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Abstract

A new method for learning pooling receptive fields for
recognition is presented. The method exploits the statistics
of the 3D tensor of SIFT responses to an image. It is ar-
gued that the eigentensors of this tensor contain the infor-
mation necessary for learning class-specific pooling recep-
tive fields. It is shown that this information can be extracted
by a simple PCA analysis of a specific tensor flattening. A
novel algorithm is then proposed for fitting box-like recep-
tive fields to the eigenimages extracted from a collection of
images. The resulting receptive fields can be combined with
any of the recently popular coding strategies for image clas-
sification. This combination is experimentally shown to im-
prove classification accuracy for both vector quantization
and Fisher vector (FV) encodings. It is then shown that the
combination of the FV encoding with the proposed recep-
tive fields has state-of-the-art performance for both object
recognition and scene classification. Finally, when com-
pared with previous attempts at learning receptive fields for
pooling, the method is simpler and achieves better results.

1. Introduction
Object recognition and scene classification are two im-

portant problems in computer vision. A popular approach
to these problems is to rely on the spatial pyramid match-
ing (SPM) architecture of Figure 1 [17]. Image descriptors
are first extracted from a grid of image locations, mapping
the image into a 3D tensor, where two dimensions corre-
spond to image coordinates and the third to features. Each
descriptor is then converted to a high-dimensional vector,
through a descriptor encoding procedure. The entries of the
transformed tensor are finally pooled along the two spatial
dimensions to produce the image representation for recog-
nition. Substantial research has been devoted to different
components of this architecture.

Early contributions produced a number of popular de-
scriptors, such as SIFT [20], HOG [5], SURF [1], or
LBP [21]. Lately, there has been more emphasis on en-

coding methods. The classical encoding is based on vector
quantization (VQ), assigning each descriptor to the closest
codeword in a codebook learned from a generic image set.
The image to classify is then represented by an histogram
of codeword assignments. Since this is a coarse estimate
of the descriptor probability density, many attempts have
been made to develop more sophisticated estimates. Early
research focused on the clustering algorithm used to pro-
duce the codebook, comparing soft to hard codeword as-
signments [26] discriminant vs. non-discriminative learn-
ing [13], etc. More recently, there has been interest in finer
density representations, which encode differences between
descriptors and codewords, e.g. supervectors (SV) [35] or
Fisher vectors (FV) [24, 25]. Alternatively, several authors
have proposed sparse coding methods, which represent each
descriptor by a sparse linear combination of basis functions
from a learned dictionary. Popular sparse representation-
s include the sparse-coded SPM (ScSPM) method of [34],
and the locally constrained linear coding (LLC) method
of [33].

In contrast to all this work on descriptors and encod-
ings, there has been relatively little research on pooling
schemes. SPM partitions the image into predefined sub-
blocks of multiple scales, and relies on a summation opera-
tor to combine the descriptor encodings within each block.
The resulting encoding is a high-dimensional vector, which
can be interpreted as a collection of histograms over the
different image blocks. While it is now well established
that the SPM pooling operation is critical for the success of
the classification, it is unclear that either its arbitrary blocks
or pooling operator are optimally tuned to the structure of
images. This motivated research on the selection of pool-
ing operators, namely on the benefits of adopting a sum or
a maximum operator [29, 11, 3]. Recently, a few works
have shown that it can be quite beneficial to learn alterna-
tive pooling regions [12, 28]. However, these methods have
high computational complexity and are intractable for high
dimensional features, such as Fisher vectors.

