatial patches based on MRFs and regard them as
samples from a low-dimensional manifold. After mapping
candidates to a low-dimensional latent space, we estimate
the sequence of temporal patches by finding an optimal tra-
jectory in the latent space. Guided by some key proper-
ties of trajectories of realistic temporal patches, we derive
a curvature-based trajectory selection algorithm. In con-
trast to the methods based on MRFs or dynamic systems
that rely on a large amount of samples, our method is able
to deal with the case of extremely few samples and requires
no training phase. We compare our method with the state of
the art and show that our method not only exhibits superior
performance on synthesizing textures but it also produces
results with pleasing visual effects.

1. Introduction
Dynamic texture synthesis has many applications includ-

ing graphics rendering [26, 19], video analysis [4], interpo-
lation [14, 9, 27] and compression [1]. This problem has
been widely studied from a number of perspectives in the
past [10, 14, 9, 29, 26, 12, 19]. However, even the best ex-
isting methods still exhibit an obvious limitation — none of
them can cope with the situation when there are only ex-
tremely few samples available, which characterizes several
important practical applications. For example, we might
capture two images of a dynamic scene at different times.
How to synthesize a long realistic image sequence between
these two frames is still a challenging open problem. In con-
trast to the problem of synthesizing a long sequence from a
large number of frames [29, 19], the temporal information
of the texture is completely lost in this case, and no external

Figure 1. Overview. The synthesis process includes: 1) select-
ing candidates for temporal patches based on MRFs; 2) selecting
trajectory for temporal patches based on manifold learning.

dataset can be readily used. Our goal is to fill this gap by
developing algorithms that can synthesize long image se-
quences for natural dynamic textures merely from the first
and last frames. The developed techniques will have poten-
tial applications in video interpolation, video hallucination
and computer graphics.

Illustrated in Fig. 1, we synthesize dynamic textures by
estimating the sequences of in-between temporal patches.
Our approach is driven by two key questions: how to find
good estimates for temporal patches and how to decide their
temporal order? To this end, we select candidates locally for
the sequence of temporal patches from the given source im-
ages. To each sequence of temporal patches, its candidates
are assumed to be on a low-dimensional manifold, and then
the estimation and the permutation of the temporal patches
is equal to finding an optimal trajectory in the latent space
defined by the low-dimensional manifold.

We treat the selection of candidates as a patch match-
ing task based on measuring the spatio-temporal similarity
between patches. For synthesizing a long sequence of tem-
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poral patches, we search candidates simultaneously along
both the forward and backward directions of the sequence.
The search regions are local regions of the two given source
images. This strategy allows us to find the candidate simi-
lar to its spatial and temporal neighbors quickly. To avoid
over-smoothing of the generated images, we select multi-
ple candidates and update the set of samples (sampled from
the search regions) for each temporal patch. After select-
ing the candidates, we construct a graph over the candidates
which contains a trajectory corresponding to the estimated
sequence of temporal patches. We analyze the properties
of the trajectory in the latent space with the help of man-
ifold learning [30]. The key observation reflects that the
step length of trajectory is small while the direction of the
trajectory is oscillatory. Guided by this two critical prop-
erties, we propose a curvature-based trajectory selection al-
gorithm, which jointly optimizes the step length and the di-
rection. Finally, candidates corresponding to the selected
trajectory are stitched orderly in synthesized frames.

We evaluate our approach using the DynTex dataset [20]
which contains multiple challenging dynamic textures from
natural scenes. Given just two disparate frames, our method
is still able to synthesize visually pleasing dynamic textures.
We investigate the effect of parameters and find the optimal
configuration of parameters based on quantitative analysis.
We demonstrate that our method captures the dynamic of
texture, and exhibits substantial improvement over the state
of the art methods. Further, results on generating transi-
tions between totally different images illustrate the broader
applicability of our method in image morphing.

Our contribution is to synthesize dynamic texture from
few samples without a time-consuming training phase us-
ing a manifold-based approach, which is not available for
other existing methods. We creatively partition the synthe-
sis process into the candidate selection phase and trajectory
selection phase. Specifically, we propose a curvature-based
trajectory selection algorithm for deciding optimal temporal
patches and their order, which is a new strategy for dynamic
texture synthesis.

