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Abstract

Over the last few years, with the immense popularity
of the Kinect, there has been renewed interest in develop-
ing methods for human gesture and action recognition from
3D skeletal data. A number of approaches have been pro-
posed to extract representative features from 3D skeletal
data, most commonly hard wired geometric or bio-inspired
shape context features. We propose a hierarchial dynamic
framework that first extracts high level skeletal joints fea-
tures and then uses the learned representation for estimat-
ing emission probability to infer action sequences. Current-
ly gaussian mixture models are the dominant technique for
modeling the emission distribution of hidden Markov mod-
els. We show that better action recognition using skele-
tal features can be achieved by replacing gaussian mixture
models by deep neural networks that contain many layers
of features to predict probability distributions over states of
hidden Markov models. The framework can be easily ex-
tended to include a ergodic state to segment and recognize
actions simultaneously.

1. Introduction

Recognizing human actions from video data enables ap-
plications such as video understanding, semantic retrieval,
surveillance, and human-computer interaction. Depending
on the application, a recognition system may be constructed
in different ways. This paper focuses on action recognition
given 3D joint positions. Estimating such joint positions
from an image sequence is a difficult task and the tradition-
ally vision community used MoCap systems for pose track-
ing until the advent of Kinect [25, 9] when consumer price
device can be readily available for human body joints ex-
traction in real time with reasonable accuracy. It may seem
that the task of action recognition given 3D joint position-
s is trivial, but this is not the case, largely due to the high
dimensionality of the pose space. [20] noted that on a ma-

jor problem in content-based comparison of motion data is
that logically similar motions need not be numerically simi-
lar. In other words, there are certain aspects associated with
a motion class that may show significant spatio-temporal
variations between different executions of the motion, while
other aspects are typically consistent.

A number of new datasets [0, 7, 8, 28] have provided
researchers with the opportunity to design novel representa-
tions and algorithms and test them on a much larger number
of sequences. Recently the focus has shifted towards mod-
eling the motion of individual joints or combinatorial joints
that discriminate between actions. Furthermore, to achieve
continuous action recognition, the sequence need to be seg-
mented into contiguous action segments; such segmentation
is as important as recognition itself and is often neglected in
action recognition research.

In this paper we focus on model driven analysis and
synthesis but avoid the complexities involved in imposing
physics-based constraints, relying instead on a pure learning
approach in which all the knowledge in the model comes
from the data without sophisticated pre-processing or di-
mensionality reduction. Our approach can be seen as an
extension to [26] in that instead of using the conditional
Restricted Boltzmann Machine, a type of shallow model,
to model human motion, we add layers to learn higher level
features justified by a variational bound [10]; for modeling
temporal information, rather than explicitly binding limited
adjacent frames (3 past frames as in [26], we resort to hid-
den Markov model which can be well extended to long term
temporal information, spanning hundreds of frames in our
system.

We demonstrate that consistently better action recogni-
tion performance can be achieved using skeleton informa-
tion by “pretraining” a multi-layer neural network, one lay-
er at a time, as a generative model. The advantage of this
new way of training multi-layer neural networks is that the
limited amount of information in the labels is not used to
design features from scratch. It is only used to change the
features ever so slightly in order to adjust the class bound-



aries. The features themselves are discovered by building a
multi-layer generative model of much richer information in
the skeletal joints configurations, and this does not require
labeled data.

Our approach makes three major assumptions about the
nature of the relationship between the input data, which
in this case is a set configurations of skeletal joints, and
the labels, which are action class HMM states produced
by a forced alignment. First, we assume that the dis-
crimination we want to perform is more directly related
to the underlying causes of the data than to the individ-
ual elements of the data itself (previous hardwired tech-
niques [3, 20, 23, 24] have shown that multiple joints rela-
tional features, e.g. hands approaching each other, feet mov-
ing towards each other, efc., are more relevant for action
recognition rather than a single joint spatial-temporal posi-
tion). Second, we assume that a good feature-vector rep-
resentation of the underlying causes can be recovered from
the input data by modeling its higher-order statistical struc-
ture. Third, feature-vector produced hidden states are most-
ly unique, meaning sequences are non-repetitive actions as
opposed to longer repetitive activities, e.g., walking, run-
ning, jogging, efc., spanning minutes or hours.