In this work, we show that similar gains can be obtained
with methods of much smaller complexity, by exploiting the
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Figure 1: Under SPM, an image is first mapped into a tensor of feature (descriptor) responses and subsequently into a tensor of coding coefficients.
Discriminant class information is coded as blobs of energy within these tensors. Discriminant pooling windows can be recovered by detecting the eigenblobs
of tensor response to images of the class.

statistics of the 3D feature tensor of Figure 1. The hypoth-
esis is that pooling regions can be learned by identifying
blobs of discriminant response, for each image class, in the
tensor. We propose to identify these blobs as the locations
where responses to images of the class have most energy.
This equates pooling regions to eigentensors of the 3D ten-
sor. One appealing property of this hypothesis is that the
computation of eigentensors is computationally trivial. It
reduces to computing a principal component analysis (P-
CA) of various 2D flattenings of the tensor [32, 31]. In fact,
we show that a particular flattening corresponds to the pop-
ular PCA-SIFT representation [14]. For learning to pool
this is the most uninteresting flattening, since it does not
preserve image topology.

We explore alternative flattenings, which preserve loca-
tion information, and use them to identify potential pooling
regions. We then introduce an algorithm for learning a set of
box-like pooling regions that best approximates the eigen-
tensors over a collection of images. This is a k-means like
procedure, iterating between the assignment of eigentensor
regions to boxes and the reshaping of boxes to fit regions. It
is a generic algorithm that could be applied to many vision
problems, e.g. determining an object bounding box from a
saliency map or the output of an object detector [19]. Ex-
perimental results show that the learned fields significantly
outperform SPM and that the gains hold across encodings.
We adopt the FV encoding and show that its combination
with the proposed learned fields achieves state of the art re-
sults on various datasets.

2. Learning receptive fields through tensors

We start by identifying candidate pooling regions from
the statistics of the tensor of feature responses.

2.1. From image to tensor

Figure 1 illustrates how the SPM representation can be
mapped into a tensor. Images are mapped into 128D SIFT

descriptors, which are stacked so as to maintain the image
topology. In the resulting 3D tensor, each vector in the
direction orthogonal to the image coordinates correspond-
s to a SIFT descriptor. The resulting structure is denoted
the feature tensor. SIFT descriptors are then mapped into
high-dimensional codes. For example, into 1,024D vectors
whose entries are the assignments of a SIFT descriptor to a
codebook of 1, 024 codewords. Again, these vectors are s-
tacked to produce a tensor that respects the image topology.
This is the coding tensor. SPM applies a set of pooling op-
erators to this tensor, producing a feature vector that is fed
to a support vector machine for classification. Pooling op-
erators are sums over a preset pyramid of multi-scale image
windows. The feature vector is an histogram of the code-
word assignments in the associated image regions.

2.2. Learning to pool

While SPM relies on a sum operator and arbitrary pool-
ing regions, some alternatives have been investigated in the
recent literature. Most of this effort has been on improved
pooling operators. For example, Yang et al. [34] used max
instead of sum pooling. Boureau and Ponce [3] later pro-
vided a theoretical analysis, showing that max pooling is
well suited for features with a low probability of activation.
However, other experiments have shown mixed results for
the benefits of the max over the sum operation [11]. Our
work does not address the pooling operator, but the learn-
ing of regions of support (windows) for pooling operators.
These are denoted as the receptive fields for pooling.

The learning of receptive fields has been the subject of
attention in the last few years. Jia et al. [12] started from
a large number of candidate rectangular boxes, and pro-
posed a greedy method for learning the optimal receptive
fields from this set. Russakovsky et al. [28] proposed an
object-centric spatial pooling approach, which jointly per-
forms classification and localization through bootstrapping.
These methods have demonstrated improved performance
on several benchmarks, but have substantial complexity and
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Figure 2: Receptive field learning. An image class defines an energy distribution in tensor space. An eigen-tensor decomposition produces the collection of
tensor basis functions that best approximate this energy distribution. Discriminant pooling windows can be obtained from these eigentensors.

become intractable for high dimensional encodings, such as
Fisher vectors. For example, the method of [28] is too com-
plex for standard SVM solvers, even when applied to a rel-
atively low-dimensional VQ encoding. A slightly different
approach was proposed by [15], which replace SPM with a
spatial Fisher vector (SFV). This is a representation of the
spatial distribution of SIFT descriptors.