Related Work. Synthesis methods relying on MRFs are
popular in practice. They achieve texture synthesis by patch
matching. In the early works [11, 10], the patch match-
ing is based on the illuminance of patches. The follow-
ing works [14, 26, 12, 1, 19] take the rotation, the scale,
the gradient and the structural information of the patch into
account. In the case of dynamic texture, the patch match-
ing is extended to be spatio-temporal block matching. Dif-
fering from MRFs, dynamic system (DS) based methods
view dynamic texture as a dynamic system controlled by
low-dimensional latent variables. These methods firstly es-
timate latent variables by linear [9, 29] or nonlinear [7, 17]
dimension reduction algorithms. Then they establish the
status equation of latent variables and the mapping from la-

tent variables to samples by parametric [9, 29, 21] or non-
parametric models [17]. As a result, given latent variables,
textures can be synthesized. Although these methods get
encouraging synthesis results, none of them can cope with
the case of few samples. For MRFs based methods, even
the state of the art needs at least several consecutive frames
[19] or external dataset [26] for synthesis. On the other
hand, the feasibility of DS based methods [9, 29, 21, 17]
is more questionable. These methods generally need a se-
quence containing hundreds even thousands of frames for
training the model. What is worse, for different dynamic
textures we have to train their DS models respectively.

Image morphing methods are also used for synthesis
problems. The methods in [24, 2, 23, 5] achieve synthesis
by bi-directional similarity (BDS) based patch matching —
the distance between the patch of source image and the syn-
thesis result and the distance between the patch of synthesis
result and the source image are minimized iteratively. Al-
though these methods can synthesize a sequence from two
images, they often lead to over-smoothness in the case of
dynamic texture. Methods for computing diffeomorphic de-
formations between images are proposed in [3, 8, 22, 28].
Unfortunately, transitions between textures are not diffeo-
morphic in general, and can not be synthesized by [3, 8, 22].

2. The Analysis of Temporal Patches
Given two texture images I1 and IT , we want to syn-

thesize the in-between {It}T−1t=2 . An arbitrary patch in It,
t = 1, ..., T , is denoted as pt(x) ∈ Rs2 , where x is the co-
ordinate in the image and s is the size of patch. Our goal is
to estimate temporal patches {pt(x)}T−1t=2 for each x.

2.1. Matching Temporal Patches Locally

Because dynamic textures have local self-similarity (the
basic assumption of MRFs), we can find a good estimate of
pt(x) locally in the source images. We did a verification
experiment to prove the feasibility of matching temporal
patches locally. For each x, define search regionsR1(x) and
RT (x) in I1 and IT respectively. Given pt(x), we searched
its matching patch inR1(x) andRT (x), and then calculated
the energy of the matching error. The relative matching er-
ror is measured by the proportion between the energy of the
matching error and the energy of pt(x), and the average rel-
ative error is the average of all relative matching errors. We
measured average relative errors for different configurations
of the patch size1 and the sequence length using the DynTex
dataset [20]. The results are shown in Table 1. Even if we
choose large patch size (e.g., s = 13), the average relative
error is still smaller than 11%. In other words, we are able to
find a patch in R1(x) or RT (x) matching well with pt(x).

1In our work, we choose the radius of search region is the twice of the
radius of patch.



Table 1. Average Relative Errors (%) of Patch Matching
s = 5 s = 7 s = 9 s = 11 s = 13

T = 5 04.53 05.73 06.52 07.59 08.01
T = 10 05.21 06.93 07.35 08.68 09.69
T = 20 05.97 07.50 08.15 09.63 10.29
T = 30 06.36 07.61 08.66 09.94 10.56

2.2. The Dynamics of Temporal Patch Sequences

After sampling R1(x) and RT (x) with overlap, we
obtain a set of patches S containing the estimate of
{pt(x)}T−1t=2 . Now, two problems are still left to be tack-
led: 1) not all patches in S are useful for synthesizing
{pt(x)}T−1t=2 ; 2) even if we find the useful patches, the
temporal order of them is still unknown. In [7, 15], it is
shown that textural patches are approximated well by a low-
dimensional manifold, and we model patches of textures
based on a manifold whose samples include p1(x), pT (x)
and S. According to Section 2.1, {pt(x)}T−1t=2 can be es-
timated by a trajectory on the manifold connecting p1(x)
with pT (x). So, the two problems above are equivalent to
finding an optimal trajectory on the manifold.

