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Abstract

Graphs are a powerful tool to model structured object-
s, but it is nontrivial to measure the similarity between two
graphs. In this paper, we construct a two-graph model to
represent human actions by recording the spatial and tem-
poral relationships among local features. We also propose
a novel family of context-dependent graph kernels (CGK-
s) to measure similarity between graphs. First, local fea-
tures are used as the vertices of the two-graph model and
the relationships among local features in the intra-frames
and inter-frames are characterized by the edges. Then, the
proposed CGKs are applied to measure the similarity be-
tween actions represented by the two-graph model. Graphs
can be decomposed into numbers of primary walk groups
with different walk lengths and our CGKs are based on the
context-dependent primary walk group matching. Taking
advantage of the context information makes the correctly
matched primary walk groups dominate in the CGKs and
improves the performance of similarity measurement be-
tween graphs. Finally, a generalized multiple kernel learn-
ing algorithm with a proposed l12-norm regularization is
applied to combine these CGKs optimally together and si-
multaneously train a set of action classifiers. We conduct a
series of experiments on several public action datasets. Our
approach achieves a comparable performance to the state-
of-the-art approaches, which demonstrates the effectiveness
of the two-graph model and the CGKs in recognizing human
actions.

1. Introduction
Many of successful methods for human action recogni-

tion are based on local spatio-temporal features [4, 17, 11,
22], which are extracted sparsely from video sequences. In
these methods, an action is represented as an ensemble of
local features. This ensemble contains not only individu-
al local features but also complex topological structure a-
mong these local features. Graphs are an effective tool for
modeling complex structured data [1, 8]. However, few re-
searches model the ensemble of local features by graphs in

human action recognition. There are two nontrivial diffi-
culties to be solved: i) how to construct graphs to model
these local features; ii) how to measure similarity between
the constructed graphs. In this paper, we focus on these t-
wo problems and propose a new graph-based approach for
human action recognition.

To model the ensemble of local features, we construc-
t two directed and attributed graphs, based on the local
features with intra-frame relationships and inter-frame re-
lationships. These two graphs are named as video co-
occurrence graph (VCG) and video successiveness graph
(VSG) respectively. The vertex attributes in both graphs
correspond to the local features of a video sequence. The
edge attributes in VCG and VSG describe the spatial layout
relationships of local features detected in the intra-frames
and in the inter-frames respectively. The VCG and VSG are
complementary to each other. Compared with the popular
bag-of-words model [4, 22], these two graphs preserve not
only the individual power of local features but also most of
the spatio-temporal relationships among them, and hence
they provide a more informative representation for actions.

As the actions represented by VCGs and VSGs are struc-
tured, it is difficult to directly use the traditional statisti-
cal classification methods to classify them. We propose a
novel family of context-dependent graph kernels (CGKs)
which are a bridge between the structured action represen-
tation and the statistical classification. The proposed CGK-
s are actually a series of decomposition kernels. Specifi-
cally, graphs are first decomposed into a number of prima-
ry walk groups (PWGs) with different lengths, and CGKs
are then obtained by context-dependent matching of PWGs
from two graphs. The main property of CGKs is that the
contexts of PWGs are incorporated into the PWGs match-
ing, which improves the similarity measurement between
PWGs. Usually, only the correctly matched PWGs carry
meaningful discriminant information for comparing graph-
s. The correctly matched PWGs should have high similarity
value not only between themselves, but also between their
contexts. In CGKs, the incorporation with context informa-
tion makes the correctly matched PWGs dominate and im-
proves the performance of similarity measurement between
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Figure 1. The illustration of the CGKs based human action recog-
nition. (a) A video sequence is represented by VCG and VSG
together. (b) Different orders CGKs are computed on both video
graphs. (c) The GMKL algorithm is applied to combine the CGKs
together and learn action classifiers simultaneously.

graphs. However, in the traditional random walk graph ker-
nels (TGKs) [5, 1, 20], where all the possible matchings be-
tween PWGs are summed with same weights, the discrim-
inative power of correctly matched PWGs is swamped by
that of the incorrectly matched ones.