Given the structure of our model, our framework is al-
so suited for detection of “action points” for precise tem-
poral anchoring of human actions. Action points can be
thought of as marking a specific pose conditioned on “how
the user got into that pose” [23]. It makes explicit the laten-
cy/accuracy tradeoff and allow accurate evaluation of hu-
man action recognition systems in contexts where latency
is important.

2. Related Works

Traditionally, 3D joints data are acquire by MoCap sys-
tem, and a plethora of hard wired features have been pro-
posed: relational pose features, introduced by Miiller et
al. [20], have been used for indexing and retrieval of mo-
tion capture data and served as the harbinger for exploring
3D joints data. Yao et al. [31] modified a subset of the
relational pose features for action recognition and showed
that with these features, it is not necessary to have perfect
poses to perform action recognition. [16] designed feature
vectors, such that each feature corresponds to the pose of a
single joint or combination of multiple joints and 7 distinc-
t categories of hand crafted features were designed based
on their analysis of the actions and features that can dis-
tinguish them. Different types characterize different levels
of dynamics of an action and there are in total 141 hard
wired features. During their training stage, 3 sets of ad hoc
segregation of features space required laborious human in-
volvement. [24] proposed the Sequence of Most Informa-
tive Joints (SMIJ) representation, a interpretive feature for
human motion representation based on joint angle time se-

ries. [3] introduced a bio-inspired features incorporating
3D shape context into a spherical coordinate, they model a
human activity using a hierarchy of 3D skeletal features in
motion and learn the dynamics of these features using Lin-
ear Dynamical Systems (LDSs).

Alternative approaches to acquire discriminative features
leverage statistical learning methods: [28] proposed a fea-
ture mining approach for computing discriminative action-
lets from a recursively defined temporal pyramid of join-
t configurations. [4] proposed non-linear graphical mod-
el for structured prediction. It combines the power of
deep neural networks to extract high level features with the
graphical framework of Markov networks, yielding a pow-
erful and scalable probabilistic model that was applied to
signal labeling tasks.

In this paper, inspired by recent findings of [18], we pro-
pose automatic extraction of high level skeletal joints rep-
resentation by using deep forward neural networks. This
framework serves as a better model for estimation emis-
sion probability of hidden Markov models and achieves im-
proved results for human action recognition amongst oth-
er well established methods. We also demonstrate that the
framework can be easily adapted for simultaneous segment-
ing and recognizing gestures, discovering action points [23]
which are precise temporal anchor points relative to the ac-
tion performance. The model has been designed with hu-
man motion in mind, but should lend itself well to other
high-dimensional time series.

3. Methodology

3D joint data generated via the skeleton tracking from
the depth map sequences are generally more noisy than that
of the MoCap data. When the difference between the ac-
tions is subtle, it is usually difficult to determine the ac-
curate states from the observation without careful selection
of the features, which undermines the performance of such
generative models. Moreover, with limited amount of train
ing data, training a complex generative model is easy to
overfit. As generative models get better, however, the ad-
vantage of discriminative training gets smaller and is even-
tually outweighed by a major disadvantage: the amount of
constraint that the data imposes on the parameters of a dis-
criminative model is equal to the number of bits required
to specify the correct labels of the training cases, whereas
the amount of constraint for a generative model is equal to
the number of bits required to specify the input vectors of
the training cases. So when the input vectors contain much
more structure than the labels, a generative model can learn
many more parameters before it overfits.

Currently the model parameters are predominantly learnt
by Gaussian mixture models using expectation maximiza-
tion [I, 21]. We reason that replacing Gaussian mixture
models by deep neural networks can better predict probabil-



ity distributions over the states of hidden Markov models:

3.1. Problem formation

Feed forward neural networks offer several potential ad-
vantages over GMMs:

e Their estimation of the posterior probabilities of HMM
states does not require detailed assumptions about the
data distribution.

e They allow an easy way of combining divers features,
including both discrete and continuous features.

e They use far more of the data to constrain each parame-
ter because the output on each training case is sensitive
to a large fraction of the weights.