The definition of optimality in our work is based on the
assumption that an optimal trajectory should have the prop-
erties of real trajectories corresponding to the sequence of
temporal patches. After analyzing the DynTex dataset, we
conclude that the step length of real trajectories is small
and its direction is oscillatory in most situations. To il-
lustrate these two properties, Fig. 2 presents several typi-
cal examples. Using the Local-Tangent-Space-Alignment
(LTSA) algorithm [30], we visualize the temporal patches
in 2D latent space and mark the trajectories by a series of
arrows. Although the four dynamic textures in Fig. 2(a) are
very different from each other, their trajectories of tempo-
ral patches in the latent space share several general proper-
ties. In Fig. 2(b), the patches having different structures are
clustered separately in the latent space. This phenomenon
shows that the direction of the trajectories (the angles of ar-
rows in the plane) to be quite oscillatory and the step length
of trajectory to be small in most situation. In Fig. 2(c), the
directions of the arrows is plotted as blue curve. We can find
that the directions of trajectories changed frequently. On the
other hand, we plot the normalized step length of trajectory
as stems. The green stems represent the steps smaller than
1% of the total length of the trajectory while the red ones
represent the steps larger than 1%. We can find that most of
steps are small while only few large steps correspond to the
“jumps” from a cluster to another.

3. The Proposed Method
According to the analysis in the former section, the prop-

erties of temporal patches can be summarized as follows:
1) temporal patches can be estimated by spatial patches

Figure 2. (a) The sequences of temporal patches are shown as
zigzag patterns, each of which is obtained from 100 frames of the
corresponding dynamic textures. (b) The 2D visualization of tem-
poral patches is shown, in which arrows mark the trajectory of the
latent variables. Some latent variables are labeled by the corre-
sponding patches. (c) The direction and the normalized step length
of the trajectory are plotted.

locally; 2) the trajectory of temporal patches in the latent
space has small step length and oscillatory directions. Tak-
ing advantages of these two properties, we propose a mani-
fold based algorithm for dynamic texture synthesis.

3.1. Candidate Selection

Given I1 and IT , we are always able to find a coordinate
x̂ where the residual ‖p1(x̂) − pT (x̂)‖ is minimum. The
initialization of our method is synthesizing {pt(x̂)}T−1t=2 by
following linear interpolation,

pt(x̂) = [(T − t)p1(x̂) + (t− 1)pT (x̂)]/(T − 1).

Given {pt(x̂)}T−1t=2 , the overlapped part between pt(x̂)
and its neighbor pt(x), denoted as qt(x) ∈ Rm, is known.
Then, for each pt(x) we select K candidates from S ac-
cording to following spatio-temporal similarity. Spatial
similarity: define a matrix M ∈ Rm×s2 indicating the



elements of pt(x) corresponding to qt(x). If s ∈ S is a
candidate of pt(x), Ms should be similar to qt(x). Tem-
poral similarity: the candidates of pt(x) should be similar
to the candidates of pt−1(x) or pt+1(x). We propose our
candidate selection algorithm with details in the following
table. For the convenience of representation, we omit the
coordinate x in the algorithm and following analysis.

Algorithm 1: Candidate Selection
Inputs: p1, pT , {qt}T−1t=2 , S.
Outputs: candidates {ct,k}.
Create two sets S1 = S, ST = S.
For k = 1 : K

c2,k = mins∈S1
{ s

2

m‖Ms− q2‖22 + ‖s− p1‖22} (1)
cT−1,k = mins∈ST { s

2

m‖Ms− qT−1‖22 (2)
+‖s− pT ‖22},

S1 = S1 \ ct,k, ST = ST \ cT−t+1,k.
End
For t = 3 : T/2

For k = 1 : K

ct,k = mins∈S1{ s
2

m‖Ms− qt‖22 (3)
+ T−t
K(T−1)

∑K
k=1‖s− ct−1,k‖22

+ t−1
K(T−1)

∑K
k=1‖s− cT−t+2,k‖22},

cT−t+1,k = mins∈ST { s
2

m‖Ms− qT−t+1‖22 (4)
+ T−t
K(T−1)

∑K
k=1‖s− ct−1,k‖22

+ t−1
K(T−1)

∑K
k=1‖s− cT−t+2,k‖22},

S1 = S1 \ ct,k, ST = ST \ cT−t+1,k.
End
If #{S1} < K, S1 = S.
If #{ST } < K, ST = S.