In this work we seek a solution of much lower complex-
ity, based on the intuition of Figure 2. Images are viewed as
distributions of energy in the feature tensor. The discrimi-
nant visual structures of a given image class give rise to con-
sistent energy blobs. Given a set of images from the class,
these blobs can be approximated by a small set of tensor
eigenfunctions, denoted eigen-tensors. The image location-
s containing the bulk of the energy of the responses to the
class are then recovered from these eigen-tensors and used
as receptive fields for pooling.

2.3. Tensor Analysis

A tensor T ∈ Rk1×k2×...kN of order N is an ND ar-
ray of k1 × k2 × . . . kN entries. In this work, we restrict
our attention to tensors of order 3, whose coordinates cor-
respond to image locations (k1), features (k2), and scales
(k3). We rely on SIFT features, and different image scales
are obtained with a Gaussian pyramid [20]. A kn-D vec-
tor obtained from T by varying index n while keeping the
others fixed is the mode-n vector of T . Mode-n vectors are
the column vectors of the matrix Tn ∈ Rkn×

∏
i ̸=n ki that

results from flattening the tensor T with respect to dimen-
sion n. Fig. 3 illustrates the three flattenings - T1,T2,T3

- of the 3rd order tensor. The N -mode singular value de-
composition (SVD), is an extension of the matrix SVD that
expresses the tensor as a product of N -orthogonal spaces

T = Z ×1 U1 . . .×N UN (1)

where A×n M is the n-mode product of a tensor A with a
matrix M, defined as

B = A×n M ⇔ Bn = MAn. (2)

The mode matrix Un of (1) contains the orthonormal vec-
tors spanning the column space of the mode-n flattening
matrix Tn of Figure 3. The tensor SVD is computed by
first finding the matrices Ui, through a left-SVD1 of each
matrix Tn, and then computing Z with

Z = T ×1 U
T
1 . . .×N UT

N . (3)

2.4. Tensor statistics

It is well known that, given a matrix D whose columns
are data vectors xi, the left-SVD of D is the matrix U of
principal components (eigenvectors of the sample covari-
ance) of D. The singular values λi associated with the
columns ui of U measure the variance of the data in D
along the principal components ui. The tensor SVD is thus
equivalent to performing a PCA of the data matrices Tn as-
sociated with the different flattenings of the tensor. When,
as is illustrated in Figure 3, T is flattened along the feature
dimension, i.e. for the matrix T1, each column is a feature
vector. If T is built from image gradients, performing an
SVD on this matrix is equivalent to computing the PCA-
SIFT descriptor [14], frequently used as a low-dimensional
counterpart to SIFT. This is a PCA on a view of the data that
ignores feature location.

The location information is, however, available in the
tensor. It is captured by the flattening T2 along the dimen-
sion of image locations. The SVD of this matrix produces
principal components that reflect the spatial distribution of
energy in the tensor. In this case, the left singular-vectors
ui are eigenimages with blob-like structure that reflects the

1by left-SVD, we mean computing an SVD and taking the left matrix.
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Figure 3: The three possible flattenings, Ti, i = {1, 2, 3} of the tensor
of feature responses.

locations of features with correlated activity. We propose to
use these eigenimages to generate candidate receptive field-
s for pooling. Each eigenimage is first binarized, by sub-
tracting its mean, taking the absolute value, and applying a
threshold of magnitude equal to the eigenimage’s standard
deviation. In the remainder of this work, we will refer to
the binarized eigenimage as simply the eigenimage I(x).
These eigenimages are the optimal pooling regions (under
the energy compaction principle of PCA) for the recogni-
tion of the class of images used to produce the tensor. We
next introduce a procedure to learn the rectangular receptive
fields that best approximate them.