The benefit of each weight in a neural network being con-
strained by a larger faction of training case than each pa-
rameter in a GMM has been masked by other differences
in training. Neural networks have traditionally been train-
ing discriminatively, whereas GMMs are typically trained
as generative models (even if discriminative training is per-
formed later in the training procedure). Generative training
allows the data to impose many more bits of constraints on
the parameters, hence partially compensating for the fact
that each component of a large GMM must be trained on a
very small fraction of the data.

GMMs and HMMs co-evolved as a way of doing speech
recognition when computers were too slow to explore more
computationally intensive approaches. GMMs are easy
to fit when they have diagonal covariance matrices, and
with enough components they can model any distribution.
They are, however, statistically inefficient at modeling high-
dimensional data that has many kind of componential struc-
ture [18]. Suppose, for example, that A significantly differ-
ent patterns can occur in one sub-band and M significantly
different patterns can occur in another sub-band. Suppose
also that which pattern occurs in each sub-band is approxi-
mately independent. A GMM requires N * M components
to model this structure because each component must gen-
erate both sub-bands(each piece of data has only a single
latent cause). On the other hand, a model that explains the
data using multiple causes only requires N+ M compo-
nents, each of which is specific to a particular sub-band.
This exponential inefficiency of GMMs for modeling fac-
torial structures leads to the GMMs+HMMs systems that
have a very large number of Gaussians, most of which must
be estimated from a very small fraction of the data.

The benefit of learning a generative model is greatly
magnified when there is a large supply of unlabeled skeletal
data either acquired by motion capture systems or inferred
from depth images in addition to the training data that has
been labeled by a forced HMM alignment. We do not make
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Figure 1: Per-action model: a forward-linked chain. Inputs
(skeletal features) are first passed through a deep neural nets to
extract high level features and output the emission probabilities of
the hidden states. The deep neural net is first pre-trained using all
skeletal features and then fine-tuned by the target class acquired
by forced alignment for individual action class (10 hidden states
for each action class in all our experiments).

use of unlabeled data in this paper, but it could only improve
our results relative to purely discriminatively approaches.

Naturally, many of the high-level features learned by the
generative model may be irrelevant for making the required
discriminations, even though they are important for explain-
ing the input data. However, this is a price worth paying if
computation is cheap and some of the high-level features
are very good for discriminating between classes of inter-
est.

3.2. Graphical Models

We use a continuous-observation HMM with discrete
hidden states. The model is constructed as follows. At
each time step t we have one random observation variable
X;. Additionally we have an unobserved variable H; tak-
ing values of a finite set H = (U, 4 Ha),Where H, is a set
of states associated to an individual action a. The intuition
motivating this construction is that an action is composed of
a sequence of poses where the relative duration of each pose
may vary. This variance is captured by allowing flexible for-
ward transitions within the chain. With this definitions, the
full probability model is now specified as HMM:

p(Hyr, X1.7) = p(Hy)p(Xa| Hy) [ [ p(Xi| Hy)p(HL | H, ),

t=2

(D
where p(H;) is the prior on the first hidden state and in
all our experiments, we have a uniform prior. p(X;|Hy) is
the observation model, and p(H;|H;_1) is the transition dy-
namics model. The observation domain & depends on the
modality of the skeleton and will be described in the ex-
perimental section 4. We model the emission distribution
of hidden Markov models by pre-training a multi-layer feed
forward neural network [1 1], one layer at a time, as a gener-
ative model for a window of action frame. This pre-training
makes it easier to optimize deep neural networks that have



many layers of hidden units and it also allows many more
parameters to be used before overfitting occurs. The graph-
ical representation of a per-action model is shown as Fig. 1.

Because our skeleton features (a.k.a.observation domain
X’) are continuous instead of binomial features, we use the
Gaussian RBM (GRBM) to model the energy term of first
visible layer:

D
E(v, h;0) Z

i=1

2

- - e

where model parameters § = {W, b, a,c} with W;; repre-
sents the symmetric interaction term between visible unit ¢
and hidden unit j while b; and a; are their bias terms with
visible unit variance o. D and F' are the numbers of visible
and hidden units.