End

Here, we use ct,k to represent the kth candidate of pt.
S1 and ST are sample sets for selecting candidates along
forward and backward directions respectively. We find can-
didates for p2 and pT−1 by Eq. (1) and Eq. (2). In each
equation, the first term corresponds to the residual in the
overlapped region, and the second term corresponds to the
residual between the candidate and the source patch. These
two terms measure the spatial and the temporal similarity
respectively, whose importance is leveraged by the weight
s2

m . The candidates of {pt}T−23 are selected by Eq. (3) and
Eq. (4). The spatial similarity is still measured by the resid-
ual in the overlapped region, while the temporal similarity is
measured by the residual between the candidates and exist-
ing candidates selected in the former iteration. The weight
of the residual between candidates is proportional to the
temporal distance between them. In summary, the proposed
algorithm takes advantages of spatio-temporal similarity to
select candidates for the sequence of temporal patches.

It should be mentioned that we update sample sets S1

and ST during the iteration. Samples having been selected

as candidates will be removed from set so that they will not
be used repeatedly. Only when the size of set is too small
to find candidates do we update the set by original S. This
update strategy preserves the dynamics of temporal patches.

3.2. Trajectory Selection

3.2.1 Manifold Learning for Candidates

According to the candidate selection algorithm above, each
candidate is connected with its forward and backward
neighbors, which can be described by the graph G in Fig. 3.
The distance between candidates is measured by a distance
matrix D, whose element is

D(i, j) =

{
‖ci − cj‖2, ci links to cj ,
0, otherwise,

i, j ∈ {(t, k)}.

For the convenience, we default to use i or j to represent the
tuple (t, k) for candidates in the following content.

Figure 3. The graph G of candidates.

According to Section 2.2, {pt}Tt=2 can be synthesized
by finding a trajectory from p1 to pT in graph G. Facing
up to KT−2 potential trajectories, we need a criterion for
trajectory selection. Although selecting the shortest path
according to D seems to be a reasonable choice, it results
in an over-smoothed trajectory, which is insufficient to re-
flect the oscillation of trajectory. So, we derive a trajectory
selection algorithm based on manifold learning.

Suppose that candidates are samples on a manifold, the
relationship between ci and its latent variable yi ∈ Rd (d�
s2) is described as follows,

ci = f(yi) + e,

where f is a nonlinear bijection mapping and e is sample
noise. Denote the N neighbors of ci as Ci, the correspond-
ing N neighbors of yi as Yi. We can get the linear approx-
imation of f at ci by following Taylor expansion.

Ci − ci1
T = Ji(Yi − yi1

T ) + o(‖Yi − yi1
T ‖F ).

Here Ji ∈ Rs2×d is the Jacobian matrix of f at yi, whose
columns span the local tangent space on the manifold. 1 is
a vector whose elements are all equal to 1.

Assume the noise e is with i.i.d. homogeneous Gaussian
distribution, Ji can be estimated by minimizing following
objective function,

‖(C̃i − JiỸi)W‖F , (5)



where C̃i = Ci−ci1T and Ỹi = Yi−yi1T . W ∈ RN×N
is a diagonal matrix indicating the importance to minimiz-
ing the error. We choose the element of W as follows,

wn = exp(−‖cni − ci‖22/σ2), (6)

where cni is the nth neighbor of ci. According to [30],
Eq. (5) can be solved efficiently as follows,

Ĵi = argmax
Ji

‖JTi C̃iWWT C̃T
i Ji‖∗ (7)

s.t. JTi Ji = I.

‖·‖∗ is the nuclear norm of matrix, which calculates the sum
of singular values. The solution is the largest d eigenvectors
of the matrix C̃iWWT C̃T

i .
For adjacent candidates ci and cj , the change of their

tangential directions can be measured by the principal an-
gle between their Jacobian matrices. Letting Ji = QiRi

and Jj = QjRj be the QR-factorization, the principal an-
gle, denoted as α(i, j), is calculated as the arc cosine of the
largest singular value of QT

i Qj . So, we can further define
an angle matrix A, whose element is

A(i, j) =

{
α(i, j), ci links to cj ,
0, otherwise,

i, j ∈ {(t, k)}.