The proposed CGKs can efficiently measure the similar-
ity between graphs. Subsequently, a generalized multiple
kernel learning (GMKL) algorithm with l12-norm regular-
ization is applied to combine together different order CGKs
on both graphs. The proposed l12-norm regularization con-
siders both the sparseness constraint on the kernels from the
same graph and the smoothness constraint on kernels from
different graphs. The logical block diagram of our approach
is shown in Figure 1.

The main contributions of this paper are as follows:

• A two-graph model is proposed for human action
representation, capturing the spatio-temporal relation-
ships among local features.

• A novel family of CGKs is proposed to measure simi-
larity between attributed graphs. The CGKs utilize the
contexts of PWGs to improve the performance of sim-
ilarity measurement between graphs.

• A GMKL formulation with l12-norm regularization is
applied for kernel combination and action classifica-
tion.

2. Related Work
Graphs are a natural tool for modeling structured data,

with vertices representing parts and edges representing the
relations between them. They have been widely applied and
shown good performance in the fields of protein prediction
and chemical molecular analysis [1, 7].

Graphs have also been utilized in human action recogni-
tion. Borzeshi et al. [2] represent each frame as a graph with
vertices corresponding to the spatial local features extracted

from this frame. Raja et al. [14] describe a person in a frame
with a graphical model which contains six vertices encod-
ing the positions of five body parts and the action label.
Gaur et al. [6] construct a string of feature graphs for the
spatiotemporal layout of local features. Each graph in the
string models the spatial configuration of local features in a
small temporal segments. Ta et al. [18] construct a hyper-
graph to model the extracted spatiotemporal local features
and a hypergraph matching algorithm is used for activity
recognition. These approaches construct graphs to model
local features or body parts. However, they do not provide
explicitly spatio-temporal relationships between these local
features or body parts.

For the similarity measurement between graphs, random
walk graph kernels have received increasing attention re-
cently. Gärtner et al. [5] compute the graph kernel on two
labeled graphs by counting the number of matched labeled
random walks. Then it is extended by Borgwardt et al. [1]
by replacing the Dirac kernel with more complex kernels
for continuous attriubtes. Vishwanathan et al. [20] propose
a generalized version of the random walk graph kernels and
introduce several techniques to speed up the computation of
random walk graph kernels. Harchaoui and Bach [8] build
a set of segmentation graph kernels on images and utilize
a multiple kernel learning method to combine these kernels
together and classify images. These graph kernels are al-
l built by comparing the similarities between all pairs of
walks from two graphs. However, the contexts of walk-
s, which can improve the similarity measurement between
walks, are not exploited in all of their approaches.

3. Context-Dependent Graph Kernels

3.1. Construction of CGKs

We propose a family of CGKs for the similarity mea-
surement between attributed graphs. Graphs are first de-
composed into a number of PWGs and CGKs are obtained
by the PWG matching, incorporating with the context infor-
mation of PWGs.

An attributed graph with N vertices is denoted as G =
(V,E), where V = {vi}Ni=1 is the vertex set and E is the
edge set. A vertex is a point embedded in a Euclidean space
with a vector of attributes attached to it. It is defined as vi =
(li, di), where li ∈ Ru is the coordinate of the vertex and
di ∈ Rz is the corresponding attribute vector. In the paper,
u = 3 and z is the dimension of local feature descriptors.
If a vertex vj is a neighbor of vi, vi and vj form an edge
(vi, vj) ∈ E.

Our graph decomposition is based on random walks.
A random walk with length n from graph G is denoted
as a sequence of vertices jointed by edges, w = (vw0

,
ew1

, ..., ewn , vwn), where ewi = (vwi−1
, vwi) ∈ E, 1 ≤

i ≤ n. Let ρnG be the set of total walks with length n
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in graph G and ρnG(i, j) ⊂ ρnG be a primary walk group
(PWG), namely, a subset of ρnG containing walks starting
at vertex vi and ending at vj . It means that when a walk
w ∈ ρnG(i, j), we have vw0

= vi and vwn = vj . Actual-
ly, for a walk w with length n = 0, the walk is a vertex.
Therefore, we have ρ0

G = V , and ρ0
G(i, i) = vi. The PWGs

can be regarded as substructures of graphs and the context-
dependent kernels on PWGs constitute the CGKs on graphs.