3. Receptive field clustering

The receptive fields used for pooling are modeled as
soft-edged boxes. Starting from the sigmoid fσ(x) =
(1 + e−

x
σ )−1, we define a 1D receptive field of width 2a

hσ(x; a) = fσ(x+ a)− fσ(x− a). (4)

This is similar to a pedestal function of the same width, but
has soft edges of smoothness controlled by σ. A receptive
field of length 2a centered at location u is given by hσ(x−
u; a). A 2D receptive field of size 2a = 2(a1, a2), centered
at image location u, is finally given by Hσ(x− u;a), with

Hσ(x,a) = hσ(x1; a1)× hσ(x2; a2). (5)

3.1. Single image

We start by considering the problem of fitting the re-
ceptive field above to an eigenimage I(x). This is as-
sumed to be a 2D binary function of amplitude one over
some finite set R. The goal is to determine the parame-
ters (a∗,u∗) of the receptive field of maximum normalized

cross-correlation with I(x)

(a∗,u∗) = argmaxa,u
⟨I(x),Hσ(x−u;a)⟩

||I(x)||||Hσ(x−u;a)|| (6)

= argmaxa,u
⟨I(x),Hσ(x−u;a)⟩

||Hσ(x−u;a)|| (7)

For this we note that, up to boundary artifacts,

||Hσ(x− u;a)||2 = ||Hσ(x;a)||2 = γ(a) ∀u (8)

with
γ(a) ≈ 4a1a2. (9)

It follows that

(a∗,u∗) = argmax
a

{ 1√
γ(a)

×

argmax
u

⟨I(x),Hσ(x− u;a)⟩}.
(10)

This reflects a trade-off between two requirements: that the
receptive field has 1) large dot-product with the eigenimage,
and 2) small size. The solution can be computed efficiently
by exploiting the symmetry of Hσ(x;a), since

C(u;a) = ⟨I(x),Hσ(x− u;a)⟩
=

∑
x1,x2

I(x1, x2)Hσ(x1 − u1, x2 − u2;a)

=
∑
x1,x2

I(x1, x2)Hσ(u1 − x1, u2 − x2;a).

It follows from the properties of the convolution that

F {C(u;a)} = F(I(u))×F(Hσ(u;a)) (11)
C(u;a) = F−1 {F(I(u))×F(Hσ(u;a))}(12)

where F is the Fourier transform. This simplifies the com-
putation of (10), which is equivalent to

(a∗,u∗) = argmax
a

{
1√
γ(a)

argmax
u

C(u;a)

}
. (13)

For each receptive field size a, it suffices to 1) multiply the
Fourier transform of I(x) by that of Hσ(x;a), 2) compute
the inverse Fourier transform of the product, 3) find its peak
location u∗, and 4) divide

√
γ(a). The complexity of this

procedure is O(s(log k1k2)k1k2), where s is the number
of receptive field sizes and ki the image dimensions. This
is significantly smaller than the complexity O(s(k1k2)

2) of
exhaustive search.

3.2. Multiple images

We next consider the search for a set of receptive field-
s {Hσ(x − ui;ai)}mi=1 that best approximates a collection



of eigenimages {Ii}ni=1. For each receptive field, the pa-
rameter pair (ai,ui) defines a pooling region of size ai and
location ui. The optimal receptive fields are the solution of

{(a∗i ,u∗
i )}mi=1 = argmax

ai,ui

∑
i,n

⟨In(x),Hσ(x− ui;ai)⟩
||In(x)||||Hσ(x− ui;ai)||

This is a clustering problem with centroids Hσ(x−ui;ai).
It can be solved by the receptive field clustering (RFC) algo-
rithm. This is an algorithm that iterates between two steps,
similar to those of k-means, as follows.

1. Given a set of receptive fields (ai,ui), i = 1, . . . ,m
cluster eigenimages by finding, for each In,

i∗n = argmax
i

⟨In(x),Hσ(x− ui;ai)⟩
||Hσ(x− ui;ai)||

This has complexity O(mnk1k2). Define clusters
Ci = {In|i∗n = i}.