3.2.2 Curvature Based Trajectory Selection

Denote a trajectory of candidates asP = {i1, ..., iT }, where
it represents the index of candidate on the trajectory. The
information of its step length and direction is in the distance
matrix D2 and the angle matrix A respectively. Define the
length and the integrated principal angle of P as follows,

Angle(P) =
∑T

t=2
|A(it−1, it)|,

Length(P) =
∑T

t=2
D(it−1, it).

We already know that an optimal trajectory should have
small steps and its direction should change frequently.
This requires us to minimize Length(P) and maximize
Angle(P) simultaneously. In our work, we achieve this aim
by minimizing following objective function,∑T

t=2

D(it−1, it)

|A(it−1, it)|β + ε
, (8)

where ε avoids the case of zero denominator. β is a non-
negative parameter achieving a trade-off between the in-
fluence of step length and that of principal angle. Define
D(i,j)

|A(i,j)|β+ε as the weight of edge in the graph G, then min-
imizing Eq. (8) equals to finding the shortest path from p1

2Because of the local isometry assumption, the distance between can-
didates is proportional to the distance between latent variables.

to pT in the graph, which can be solved efficiently by Dijk-
stra’s algorithm [6]. It is easy to find that minimizing Eq. (8)
tends to maximize principal angle (denominator) and min-
imize step length (numerator) jointly, which preserves the
properties of trajectory. In summary, the details of our tra-
jectory selection algorithm is proposed as follows.

Algorithm 2: Trajectory Selection
Inputs: p1, pT , ct,k, t = 2, .., T − 1, k = 1, ..,K.
1. Create the graph G as Fig. 3 shows:
p1 is connected with {c2,k}Kk=1;
pT is connected with {cT−1,k}Kk=1;
ct,k is connected with {ct−1,k}Kk=1 and {ct+1,k}Kk=1.

2. According to the connections of candidates,
calculate distance matrix D.

3. To each ct,k, calculate Jacobian Matrix Jt,k by
solving (7).

4. According to Jt,k, calculate angle matrix A.
5. Calculate the graph matrix G. The element is

G(i, j) = D(i,j)
|A(i,j)|β+ε , i, j ∈ {(t, k)},

which defines the weight of edge in graph G.
6. Find the shortest trajectory from p1 to pT by Dijkstra

Algorithm.
7. The candidates on the trajectory are matched patches.

It should be noted that Eq. (8) has following physical
meaning. According to [13], the integrated principal curva-
ture of P is defined as follows,

Curve(P) =
T∑
t=2

Curve(it−1, it) =
T∑
t=2

|A(it−1, it)|
D(it−1, it)

. (9)

It is obvious that maximizing the integrated principal curva-
ture also ensures the step length (denominator) to be small
and the principal angle (numerator) to be large. How-
ever, maximizing Curve(P) directly requires us to find the
longest path from p1 to pT in the graph, which is an NP-
hard problem. Compared with Eq. (9), the D(it−1,it)

|A(it−1,it)|β+ε
in Eq. (8) can be viewed as a generalized reciprocal of cur-
vature Curve(it−1, it). From this view, our trajectory selec-
tion algorithm minimizes the integrated reciprocal of curva-
ture, which is actually an alternative way to maximize the
principal curvature of trajectory.

3.3. Patch Fitting

After finding the optimal trajectory, candidates on the
trajectory are regarded as good estimates of temporal the
patches. We stitch them together in order to produce the
synthesized frames. The overlapped region is processed by
graph-cuts [14] to achieve seamless fitting. Repeatedly ap-
plying candidate selection algorithm and trajectory selec-
tion algorithm for all sequences of temporal patches, we fi-
nally obtain the synthesis results.