Let kv(v, v′) and ke(e, e′) be two kernel functions de-
fined on vertices and edges respectively. These two func-
tions can be designed differently according to differen-
t tasks. Let kw(w,w′) be a kernel function on two walks
with the same length n. If n = 0, we have kw(w,w′) =
kv(vw, v

′
w′). If n ≥ 1, we have

kw(w,w′) =

n∏
i=0

kv(vwi , v
′
w′i

)

n∏
j=1

ke(ewj , e
′
w′j

). (1)

The kernels on PWGs are defined as a summation of walk
kernels on all pairs of walks from both PWGs

kwg(ρ
n
G(i, j), ρnG(r, s))=

∑
w∈ρnG(i,j)

∑
w′∈ρnG(r,s)

kw(w,w′). (2)

Subsequently, we define the contexts of a PWG ρnG(i, j)
as ηnG(i, j), which has the following form

ηnG(i, j) = {ρnG(p, q)| p ∈ c(i), q ∈ c(j)}, (3)

where c(i) denotes the contexts of vertex vi. We define c(i)
as the set of the m nearest vertices of vi in the Euclidean
space, formulated as follows

c(i) = {vp| ||li − lp||2 ≤ ||li − lq||2,∀ vq /∈ c(i)
and |c(i)| = m, p 6= i}. (4)

The similarity between the contexts of PWGs is used as a
weight on the similarity between the PWGs. The context-
dependent kernels on PWGs are defined as

kcwg(ρ
n
G(i, j), ρnG(r, s)) = kwg(ρ

n
G(i, j), ρnG(r, s))∗

(1 + κkwg(η
n
G(i, j), ηnG(r, s))), (5)

where

kwg(η
n
G(i, j), ηnG(r, s))=

∑
p ∈ c(i), q ∈ c(j),
k ∈ c(r), t ∈ c(s)

kwg(ρ
n
G(p, q), ρnG(k, t)) (6)

and κ is a constant controlling the weight of the context
information in the kernel. Figure 2 shows the kernels on
PWGs and on their contexts.

The proposed CGKs on graphs are computed as a sum-
mation of context-dependent similarities between all pairs
of PWGs from two graphs. Given two graphs G = (V,E)
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Figure 2. (a) shows two graphs G and G′. The green vertices con-
nected with the red ones are their contexts. The edges are not
shown in both graphs. (b) shows the kernels on PWGs and the
kernels on their contexts. These two parts constitute the context-
dependent kernel on PWGs by equation 5.

and G′ = (V ′, E′), we refer to the CGK with respect to
walk length n as the nth-order CGK, which is defined as

kng (G,G′) =
1

Nn
GN

n
G′

∑
ρnG(i, j) ⊂ ρnG

ρn
G′ (r, s) ⊂ ρ

n
G′

kcwg(ρ
n
G(i, j), ρnG′(r, s)) (7)

where Nn
G and Nn

G′ are the numbers of PWGs with length
n in G and G′ respectively. With a sequence of weight vari-
able (λ0, λ1, λ2, ...) to emphasize the importance of each
order kng (G,G′), the final graph kernel is computed as a
weighted summation of the different nth-order CGKs

kg(G,G
′) =

∑
n=0

λnk
n
g (G,G′). (8)

3.2. Relations to Other Kernels

CGKs are related to the traditional random walk graph
kernels (TGKs). TGKs are computed as a summation of
similarities between all pairs of walks from two graphs, i.e.,
the summation of similarities between all pairs of PWGs.
The nth-order TGK is expressed as

kntg(G,G
′) =

∑
w∈ρnG

∑
w′∈ρn

G′

kw(w,w′)

=
∑

ρnG(i, j) ⊂ ρnG,
ρn
G′ (r, s) ⊂ ρ

n
G′

kwg(ρ
n
G(i, j), ρnG′(r, s)). (9)

Except for the normalization factor, TGKs can be viewed as
a special case of our CGKs where κ in equation 5 is zero. It
means that the context information of PWGs is not utilized
in the matching of PWGs. All pairs of matched PWGs are
combined with the same weights. However, this can reduce
the discriminative power of correctly matched PWGs from
two graphs.