2. Given eigenimage clusters Ci, determine (ai,ui), i =
1, . . . ,m with

(a∗i ,u
∗
i ) = (14)

= argmax
a,u

{∑
n∈Ci

⟨In(x),Hσ(x− u;a)⟩
||In(x)||||Hσ(x− u;a)||

}

= argmax
a,u


⟨∑

n∈Ci

In(x)
||In(x)|| , Hσ(x− u;a)

⟩
||Hσ(x− u;a)||


= argmax

a,u

{
⟨Si, Hσ(x− u;a)⟩
||Hσ(x− u;a)||

}
where

Si =
1

|Ci|
∑
n∈Ci

In(x)

||In(x)||
(15)

is the average normalized eigenimage in the ith cluster.
This can be solved with the algorithm of the previous
section, using Si as I .

Similarly to k-means, RFC only guarantees a locally op-
timal solution, which depends on its initialization. In this
work, we adopt the spatial pyramid as the set of initial pool-
ing regions, using 3 levels of spatial partitioning frequently
used in object recognition tasks, 1 × 1, 3 × 1 and 2 × 2
image sub-blocks. This results in 8 spatial bins. During
clustering, we restrict the scale search to sizes a such that
1
16 ≤ a1a2

IhIw
≤ 1

2 , where Ih, Iw is the image size. This avoids
regions that are either too large or too small.

4. Experimental Evaluation
Several experiments were conducted to evaluate the per-

formance of learned receptive fields.

4.1. Feature tensor

All experiments were based on feature tensors that fol-
low standard practices in the recognition literature. Image
patches were sampled over 8 scales, separated by a factor
of 1.2, with step-size equal to half the patch size [15]. In
most experiments, the images were converted to grayscale
and a 128D SIFT descriptor computed per image patch. On
PASCAL VOC 2007 we also report performance for color
features, obtained as in [25]. In this case, each image patch
was divided into 4× 4 sub-regions, for which the mean and
standard deviation of the RGB channels was computed, pro-
ducing a 96D feature vector.

4.2. Coding tensor

We started with a series of experiments to evaluate the
gains of learning pooling fields, using the Caltech-256
dataset [10]. This contains 30, 607 images from 256 object
categories plus a background category, where each catego-
ry contains at least 80 images. As is standard in the liter-
ature, we randomly selected n images from each category
for training and the rest for testing. Results are reported for
various values of n. Class-specific tensors were built from
normalized images of 160 × 192 pixels. Two popular cod-
ing schemes were considered: vector quantization (VQ) and
Fisher vector (FV). For VQ, codebooks of size 1, 024 were
learned by k-means clustering of SIFT descriptors extracted
from a random sample of 500, 000 image patches. For FV,
feature dimensions were first reduced from 128 to 64, using
PCA-SIFT [14]. A Gaussian mixture model (GMM) of 256
components was then learned with the EM algorithm. Vec-
tors of Fisher scores were finally computed and subjected to
L2 and power normalization, as in [25]. In all experiments,
pooled features were fed to a multi-class SVM. This used
an intersection kernel for VQ and was a linear SVM for FV.

4.3. Gains of RFC

The first set of experiments compared the performance of
SPM, the receptive fields learned with RFC, and the com-
bination of the two (SPM+RFC). Both SPM and RFC used
8 pooling regions. The resulting feature encoding vectors
were concatenated to produce the SPM+RFC features. This
is an encoding of 16 regions. Figure 4(a) shows a set of
the learned pooling fields, some of which are superimposed
on Caltech images in Figure 4(b). The images shown in
each row are from a common class. Note how the red win-
dows are tunned for bear bodies, while the green windows
specialize in glasses, and the blue windows in billiards ta-
bles. Each classification experiment was repeated for 5 tri-
als. The average classification accuracies (when 30 images
are used for training) are reported in Table 1. For both en-
codings, RFC performed better than SPM, achieving a gain
of 1.5% for the VQ and 2.3% for the FV encoding. The SP-
M+RFC combination introduced an additional gain of 0.9%



Table 1: Comparison of SPM and RFC on Caltech-
256. C is the number of spatial bins.