Learning the higher level representation for skeleton
joints features:

Neal and Hinton [22] demonstrated that the negative log
probability of a single data vector, v°, under the multi-
layer generative model is bounded by a varlatlonal free en-
ergy, which is the expected energy under the approximating
distribution, Q(h°|v®), minus the entropy of that distribu-
tion. For a directed model, the “energy” of the configuration
v0,h" is given by E(v", h") = —[log p(h°) +log p(v°[h?)].
So the bound is

> Q(h°[v)[log p(h) + log p(v’|n%)]
hO

— > QM) log Q(h°|v°)

ho

log p(v

The intuition using deep belief networks for modeling
marginal distribution in skeleton joints action recognition
is that by constructing multi-layer networks, semantically
meaningful high level features for skeleton configuration
will be extracted whilst learning the parametric prior of hu-
man pose from mass pool of skeleton joints data. In the
recent work of [15], a non-parametric bayesian network is
adopted for human pose prior estimation, whereas in our
framework, the parametric networks are incorporated.

Using the pair wise joints features as raw input, the data-
driven approach network will be able to extract relation-
al multi-joints features which are relevant to target frame
class. E.g., for “toss” action, wrist joints is rotating around
shoulder joints would be extracted from the backpropaga-
tion via target frame as those task specific, ad hoc hard
wired sets of joints configurations as in [3, 20, 23, 24].

The outputs of the neural net are the hidden states learned
by force alignment during the supervised training process.
Once we have model, we can use the normal online or of-
fline smoothing, inferring the hidden marginal distributions
p(H¢| X:) of every node (frame) of the test video. Because
the graph for the hidden Markov model is a directed tree,

vy vyyvy o

A A A

=) () )= o eorer Action 2
ol ollelle G
A A A

LIOLI®LIOL) LA LIOLIOL.] Ad|onk
sLolobe 2GR | [adioni
A A A

Figure 2: State diagram of the ES-HMM model for low-latency
An ergodic states (ES)
shows the resting position between action sequence. Each node

action segmentation and recognition.

represents a single frame and each row represents a single action
model. The arrows indicate possible transitions between states.

this problem can be solved exactly using the max-sum al-
gorithm. The number of possible paths through the lattice
grows exponentially with the length of the chain. The Viter-
bi algorithm searches this space of paths efficiently to find
the most probable path with a computational cost that grows
only linearly with the length of the chain [1]. We can infer
the action presence in a new sequence by Viterbi decoding
as:

Viw = P(Hi|Xy) + 10%(%%(%—1,7—[)) 2)
where initial state V; 3y = log(P(H1|X1)). From the infer-
ence results, we define the probability of an action a € A

as p(y: = alz1e) = V.

3.3. Simultaneous Segmentation and Recognition

The aforementioned framework can be easily adapted
for simultaneous action segmentation and recognition by
adding an ergodic states-£S which resembles the silence s-
tate for speech recognition. Hence, the unobserved variable
H; takes an extra finite set H = (J,c4 Ha) UES, where
ES is the ergodic state as the resting position between ac-
tions and we refer the model as ES-HMM.

Since want to capture the variation in speed of perform-
ing gestures, we set the transitions in the following way:
when being in a particular node 7 in time ¢, moving to time
t + 1 we can either stay in the same node (slower perfor-
mance), move to node n + 1 (the same speed of perfor-
mance), or move to node n + 2 (faster performance). From
the £S we can move to the first three nodes of any video,
and from the last three nodes of every video we can move
to the £S5 as shown in Fig. 2. The ES-HMM framework
differs from the Firing Hidden Markov Model of [23] in
that we strictly follow the temporal independent assump-
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Figure 3: Latency-aware measure of predictive performance for
a single action: a fixed time window of size 2A is centered around
the ground truth action point annotation (marked e) and used to
partition the three predicted firing events into correct (marked o)
and incorrect predictions (marked x). If there is more than one
firing event within a ground truth window only one prediction is
counted, the remaining ones are ignored. All incorrect detections
are counted. The number of correct and incorrect detections deter-
mines prec(A) and rec(A).

tion, forbidding inter-states transverse, preconditioned that
a non-repetitive sequence would maintain its unique states
throughout its performing cycle.