As the walk with length n = 0 is actually a vertex, the
0th-order CGK can be rewritten equally as

k0
g(G,G′)=

1

|V ||V ′|
∑
i,j

kv(vi, v
′
j)(1+κ

∑
k ∈ c(i),
t ∈ c(j)

kv(vk, v
′
t)). (10)
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It is determined only by the vertex information of graphs
and no edge information is considered in this kernel. When
κ is large enough, it is an approximation of the neighbor-
hood kernel on the attributed point sets [13]

knk(V, V ′) =
1

|V ||V ′|
∑
i,j

kv(vi, v
′
j)
∑

k ∈ c(i),
t ∈ c(j)

kv(vk, v
′
t). (11)

Therefore, the CGKs are an extension of the neighborhood
kernel from attributed point sets to attributed graphs.

3.3. Computation of CGKs

For two graphs G and G′, it has been proved that per-
forming a random walk on the direct product graph of these
two graphs is equivalent to performing a simultaneous ran-
dom walk on G and G′ [9]. When computing the CGKs
in practice, we utilize the direct product graph to make the
computation efficient. The direct product graph of G and
G′ is denoted as GP = (VP , EP ), where VP and EP are
defined as

VP = {(vi, v′r) | vi ∈ V, v′r ∈ V ′, kv(vi, v′r) > 0} (12)

and

EP = {((vi, v′r), (vj , v′s)) | (vi, vj) ∈ E, (v′r, v′s) ∈ E′,
ke((vi, vj), (v

′
r, v
′
s)) > 0} (13)

respectively. For each vertex (vi, v
′
r)∈VP , we assign it a

weight ωir=kv(vi, v
′
r) and for each edge ((vi,v

′
r),(vj ,v

′
s))∈

EP , we assign it a weight ωir,js = ke((vi, vj), (v
′
r, v
′
s)),

where ir and js are the vertex indices in GP . We use
two matrixes WV , WE ∈ R|VP |×|VP | to contain the ver-
tex weights and edge weights, with [WV ]ir,ir =ωir and
[WE ]ir,js=ωir,js respectively. The final nth-order context-
free weight matrix Wn

P of GP is expressed as

Wn
P = WV (WEWV )n, (14)

We define the context matrix CP ∈ R|VP |×|VP | for ver-
tices in GP as

[CP ]ir,js =

{
1 if j ∈ c(i) and s ∈ c(r)
0 otherwise

(15)

and the nth-order context-dependent weight matrix Wn
CP of

GP is

Wn
CP = Wn

P + κWn
P � (CPW

n
PC

T
P ), (16)

where � represents the Hadamard product which is ob-
tained by the element-wise multiplication of two matrices
with the same size and CTP is the transposed matrix of CP .

In fact, the elements of Wn
P and Wn

CP correspond to
the context-free and context-dependent kernels on PWGs
respectively. So we have

[Wn
P ]ir,js = kwg(ρ

n
G(i, j), ρnG(r, s)), (17)

and
[Wn

CP ]ir,js = kcwg(ρ
n
G(i, j), ρnG(r, s)). (18)

According to equation 7, the nth-order CGK on graphs is
expressed as

kng (G,G′) =
1

Nn
GN

n
G′

∑
ir,js

[Wn
CP ]ir,js (19)

Substituting the above equation into equation 8, we obtain
the final graph kernel on G and G′.

4. CGKs Based Action Recognition
4.1. Two-Graph Model for Action Representation

Given a video sequence, we first extract its local spatio-
temporal features. We utilize Dollár’s separable linear fil-
ters [4] to detect the spatio-temporal interest points in the
video sequence and the 3D SIFT descriptor [17] to describe
the obtained interest points. Let N be the number of to-
tal interest points and fi = [li, di] be the ith local feature
where li = (xi, yi, ti) is the space-time coordinate in the
3D domain and di denotes the 3D SIFT descriptor. So the
ensemble of local features is depicted as {f1, f2, ..., fN}.