Encoding Pooling C Acc.(%)
VQ [10] SPM 8 34.1±0.2

VQ RFC 8 35.6±0.5
VQ SPM+RFC 16 36.7±0.2

FV [25] SPM 8 40.8±0.1
FV RFC 8 43.1 ±0.3
FV SPM+RFC 16 43.7 ±0.3

Table 2: Classification accuracy of various state-of-the-art classifiers on Caltech-
256. When available, the standard deviation is shown in ( ).

training images 15 30 45 60
VQ+SPM [10] - 34.1(0.2) - -

ScSPM [34] 27.7 34.0 37.5 40.1
FV+SPM [25] 34.7(0.2) 40.8(0.1) 45.0(0.2) 47.9(0.4)

LLC+SPM [33] 34.4 41.2 45.3 47.7
CRBM [30] 35.1 42.1 45.7 47.9

FV+LRF 35.6(0.2) 43.7(0.3) 48.3(0.1) 51.4(0.2)

for VQ and 0.6% for FV. These results show that there are
benefits to learning pooling regions. Given the simplicity
of RFC, the gains in recognition accuracy (overall gain be-
tween 2.4% and 2.9%) can be considered quite significant.
Finally, while both RFC and SPM capture information rel-
evant for classification, the gains of RFC are larger for the
more powerful FV encoding.

4.4. Comparison on various datasets

Since the combination of FV encoding, SPM+RFC pool-
ing, and linear SVM achieved the best performance in the
experiments above, we adopted this classifier in all remain-
ing experiments. For simplicity, we refer to it as FV+LRF
(FV with learned receptive fields). Several experiments
were performed to compare its performance to state-of-the-
art results on several popular benchmarks: Caltech-256 [10]
and PASCAL-VOC2007 for object recognition, and MIT-
Scenes [27] and 15-scenes [17] for scene classification.

Caltech-256 [10]: Table 2 presents the average classifica-
tion accuracy (with standard deviation) over 5 classification
trials on Caltech-256. Results are presented for training sets
ranging from 15 to 60 images per class. Also presented are
equivalent results for the VQ+SPM classifier of [10], the s-
parse coded SPM (ScSPM) of [34], the locality constrained
linear coding (LLC) of [33], the FV+SPM of [25] and
the convolutional Restricted Boltzmann machine (CRBM)
of [30]. All these methods rely on either SPM or a simi-
lar strategy for pooling, focusing on alternative encodings.
Note that these encodings can require the solution of so-
phisticated optimization problems during learning and have
increased complexity during classification. Yet, the perfor-
mance of the different methods is very similar to (or worse
than) that of FV+SPM. On the other hand, the proposed
FV+LRF has substantially better performance (around 3%
for most training set sizes) and a marginal increase in com-
plexity. These results suggest that, while much attention has
been devoted to encodings, more emphasis should be given
to the learning of pooling operators.

PASCAL-VOC 2007 [7]: In this dataset of 20 categories,
5,011 training, and 4,952 test images, classification accu-
racy is usually evaluated by average precision (AP). Class-
specific tensors were built from normalized images of 160×

200 pixels. Table 3 reports the AP of the 20 classes. The
methods above the line use only SIFT features, those be-
low use both SIFT and color features. For color, we re-
duced the feature dimension from 96D to 64D and learned
a GMM and SVM separately from the SIFT features. The
final score was the average of the two scores (SIFT and col-
or). The grayscale methods include VQ+SPM [28], object-
centered pooling (OCP) [28], combinations of both VQ and
FV with the spatial Fisher vector (SFV) of [15], the win-
ner of the VOC [7], and the proposed FV+LRF. The latter
achieves the highest mAP of all grayscale methods. This is
probably the most telling experiment that we report, since
all competing methods somehow attempt to overcome the
limitations of SPM. SFV is a Fisher vector computed from
a GMM fitted to the spatial coordinates of SIFT vectors,
OCP a method for learning receptive fields for pooling, and
the VOC winner a method that combines object recognition
and localization using a fairly complex classifier. The color
methods include the late-fusion method of [18], FV+SPM
with color [25], and the application of the FV+LRF to both
SIFT and color features. The latter again achieves superior
performance.