The emission probability of the trained model is rep-
resented as a matrix of size Ny¢ * Nx where N is the
number of frames in a test sequence and output target class
N7c = N * Ny, + 1 where N 4 is the number of action
class and Ny, is number of states associated to an individ-
ual action a and one £S state. Result of the Viterbi algorith-
m is a path—sequence of nodes which corresponds to states.
From this path we can infer the class of the gesture as shown
in Fig. 4b.

Performance Measure: F-score@A The performance of
the system is measured in terms of precision and recall, de-
fined in [7] as:

prec(A) x rec(A)
prec(A) + rec(A)

F — score(A) =2

To achieve a high precision, the training data should only
contain movements that users of the deployed system will
associate with the gesture. To achieve a high recall, the
training data should contain all movements that the design-
er wants to associate with a gesture. For a specified amount
of tolerated latency (Ams) we measure the precision and
recall as shown in Fig. 3.

4. Experiments
Features

The 3D coordinates of N joints of current frame c are
given as: X, = {z{,z5,..., 2% }. We deploy 3D position-
al pairwise differences of joints [30] for observation domain
X. They capture posture features, motion features and off-
set features by direction concatenation: X' = [fcc, fep, feil

as demonstrated in Fig. 4a.

fep = {af — 2|z} € Xe;2h € Xp}

foi = {a§ — al|of € Xyl € X1}
Resulting in a raw dimension of Nx = Njoints* (Njoints —
1)/2+ N2 iis + Ninis) * 3 where Njoings is the num-
ber of joints used. Note that before extracting any features,
all the 3D joint coordinates are transformed from the world
coordinate system to a person centric coordinate system by
placing the HipCenter (or ShoulderCenter if applied) at the
origin. By including temporal differences f.p,, f; partial-
ly overcomes the very strong conditional independence as-
sumption of HMMs, i.e. successive frames are independent
given the hidden state of the HMM.

Admittedly, we do not completely negate human prior
knowledge about information extraction for relevant stat-
ic posture, velocity and offset overall dynamics of motion
data. Nevertheless, aforementioned three attributes are all
very crude pairwise features without any tweak into the data
set or handpick the most relevant pairwise, triple wise, efc.,
designed features [3, 16,20, 23, 24, 31]. Similar data driven
approach has been adopted in [7] where random forest clas-
sifiers were adapted to the problem of recognizing gestures
using a bundle of 35 frames. These sets of features extrac-
tion processes resemble the Mel Frequency Cepstral Coeffi-
cients (MFCCs) for speech recognition community [18].

Experimental setup

For high level skeleton feature extraction, we fix network
architecture as [Ny, N2, 1000, 1000, 1000, 1000, N7¢]
where Ny is the observation domain dimension and Ny
is the number of hidden nodes in GRBM, depending on
the used joints set and is chosen as 2000 for upper body
joints and 4000 for full body skeletal joints; Ny is the
output target class. And in all our experiments number
of states associated to an individual action Ny, is chosen
as 10 for modeling the states of an action class. The
feed forward networks are pre-trained with a fixed recipe
using stochastic gradient decent with a mini-batch size of
100 training cases. Unsupervised initializations tend to
avoid local minima and increase the networks performance
stability and we have run 100 epochs for unsupervised
pre-training. For Gaussian-binary RBMs, learning rate is
fixed at 0.001 while for binary-binary RBMs as 0.01. For
fine-tuning, the learning rate starts at 0.1 with 0.998 scaling
after each epoch. To prevent complex co-adaptations in
which a feature detector is only helpful in the context of
several other specific feature detectors, we dropout [12]
half of the feature detectors. Though we believe further
carefully fine-tuned parameters would lead to more com-
petitive results, in order not to “creeping overfitting”, as



Data Set ChaLearn Gesture |MSR Action3D Method H Classification rate

Method Sequence of Most Informative Joints [24] 0.29
EigenJoints+NBNN [30] 0.593 0.720 Recurrent Neural Network [17] 0.425
GMM+HMM [21] 0.408 0.704 Dynamic Temporal Warping [19] 0.54
NN+DTW [29] 0.599 - Multiple Instance Learning [5] 0.657
DBN+HMM (this work) H 0.628 ‘ 0.735 ‘ Structured Streaming Skeletons [32] 0.817