We construct two graphs: a video co-occurrence graph
(VCG) and a video successiveness graph (VSG), to model
the spatial layout relationships of local features detected in
the intra-frames and inter-frames. These two graphs them-
selves reflect different temporal order relationships between
local features.

The VCG and VSG are denoted as Gc = (Vc, Ec, Ac)
and Gs = (Vs, Es, As) respectively, where Vc and Vs
are the vertex sets, Ec and Es are the edge sets, Ac and
As ∈ RN×N are the affinity matrixes of the two graphs.
The vertices of the two graphs correspond to interest points
with their 3D SIFT descriptors as the vectors of attributes.
We employ the ε-Graph method to construct Gc and Gs.
For Gc, Ac has the form of

Ac(i, j) =


1 if

√
(xj − xi)2 + (yj − yi)2 < ε1,

yj ≥ yi, and tj = ti,

0 otherwise.
(20)

For Gs, As has the form of

As(i, j) =


1 if

√
(xj − xi)2 + (yj − yi)2 < ε2,

and 0 < tj − ti ≤ εt,
0 otherwise.

(21)
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The parameters ε1 and ε2 are two thresholds of the spa-
tial distance between two vertices and εt is the threshold
of the temporal distance. When Ac(i, j) = 1, we have
(vi, vj) ∈ Ec and when As(i, j) = 1, (vi, vj) ∈ Es. More-
over, discrete attributes are attached to edges in both graphs
according to the relative spatial positions of vertices. A po-
lar coordinate system with the origin at the coordinate of vi
is utilized to capture the relative spatial location informa-
tion between vi and its neighbors. The polar coordinate is
divided into a number of bins. The edge attribute of (vi, vj)
is represented by the index of the bin where vj locates on
the polar coordinate system.

Actions are represented by VCGs and VSGs together.
This representation has two properties. First, these two
graphs are complementary to each other and preserve the
spatial and temporal relationships between local features.
Second, these two graphs are indeed directed graphs and
there are no cycles in both of them. The random walks in
both graphs are paths, which avoid the tottering and halting
problems when computing graph kernels based on random
walks.

4.2. Action Similarity Measurement by CGKs

We apply the proposed CGKs to measure the similarity
between human actions represented by VCGs and VSGs.
First of all, we define the vertex kernel as

kv(v, v
′) =

{
exp(− ||d−d

′||22
2σ2 ) if ||d− d′||2 ≤ εd,

0 otherwise,
(22)

where d and d′ are the corresponding 3D SIFT descriptors
for vertices v and v′ respectively, σ is a scale parameter for
Gaussian function, and εd is a threshold. Meanwhile, we
also define the edge kernel as

ke(e, e
′) =

{
1 if attribute(e) = attribute(e′),

0 otherwise.
(23)

The above definitions of vertex and edge kernels reduce the
size of the direct product graph and make it quite sparse,
which speeds up the computation process.

Let S = (Gc, Gs) and S′ = (G′c, G
′
s) be two video

sequences. When computing the 0th-order CGK on two
graphs, we have k0

g(Gc, G
′
c) = k0

g(Gs, G
′
s), as the two

graphs have the same vertex set. We set the maximal order
of CGKs on VCGs and VSGs are mc and ms respectively.
According to equation 8, the final kernel on two sequences
is expressed as

k(S, S′) =λ0k
0
g(Gc, G

′
c) +

mc∑
i=1

λcik
i
g(Gc, G

′
c)

+

ms∑
j=1

λsjk
j
g(Gs, G

′
s). (24)

where Λ = [λ0, λc1 , ..., λcmc , λs1 , ..., λsms ]T , Λ > 0 is a
weight vector and k0

g(Gc, G
′
c), k

i
g(Gc, G

′
c), k

j
g(Gs, G

′
s) are

computed by equation 19.