Table 2. Comparison for Various Configurations of Parameters (PSNR (dB))
wave fur rain ripple

K=2 K=5 K=10 K=2 K=5 K=10 K=2 K=5 K=10 K=2 K=5 K=10
β = 0 17.70 18.01 17.31 26.92 27.03 26.68 23.78 23.85 23.74 18.48 18.78 18.49
β = 0.5 19.06 19.55 18.71 26.86 26.85 26.83 23.89 23.93 23.81 19.04 19.04 19.04
β = 1 19.52 19.79 19.10 26.69 26.83 26.70 23.85 23.93 23.83 19.06 19.42 18.91
β = 2 19.16 19.65 18.80 26.69 26.80 26.65 23.79 23.81 23.76 19.09 19.28 18.89
β = 15 19.00 19.51 18.52 26.70 26.92 26.59 23.63 23.77 23.60 19.02 19.30 18.88

Table 3. Comparison for Various Configurations of Parameters (SSIM)
wave fur rain ripple

K=2 K=5 K=10 K=2 K=5 K=10 K=2 K=5 K=10 K=2 K=5 K=10
β = 0 0.724 0.748 0.700 0.964 0.965 0.962 0.951 0.952 0.950 0.761 0.777 0.774
β = 0.5 0.804 0.827 0.786 0.963 0.963 0.963 0.951 0.952 0.951 0.791 0.789 0.793
β = 1 0.826 0.838 0.805 0.962 0.963 0.962 0.951 0.952 0.951 0.785 0.803 0.777
β = 2 0.810 0.832 0.792 0.962 0.962 0.961 0.950 0.950 0.950 0.788 0.797 0.778
β = 15 0.803 0.827 0.777 0.962 0.963 0.961 0.948 0.950 0.948 0.788 0.802 0.781

4. Experimental Results
4.1. Implementation Details

We apply our method to the DynTex dataset [20] in
which the resolution of the video frame is 352 × 288. The
testing set contains many natural dynamic textures includ-
ing ripples, waves, raining scenes, bushes, and furs.3 To
each dynamic texture, we synthesize 30 frames using only
the first and the last frame of the video clip. In the experi-
ment, we set the relevant parameters empirically as follows:
the dimension of latent space of candidates is d = 3; the
σ in Eq. (7) is 0.1 while the ε in Eq. (8) is 0.01. A signifi-
cant parameter for texture synthesis is the size of the patch,
which impose constraints on other parameters, e.g., the size
of search window and the moving step of patch during syn-
thesis (the width of the overlapped region is equal to the size
of the patch minus the moving step length). In [11, 14, 15],
the size of the patch is set to be quite large for preserving
the structural information of the texture. Similar to those
works, the size of the patch is s = 13 in our work, leading
to the size of corresponding search region being 27, and the
moving step of the patch being 8, respectively.

4.2. Dynamic Texture Synthesis

Besides the size of the patch, another two critical pa-
rameters in our method are: 1) the number of candidates,
K; 2) the parameter β in Eq. (8). For analyzing their
influence on synthesis results, we select K = 2, 5, 10,
β = 0, 0.5, 1, 2, 15 respectively, and test our method with
different configurations. The quantitative comparison for
various configurations is based on two objective measure-
ments. Given the ground truth of dynamic textures, we mea-
sure the PSNR/SSIM [25] of synthesis results correspond-

3 We strongly recommend viewing the video of synthesis results in the
supplemental file for clear visual effects.

ing to different configurations, which are listed in Table 2
and Table 3 respectively.
K decides the degrees of freedom for candidate selec-

tion. If K is too large, each temporal patch will have many
candidates. In such a situation, temporal patches will risk
being estimated by unsuitable candidates so that the dynam-
ics of the synthesis result will be out-of-control. On the
contrary, if K is too small, there will be too few candidates
to learn the manifold. In our experiment, setting K = 5
achieves the best PSNR/SSIM in most situations.

The parameter β controls the contribution of the prin-
cipal angle in Eq. (8). The importance of principal angle
will be enhanced with the increase of β. When β � 1, the
influence of numerator (the length of trajectory) in Eq. (8)
can be ignored, so minimizing Eq. (8) is equal to maximiz-
ing the integrated principal angle. On the contrary, if we
decrease β, the importance of principal angle will be weak-
ened. When β = 0, the denominator in Eq. (8) is just 1+ ε,
so minimizing Eq. (8) is equal to minimizing the length
of trajectory. Experimental results in Table 2 and Table 3
demonstrate that β = 1 is a reasonable trade-off between
the two extreme cases discussed above. In such a situation,
Eq. (8) is similar to

∑T
t=2

1
Curve(it−1,it)

, which maximizes
integrated principal curvature indirectly. Besides the four
dynamic textures in Table 2 and Table 3, we test our method
with different β’s (K = 5) on the DynTex dataset and plot
average PSNR/SSIM curves in Fig. 4(a). The PSNR/SSIM
curves corresponding to β = 1 are higher than those given
by other configurations indeed. In summary, according to
Table 2 and Table 3 we set β = 1, K = 5 for our method.