Actionlet Ensemble [28] 0.88

Table 1: Baseline comparisons: first row (EigenJoints+NBNN) ’ DBN+HMM (this work) H 0.82

adopts same sets of features: showing that our model’s efficacy in
temporal incorporation; second row method (GMM+HMM) has
the same graphical representation except that the Deep Belief Net-
work is used to extract high level skeletal features, proving DBN
is more effective for estimating the emission probability. And our
model achieves better recognition rate than the winner of the chal-
lenge [29] that uses variant of nearest neighbour and dynamic time
warping in the ChalLearn Gesture dataset.

algorithms over time become too adapted to the dataset,
essentially memorizing all its idiosyncrasies, and losing
ability to generalize [27], we would like to treat the model
as the aforementioned more generic approach.

Baseline

We perform the sanity check for our algorithm as an ef-
fective way of comparing against two baselines: in order
to verify that the model is a more powerful alternative to
GMM for relating HMM states, we compare our approach
against the GMM+HMM paradigm [21] for modeling the
observation states p(X;|H;); to verify that the temporal
incorporation in our model is a more effective approach
for action recognition against the Bag-of-Visual-Word ap-
proach, we compare against the EigenJoint-Naive Bayes N-
earest Neighbour [30] where the same set of raw features
have been used.

4.1. ChaLearn Italian Gesture Recognition

This challenge is on “multiple instance, user indepen-
dent learning” [6] of gestures. We focus only on the skele-
tal modularity. There are 20 Italian cultural/anthropological
signs, i.e.,vattene, vieniqui, perfetto, furbo, cheduepalle,
chevuoi, daccordo, seipazzo, combinato, freganiente , ok,
cosatifarei, basta, prendere, noncenepiu, fame, tantotempo,
buonissimo, messidaccordo, sonostufo. We use the subset
where the label data are provided during our evaluation pro-
cess. The set contains 393 labeled sequences with a total of
7754 gestures. We used 350 sequences for training and the
rest 43 sequences for testing, each sequence contains 20 u-
nique gestures. For training set, there are in total 339,700
frames (20 fps). Note that large number of frames (up to
hundred thousands of frames) is advantageous in our mod-
el settings over other nonparametric models for estimating
skeletal human poses (e.g. GPLVM [14], Kernel Method-

Table 2: Recognition accuracy on MSR-Action3D dataset com-
pared to state-of-the-art approaches.

s [13] could not be readily scaled up). Due to the paramet-
ric structure, once the training set is learned, testing time
will be trivial compares with memory based method [2, 30].
Because this is a gesture recognition data set, only upper
body joints are relevant to our discriminative tasks. There-
for, we consider only the upper 9 body for our task (full
body joints have been compared, but as expected, results in
inferior results compared to upper body 9 joints). The 9 up-
per body joints used are “ShoulderCenter, ShoulderLeft, El-
bowLeft, WristLeft, HandLeft, ShoulderRight, EIbowRight,
WristRight, HandRight”. The consistent improvement of
recognition accuracy against two baseline methods under
the same experimental settings in Table 1 shows the efficacy
of the proposed framework in better estimating observation
model and parsing temporal domain knowledge.

4.2. MSR Action3D

MSR Action3D dataset [28] is an action dataset of depth
sequences captured by a depth camera. This dataset con-
tains twenty actions, Each action was performed by ten sub-
jects for three times. We compared the methods using only
skeleton joints module in Table 1. Though the model still
consistently outperforms two other baselines, the margins
become smaller because only less than 10,000 frames in M-
SR Action3D dataset so that limited frames would not bring
the advantages of generative pre-training into play.

We compare our model with the state-of-the-art meth-
ods on the cross-subject test setting as in [28] where train-
ing and testing sets are split by half of the actors. Though
various idiosyncratic experimental set ups make it hard to
have a fair comparison and generally render our generic 20
classes model at a disadvantage, (e.g. [28] with parameters
that are empirically selected with data set dependent further
tuning), the performance in Table 2 still exhibits the reason-
able effectiveness of our model for this small frame number
dataset.