4.3. Generalized Multiple Kernel Learning

We apply the GMKL formulation proposed by Varma
et al. [19] to learn the weight for each CGK and the ac-
tion classifiers simultaneously. Assume a set of M train-
ing sequences {Sp, yp}Mp=1 where Sp = (Gcp, Gsp) rep-
resents an input video sequence and yp is the action la-
bel associated with Sp. We define a set of M × M k-
ernel matrixes {K0,Kc1 , ...,Kcmc ,Ks1 , ...,Ksms

} for the
training video sequences, with [K0]p,q = k0

g(Gcp, Gcq),
[Kci ]p,q = kig(Gcp, Gcq), and [Ksj ]p,q = kjg(Gsp, Gsq),
where 1 ≤ i ≤ mc and 1 ≤ j ≤ ms. According to equa-
tion 24, the final kernel matrix K for the training sequences
is defined as

K = λ0K0 +

mc∑
i=1

λciKci +

ms∑
j=1

λsjKsj , (25)

where Λ = [λ0, λc1 , ..., λcmc , λs1 , ..., λsms ] is the same as
the kernel weight vector defined in equation 24.

The regularization of weights on CGKs is determined
as follows. On the one hand, different nth-order (n ≥ 1)
CGKs on the same graph may contain redundant informa-
tion for recognizing actions. There should be a sparse-
ness constraint on the weights of those kernels. On the
other hand, as VCGs and VSGs preserve different spatio-
temporal relationships between local features, CGKs on dif-
ferent graphs contain complementary information for action
recognition. For the 0th-order CGK, the spatio-temporal re-
lationships of local features are not considered in the kernel
computation. So, there should be a smoothness constraint
on the weights of CGKs from different graphs and the 0th-
order CGK. Considering the above two aspects, we apply
the GMKL framework with a l12-norm regularization on
the kernel weights to join all the CGKs together optimally.
The l12-norm regularization is modeled as

r(Λ) =
1

2
|| |λ0|1, |λc1 , ..., λcmc |1, |λs1 , ..., λsms |1 ||

2
2

=
1

2
(λ2

0 + (

mc∑
i=1

λci)
2 + (

ms∑
j=1

λsj )
2). (26)

Let Y be a diagonal matrix with the action class labels
yi on the diagonal and K be the kernel matrix defined in
equation 25. The dual problem of GMKL is represented as

min
Λ
D(Λ)

where D(Λ) = max
ααα

1Tααα− 1

2
αααTY KYααα+ C2r(Λ) (27)

subject to 1TYααα = 0, 0 ≤ ααα ≤ C1, Λ ≥ 0,
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where ααα is the Lagrangian multiplier and C1, C2 are two
constants controlling the importance of hinge loss and reg-
ularization on kernel weights respectively.

As the D(Λ) is differentiable, the derivatives of D(Λ)
have the form as

∂D

∂λ0
= C2λ0 −

1

2
αααTY K0Yααα,

∂D

∂λci
= C2

mc∑
k=1

λck −
1

2
αααTY KciYααα, (28)

∂D

∂λsj
= C2

ms∑
k=1

λsk −
1

2
αααTY KsjYααα,

where 1 ≤ i ≤ mc and 1 ≤ j ≤ ms.
Then the minimax optimization algorithm is utilized to

calculate ααα and Λ iteratively. In the first stage, Λ is fixed so
that K and r(Λ) are constants. In this situation, ααα can be
obtained by applying any SVM solver. In the second stage,
ααα is kept fixed and Λ is estimated by the projected gradi-
ent descent method. The weights are updated by λt+1

k =
λtk − st(∂D/∂λk) and projected to a feasible set λt+1

k =
max(0, λt+1

k ), where k ∈ {0, c1, ..., cmc , s1, ..., sms} and
st is the step size chosen based on the Armijo rule. These
two stages are repeated iteratively until convergence.

5. Experimental Results
We test the proposed action recognition approach on sev-

eral benchmark datasets: the KTH action dataset [16], the
UCF Sports dataset [15], and the UCF Films dataset [15].

Six approaches are designed in order to evaluate and con-
trast with the performance of our algorithm in recognizing
human actions. In the first approach, we use a bag-of-words
model to represent the ensemble of local features extract-
ed from a video sequence. A χ2-kernel is used to measure
the similarity between the histograms of sequences and an
SVM classifier is used for action classification. Obviously,
the spatio-temporal relationships of local features are not
involved in this approach.