MIT-Scenes [27]: This dataset contains 15,620 images
from 67 indoor scene categories. Following [27], we used
80 images per class for training and 20 images for testing.
Class-specific tensors were built from normalized images of
160× 194 pixels. Classification accuracy is reported on the
training/testing split provided on the author’s web page. Ta-
ble 4 compares FV+LRF to VQ+SPM [22], the deformable
parts models (DPM) of [9], the reconfigurable models (R-
BoW) of [23], the combination of SPM, DPM, and color
GIST of [22] (denoted MF for multi-features), the SPM on
the semantic manifold (SPM-SM) classifier of [16], and the
hierarchical matching pursuit (HMP) of [2]. On this dataset,
FV+LRF achieves substantial higher accuracy than all com-
peting methods. To the best of our knowledge, it has the best
results published on this dataset.

15 Scenes [8]: The 15-Scenes dataset contains 15 scene cat-
egories, with 200 to 400 images per class, for a total 4, 485
images of average size around 300 × 250. As suggested
in [17], 100 images per class were randomly selected for
training. Class-specific tensors were built from normalized



Table 3: Image classification results (mAP) on PASCAL VOC 2007 dataset
aero bicyc bird boat bottle bus car cat chair cow

VQ + SPM [28] 72.5 56.3 49.5 63.5 22.4 60.1 76.4 57.5 51.9 42.2
VQ + OCP [28] 74.2 63.1 45.1 65.9 29.5 64.7 79.2 61.4 51.0 45.0
FV + SPM [25] 75.7 64.8 52.8 70.6 30.0 64.1 77.5 55.5 55.6 41.8

Winner [7] 77.5 63.6 56.1 71.9 33.1 60.6 78.0 58.8 53.5 42.6
FV + LRF 77.4 63.8 51.7 70.5 28.5 66.5 77.9 59.3 53.5 44.9

Late-fusion [18] 78.0 64.9 58.0 73.1 32.2 64.0 76.4 62.4 57.3 44.6
FV + LRF + color 78.0 63.6 57.8 70.5 29.3 67.7 77.6 60.2 54.3 46.8

table dog horse moto person plant sheep sofa train tv avg
VQ + SFV [15] - - - - - - - - - - 52.9
FV + SFV [15] - - - - - - - - - - 56.6
VQ + SPM [28] 48.8 38.1 75.1 62.8 82.9 20.5 38.1 46.0 71.7 50.5 54.3
VQ + OCP [28] 54.8 45.4 76.3 67.1 84.4 21.8 44.3 48.8 70.7 51.7 57.2
FV + SPM [25] 56.3 41.7 76.3 64.4 82.7 28.3 39.7 56.6 79.7 51.5 58.3

Winner [7] 54.9 45.8 77.5 64.0 85.9 36.3 44.7 50.9 79.2 53.2 59.4
FV + LRF 55.2 45.6 78.0 68.0 83.6 32.4 49.9 56.4 78.4 52.9 59.7

Late-fusion [18] 56.7 51.0 80.4 65.9 87.5 46.5 46.3 49.7 82.9 55.3 61.7
FV + SPM + color [25] - - - - - - - - - - 60.3

FV + LRF + color 62.6 49.1 80.4 69.4 86.3 40.3 51.2 57.3 79.6 55.7 61.9

images of 300×200 pixels. Table 5 presents averaged clas-
sification accuracies (± standard deviation) over 10 trials.
The performance of the proposed classifier is compared to
VQ+SPM [17], ScSPM [34], SPM-SM [16], the macrofea-
tures (Macro) of [4], and the model adaptation (MA+SPM)
method of [6]. The proposed FV+LRF has competitive or
superior performance to all other methods. Only MA+SPM
has slightly superior performance. This is likely due to the
fact that it uses model adaptation to obtain better probability
estimates [6]. Model adaptation is substantially more com-
plex than the proposed receptive field learning method and
could also be used to obtain better Fisher scores. We have
not attempted to do so yet.