Fig. 4(b) further illustrates the difference among various
configurations. The ground truth of ripple sequence shown
in Fig. 4(b), in which there are approximately 3 periods of
fluctuation. We synthesize the sequence by various configu-
rations and list enlarged temporal patches respectively. Tak-



Figure 4. (a) The average PSNR curves for different β. (b) Com-
parison for various methods on textures having periodic pattern.

ing the energy of the first patch as the reference, we mark
the following patches having higher energy by red squares,
the rest by green squares. The fluctuation corresponding to
β � 1 looks rather jittery. This is because the algorithm
tends to merely maximize the integrated principal angle.
On the contrary, the result corresponding to β � 1 does
not have a periodic pattern anymore because minimizing
trajectory length is equivalent to minimizing the Euclidean
distance between adjacent temporal patches. In such a situ-
ation, the selected trajectory would be over-smoothed and
the oscillation is eliminated. Only the method with the
proposed configuration achieves suitable fluctuation. More
comparison results can be found in the supplemental file.

4.3. Comparisons with Image Morphing Methods

In the case of merely two images, both MRFs based
methods [11, 10, 14, 26, 19] and DS based methods [9, 29,
17] do not work well. As a result, only image morphing
methods [23, 5, 3, 22] are available as our competitors. To
demonstrate the superiority of our method, we compare our
method with the state of the art BDS based method [5] and
classical diffeomorphism based method LDDMM (Large-
Deformation-Diffeomorphic-Metric-Mapping) [3].

Fig. 5 and the supplemental file show that both BDS
based morphing [5] and LDDMM [3] lead to over-smoothed
synthesis results for dynamic textures. The reason for this
phenomenon is that their smoothness assumptions do not
adequately capture the nature of dynamic texture. The bi-
directional similarity in [5] is a measurement based on Eu-
clidean distance, which aims to achieve a smooth morphing
process by minimizing the distance between the target im-
age and the source image. LDDMM [3] assumes that there
exists a diffeomorphic path between the target image and
the source image. Generally, this type of smoothness as-

Figure 5. In each subfigure, synthesis results are in the red square.
Rows from top to bottom correspond to [5], [3] and our method.

sumptions are reasonable for many images like cartoons,
medical images and synthetic graphics. However, as we
have shown in Section 2.2, the dynamic process of natural
textures is complicated with oscillatory patterns, defeating
priors attempts based on smoothness assumptions [5, 3].

Instead of smoothing dynamic processes like [5, 3], our
method synthesizes textures by selecting temporal patches
whose trajectory has large curvature. The curvature-based
trajectory selection algorithm preserves the properties of
temporal patches, which helps us to synthesis textures hav-
ing suitable dynamics. As a result, our method has much
better synthesis results.

Additionally, we test our method on generating transi-
tions between totally different images. In Fig. 6, although
our method achieves image synthesis by finding temporal
patches locally, transitions obtained by our method are still
comparable to those obtained by morphing method [23, 5]4.
In the supplemental file we further show that, differing from
[5], which generates a smooth transition, our method creates
a transition with high degree of dynamic variations.

5. Conclusion and Future Work
We proposed a dynamic texture synthesis method for

dealing with the case of extremely few samples. Combin-
4Because of the lack of source code, the result of [23] is downloaded

directly from the website http://grail.cs.washington.edu/
projects/regenmorph/.

http://grail.cs.washington.edu/projects/regenmorph/
http://grail.cs.washington.edu/projects/regenmorph/


Figure 6. Images in the red square are the synthesis results. Rows
from top to bottom correspond to [5], [23] and our method.

ing MRFs with manifold learning, our approach delivers
promising texture synthesis results using just two frames.
Our method works well especially for textures with promi-
nent periodic patterns, e.g., ripples, raining scenes, etc.
However, in the case of textures having persistent motions,
our method is less successful in capturing the motion pat-
terns, which is also shown in the supplemental file. For
future work, we plan to explore more intrinsic properties of
dynamic textures and develop methods that can handle per-
sistent motions. We are considering using optical flow for
the initialization step to provide the synthesis process with
useful prior knowledge of motion [18, 16].
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