In the second approach, we evaluate the performance of
the 0th-order CGK. Though video sequences are represent-
ed by VCGs and VSGs, the edge information of two graphs
are not considered in this kernel. It depends on the indi-
vidual discriminative power of the local features, involving
no spatio-temporal relationships among them. The obtained
kernel matrix is sent into an SVM classifier directly for hu-
man action classification.

In the third approach, the ensemble of local features is
modeled by the VCG. We compute different order CGK-
s (including the 0th-order CGK) on VCGs and apply the
GMKL to join the obtained kernels together. In the fourth
approach, the ensemble of local features is modeled by the
VSG. We also compute different order CGKs (including

the 0th-order CGK) on VSGs and apply the GMKL to join
the kernels together. In these two approaches, sequences
are represented by different graphs, which exploit different
spatio-temporal relationships among local features.

In the fifth and sixth approaches, the ensemble of lo-
cal features is modeled by the VCG and VSG together. In
the fifth approach, traditional random walk graph kernels
(TGKs) are used to measure the similarity between video
graphs and different order TGKs on both graphs are com-
bined by the GMKL algorithm. In the sixth approach, we
use our proposed CGKs to measure the similarity between
video graphs and combine the obtained CGKs together by
the GMKL algorithm. The main difference between these
two approaches is that the contexts of PWGs play a role in
the PWGs matching when computing CGKs.

The above six approaches are referred to as ‘BoW’, ‘0-
CGK’, ‘VCG+CGKs’,‘VSG+CGKs’,‘VCG+VSG+TGKs’
and ‘VCG+VSG+CGKs’ respectively. In our experiments,
we define the nearest 5 interest points in the 3D space as the
contexts of a given interest point. We set the max order of
CGKs on VCGs and VSGs to be 4 and 5 respectively.

5.1. Experiments on the KTH Dataset

The KTH dataset is a widely used action dataset which
contains six human action classes. They are performed by
25 subjects under four different scenarios. There are total
599 video sequences in this dataset. We perform the leave-
one-out cross validation, i.e., videos of 24 subjects are used
for training and videos of the remaining one subject are used
for test. We perform the above mentioned six approaches
on the KTH dataset. For the ‘BoW’ approach, the number
of visual words in the vocabulary is set to 1600 according
to the cross validation. The average accuracy values on all
classes of the six approaches are shown in Table 1. The per-
formances of six approaches on each action class are shown
in Figure 3.
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Figure 3. The performance of six approaches on the KTH dataset.

Table 1 and Figure 3 show that the approach of ‘VCG
+VSG+CGKs’ achieves the best accuracy value 97.0% on
the KTH dataset. Moreover, the following four points can
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KTH (%) UCF (%)
BoW 93.9 84.7
0-CGK 94.7 85.3
VCG+CGKs 95.5 88.7
VSG+CGKs 96.3 89.3
VCG+VSG+TGKs 93.3 82.0
VCG+VSG+CGKs 97.0 90.7

Table 1. The overall accuracy of the six approaches on the KTH
and UCF sport datasets.

KTH (%) UCF (%)
Yeffet et al. [24] 90.1 79.2
Wang et al. [22] 92.1 85.6
Kovashka et al. [11] 94.5 87.3
Le et al. [12] 93.9 86.5
Wang et al. [21] 94.2 88.2
Jiang et al. [10] 95.8 88.0
Wang et al. [23] 93.3 -
Celiktutan et al. [3] 90.6 -
Our ‘VCG+VSG+CGKs’ 97.0 90.7

Table 2. The comparison of our approach with the state-of-the-art
approaches on the KTH and UCF sport datasets.

be observed through analyzing the experimental results of
the six different approaches.

First, the ‘0-CGK’ approach achieves 94.7% accuracy,
which is 0.8% higher than that of the ‘BoW’ approach. It
indicates that without considering the spatio-temporal re-
lationships among local features, our 0-order CGK stil-
l can achieve a relatively considerable performance on this
dataset.