4.5. Comparison to RF learning methods

The literature on the learning of pooling operators is fair-
ly small. Jia et al. [12] proposed a method akin to feature
selection, which selects optimal receptive fields within a
large pool of pre-defined windows. This involves a compu-
tationally intensive optimization, which is simplified with
recourse to a greedy approximation. Nevertheless, the com-
putation is still substantial, orders of magnitude larger than
that of the proposed RFC. Perhaps due to this, results are
only available for datasets of much smaller scale and vari-
ability than those used above, e.g. CIFAR-10, MNIST, or
Caltech-101. We have not considered these datasets in our
evaluation. On Caltech-101, this method achieved result-
s in between those of ScSPM [34] and Macrofeatures [3],
which FV+LFR outperformed in the datasets above. Rus-
sakovsky et al. [28] proposed an object-centric RF learn-
ing algorithm. This is an iterative process, where each it-
eration involves bootstrapping thousands of image regions
and learning many high-dimensional SVM classifiers. Its
complexity is again large, and this method was only tested

on PASCAL VOC 2007. As can be seen from Table 3, its
results are inferior to the much simpler FV+LRF classifier
now proposed. Finally, Krapac et al. [15] proposed the SFV.
While this is not strictly a method to learn pooling fields, it
aims for a similar goal: to characterize the spatial statistics
of SIFT descriptors. Again, Table 3 shows that this spatial
encoding has much weaker performance than the proposed
learning of receptive fields.

5. Conclusion

In this work, we proposed a simple, yet effective,
method for learning receptive fields for pooling. The
method exploits the statistics of the 3D tensor of SIFT
responses to derive class-specific receptive fields. This
requires a simple PCA of a flattening of the tensor and
is akin, but complementary, to PCA-SIFT. The resulting
eigenimages are informative of the spatial locations of
discriminative visual structures of different image classes.
We then proposed a k-means like algorithm for fitting
box-like receptive fields to the eigenimages extracted from
a collection of images. The resulting receptive fields were
shown to consistently improve the performance of both VQ
and FV encodings. Experiments on a collection of object
recognition and scene classification datasets show that their
combination with the FV encoding has state-of-the-art
performance for both tasks. When compared to previous
attempts to learn receptive fields for pooling, the method is
simpler and has better results. At a more general level, this
work shows that 1) more emphasis should be placed on the
pooling operation, and 2) there are benefits to analyzing the
complete 3D tensor of feature responses, rather than the 2D
slice that corresponds to the popular bag of words image
representation. We plan to explore these issues in the future.



(a)

(b)
Figure 4: Learned pooling fields on Caltech 256. (a) a set of the recep-
tive fields learned by RFC. (b) Three pooling windows superimposed on
images from three categories (one category per row). The red, green, and
blue windows capture regions of discriminant information for the recogni-
tion of bears, glasses, and billiards.

Table 4: Classification accura-
cy on MIT-Scenes

Method Acc.(%)
DPM [9, 22] 30.4

VQ+SPM [22] 34.4
RBoW [23] 37.9

MF [22] 43.1
SPM-SM [16] 44.0

HMP [2] 47.6
FV+LRF 60.3

Table 5: Classification Accuracy on
15-Scenes

Algorithms Accuracy
VQ+SPM [17] 81.4±0.5

ScSPM [34] 80.4±0.45
SPM-SM [16] 82.3

Macro [4] 84.3±0.5
MA+SPM [6] 85.4

FV+LRF 85.0 ±0.6
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