4.3. MSRC12 dataset

The MSRC12 dataset [7] is originally proposed to inves-
tigate the question of what is the most appropriate semiotic
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Figure 4: (a) point cloud projection of depth image from ChaLearn Italian Gesture dataset and the 3D positional features. (b) top
right: a “Wind up the music” metaphoric action instance from MSRC12 dataset; bottom: global score matrix via accumulating emission

probabilities - fluorescent green is the Viterbi path from back tracking, a zoom in (top left) shows a path from states 41-50 (y-axis) indicating

the gesture number 5 because we assign 10 states for each hidden Markov Model. Blue circles are the oracle ground truth action points

and red circles are the predicted action points (middle frame of the Viterbi best path).

modality of instructions for conveying to human subjects
the movements the system developer needs them to perfor-
m. Two categories of gesticulation, i.e., Iconic - those im-
bue a correspondence between the gesture and the reference
and Metaphoric - those that represent an abstract content,
were investigated. Specifically they are: [ift outstretched
arms, Duck, Push right, Goggles, Wind it up, Shoot, Bow,
Throw, Had enough, Change weapon, Beat both, Kick.
The dataset includes 594 sequences and 719,359 frames-
approximately six hours and 40 minutes-collected from 30
people performing 12 gestures. In total, there are 6,244 ges-
ture instances. The motion files contain tracks of 20 joints
estimated using the Kinect Pose Estimation pipeline. The
body poses are captured at a sample rate of 30Hz with an
accuracy of about 10 centimeters in joint positions. We
conduct our experiments on sequences with a compound
semiotic modality, (i.e. tagstream with letter “A”, such as
Video + Text or Image + Text) and follow a “leave-persons-
out” protocol, using 14 sequences of each gesture class for
training (note that each sequence contains multiple gesture
instances), leaving 4-6 sequences for intra-modality testing
or 29-30 sequence for inter-modality testing.

For training the network, we set the ground truth action
point annotation as the middle state of the target class, en-
coding a window of 100 frames centered around the action
point, with the rest of frames encoded as the £S. We as-
sess the dual-modality generalization performance for all
12 gestures and compare against the random forest recog-
nition system which has been successfully integrated into
a game title that is currently being sold in retail stores and
most recently proposed Structured Streaming Skeletons in
the metric of F-score in Table 3. Fig. 4b illustrates a “Wind
up the music” metaphoric action instance and the visual-

Modality intra-modality | inter-modality
F-score
Randomized Forest [7] 0.621 0.576
Structured Streaming Skeletons [32] 0.718 -
DBN-ES-HMM (this work) 0.7243 0.7098

Table 3: F-score at A = 333ms for intra-modality and inter-
modality test of MSRC12 dataset.
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Figure 5: Latency profile of the MSRC 12 action point recogni-
tion task. We show F-score as a function of the tolerated latency
for the DBN+ES-HMM. Each frame lasts 33ms. The plateau is
largely due to low recall (missing detection).

ization of action point detection. Fig 5 plots the F-score at
tolerated latency for the ES-HMM.

Computational complexity

Though learning the network using stochastic gradient
descent is tediously lengthy, once the model finishes train-
ing, with low inference cost, our framework can perform
in realtime action segmentation/recognition. Specifically, a



single feed forward neural network incurs trivial computa-
tion time, linearly in O(T) and the complexity of Viterbi
algorithm is O(T | S|?) with number of frames 7" and state
number S.

5. Conclusion

We have made feature extraction from skeletal joints
data an implicit approach utilizing deep belief networks.
By encoding dynamic structure into a HMM-based model,
our discriminative trained, hierarchical parametric model
excelled the GMM paradigm at better estimating emission
probabilities for the directed graphical model. Further, we
have introduced an ergodic states, rendered the framework
being able to anchor the precise temporal locations of
actions that are momentary, voluntarily performed and dis-
crete in nature. Experiments have confirmed the efficacy of
the framework at better estimating observation model than
the GMM and integration of temporal domain knowledge
exceeds the Bag-of-Visual-Word approach.
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