Secondly, the ‘VCG+CGKs’ and ‘VSG+CGKs’ ap-
proaches, reaching the accuracies of 95.5% and 96.3%, are
0.8% and 1.6% higher than the ‘0-CGK’ respectively. It
demonstrates that both VCG and VSG do preserve spatio-
temporal relationships among local features detected in the
intra-frames and the inter-frames effectively. And these p-
reserved spatio-temporal relationships, can improve the per-
formance of human action recognition.

Furthermore, the ‘VCG+VSG+CGKs’ approach outper-
forms both ‘VCG+CGKs’ and ‘VSG+CGKs’ approaches
and achieves performance of 97.0%. We can infer that the
VCG and VSG are complementary to each other and combi-
nation of both graphs together will lead a sufficiently infor-
mative and discriminative representation for human actions.

Finally, comparing ‘VCG+VSG+CGKs’ with ’VCG+
VSG+TGKs’, we can see that the former is 3.7% higher
than the latter on the accuracy. It shows that the proposed
CGKs is superior to the TGKs in measuring similarity be-
tween graphs. The context information utilized in PWG

matching can improve the performance of CGKs in simi-
larity measurement between graphs.

5.2. Experiments on the UCF Sports Dataset

The UCF sports dataset contains 150 broadcast sports
videos of ten different types of actions. The collection of
the dataset represents a natural pool of actions featured in
a wide range of scenes and viewpoints, so the videos ex-
hibit great intra-class variation. In the experiments, we take
the leave-one-out cross validation, namely cycling each ex-
ample as a test video one at a time. We also test all six
approaches on this dataset. For the ‘BoW’ approach, the
number of visual words is set to 800 based on the cross val-
idation. The performances of different approaches on each
class are shown in Figure 4 and the average accuracies are
presented in Table 1.
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Figure 4. The performance of six approaches on the UCF sports
dataset.

Table 1 and Figure 4, show that the ‘VCG +VSG+CGKs’
approach outperforms the other five approaches, reaching
90.7% on the UCF sports dataset. Through analyzing the
experimental results of different approaches, we draw the
conclusions similar to that on the KTH dataset, which
demonstrate the effectiveness of our approach on the realis-
tic and complicated action dataset.

In addition, we also compare the performances of our
approach with other state-of-the-art approaches on both the
KTH and UCF sports datasets. The experimental results
are shown in Table 2. It can be observed that our approach
outperforms the listed approaches on both datasets.

5.3. Experiments on the UCF Films Dataset

The UCF films dataset provides a representative pool
of natural samples of action classes, including kissing and
slapping. There are 92 video sequences of kissing and
112 sequences of slapping. The video sequences are ex-
tracted from classic movies and appear in a wide range of
scenes, viewpoints. We proceed a leave-one-out cross vali-
dation fashion in the experiments. The comparison between
our ‘VCG+VSG+CGKs’ approach and other previous ap-

4327



Kiss(%) Slap(%) Average(%)
Rodrigues al et. [15] 66.4 67.2 66.8
Yeffet al et.[24] 77.3 84.2 80.7
Our Approach 97.6 94.4 96.0

Table 3. The comparison of our approach with the state-of-the-art
approaches on the UCF films dataset.

proaches is shown in Table 3. It can be observed that our
approach achieves a higher performance.

6. Conclusion

In this paper, we have proposed a new graph based ap-
proach for human action recognition. First we have con-
structed two complementary video graphs VCG and VSG
to represent an action, capturing the spatio-temporal rela-
tionships among local features. Then a family of CGKs
has been proposed for the similarity measurement between
graphs. We have decomposed graphs into PWGs and dif-
ferent order CGKs have been computed based on the PWG
matching. We have taken advantage of the contexts of P-
WGs to improve the performance of PWG matching. Final-
ly, a GMKL with l12-norm regularization has been applied
to combine CGKs together and classify human actions. Ex-
periments on several datasets have demonstrated that our
two-graph model which preserves the spatial and temporal
relationships among local features can improve the perfor-
mance of action recognition and the proposed CGKs pro-
vide an efficient and multi-order similarity measurement on
attributed graphs.
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