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Abstract

Joint segmentation of image sets is a challenging prob-
lem, especially when there are multiple objects with vari-
able appearance shared among the images in the collection
and the set of objects present in each particular image is
itself varying and unknown. In this paper, we present a
novel method to jointly segment a set of images containing
objects from multiple classes. We first establish consistent
functional maps across the input images, and introduce a
formulation that explicitly models partial similarity across
images instead of global consistency. Given the optimized
maps between pairs of images, multiple groups of consistent
segmentation functions are found such that they align with
segmentation cues in the images, agree with the functional
maps, and are mutually exclusive. The proposed fully
unsupervised approach exhibits a significant improvement
over the state-of-the-art methods, as shown on the co-
segmentation data sets MSRC, Flickr, and PASCAL.

1. Introduction
Image segmentation is a fundamental problem in com-

puter vision. Traditional methods have focused on single
images and typically utilize segmentation clues, such as
color changes or the presence of sharp edges, to divide a
given image into locally coherent pieces. However, such
techniques do not always obtain satisfactory results [4]
since different parts of the same object may exhibit hetero-
geneous appearance.

Recently, there has been growing interest in
unsupervised image co-segmentation, where the segments
are forced to be consistent across a collection of similar
images, e.g. [14, 6, 19, 15]. This is a common setting, as
many natural image collections contain similar or related
objects. For example, spatial and temporal coherence in
user photo albums leads to shared entities in the images,
photo collections of a particular theme (e.g., “grazing

animals”) invariably contain shared content, etc. In this
multi-image setting, the key idea is to establish relations
across images, and obtain consistent segmentations that
agree with the segmentation clues provided by all the
images together. This formulation turns out to perform
much better than single image segmentation methods [17].
However, existing techniques are generally restricted to
the setting where the input images must all contain exactly
the same set of objects or, in other words, when all input
images are similar with to other in terms of object content.

In this paper, we consider the problem of co-segmenting
a heterogenous image collection, where each input image
may contain an arbitrary subset of the objects of interest.
Such image collections are easy to obtain (e.g., from inter-
net image collections). We show that the advantage of co-
segmentation still applies in this challenging heterogenous
setting, and that a careful formulation yields significant
improvements over segmenting each image in isolation.

Co-segmenting a heterogenous collection poses funda-
mental challenges both in how to establish reliable relations
across the images and in how to identify objects that only
appear in subsets of the input collection. We propose to
address these two issues using the functional maps machin-
ery, which was recently introduced to the vision community
by Wang et al. [20]. Unlike traditional image matching
techniques which establish correspondences between image
pixels/superpixels, functional maps establish maps between
functions defined over the images. Since image segmen-
tation can be considered as computing binary segment
indicator functions on pixels/superpixels, the functional
map framework is particularly suitable for the purpose of
image co-segmentation as it provides a handy platform for
simultaneously expressing image segmentation and image
matching desiderata.

The proposed image co-segmentation framework con-
sists of two stages. The first stage establishes consistent
functional maps across the input images. In this stage,
building upon the framework of [13] and [20], we introduce
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a novel formulation that explicitly models partial similarity
across images. Given the optimized consistent functional
maps between the images, the second stage optimizes mul-
tiple groups of consistent segmentation functions across the
image collection. Our novel two-stage approach exhibits a
significant improvement over existing techniques on several
challenging datasets.

1.1. Related Works

The problem of joint segmentation has attracted a lot of
attention recently, starting with the early work by Rother
et al. [14], who used color histogram matching to find
common objects in a pair of images. Later on, other
kinds of features were also utilized to exploit the rela-
tionship between image foregrounds, such as SIFT [11],
saliency [1], and Gabor features [5]. To address the co-
segmentation of multiple images, Joulin et al. formulated
the co-segmentation task as a discriminative clustering
problem by clustering the image pixels into foreground and
background [6]. Vicente and colleagues [19] proposed
to extract objects from a group of images by using an
object recognition scheme to generate a pool of object-like
segmentations, and then selecting the most likely segmenta-
tions using a learned pairwise consistency term. In contrast,
Chang et al. [1] established an MRF optimization model,
by introducing a co-saliency prior as a hint about possible
consistent foreground locations. The proposed model was
then optimized using graph cut techniques. Rubio et al.
proposed a method based on first establishing correspon-
dences between regions in the images, and then estimating
the appearance distributions of both the foreground and the
background for better joint segmentation [15].

Image co-segmentation with multiple objects has only
been explored in the last few years. To handle multiple
object classes, Kim et al. [8] model the segmentation
task as temperature maximization on anisotropic heat d-
iffusion. The submodular property of the formulation
guarantees a constant factor approximation to the optimal
solution. Joulin et al. propose an effective energy-based
objective that combines a spectral-clustering term with a
discriminative one, allowing the objective to be optimized
using an efficient expectation-minimization algorithm [7].
Both works can handle multiple object classes; however,
they still assume that all objects appear in each image,
which is not realistic in many applications. To segment
images containing an unknown subset of objects, Kim et
al. proposed to alternate between foreground modeling and
region assignment steps [9]. The foreground modeling step
learns the appearance models of the foregrounds and the
background, and the region assignment step is formulated
as welfare maximization in a combinatorial auction. Fi-
nally, Li et al. generate unknown object-like proposals by
ensemble clustering and solve the cosegmentation problem
by a multi-label energy minimization [10].

Unlike these methods, our technique provides a princi-
pled framework for co-segmenting a heterogenous image
collection. We do not pose any constraints on the associa-
tion between objects and images. Moreover, the segmenta-
tions of all classes are optimized simultaneously, obtaining
significant improvement over state-of-the-art techniques.

1.2. Notations

Throughout this paper, we use the following convention
for linear algebra notations. We use bold face capital
characters (e.g., A,B, · · · ) to denote matrices, and use bold
face lowercase characters (e.g., d, s, · · · ) to denote vectors.
With ∥ · ∥F we denote the matrix Frobienius norm, i.e.,
∥A∥F = (

∑
i,j a

2
ij)

1
2 . In contrast, we use ∥·∥1 to denote the

column-wise 1-norm, i.e., for matrix A = (a1, · · · ,am),
∥A∥1 =

∑m
i=1 ∥ai∥1.

2. Problem Statement and Overview
The input to our algorithm is a collection of N related

images I = {I1, · · · , IN}. The images are related in the
sense that each image contains one or multiple objects from
an unknown set of classes. Nothing is known about these
classes, except their total number M . The output consists
of (i) the classification result: a collection of M image sets
Ck ⊂ {1, · · · , N}, 1 ≤ k ≤ M , collecting the images
that contain one object (or more) of each class, and (ii) the
corresponding segments sik, ∀i ∈ Ck.We represent each sik
as a binary indicator function on image Ii, indicating the
location of object(s) of class k in image i, and call these the
segmentation functions.

2.1. Functional Map Representation

Following the work of Wang et al. [20] we assume that
each image Ii = (Pi, Ei) is represented by the dual graph
of its super-pixel decomposition. We use the normalized cut
algorithm [17] to compute the decomposition and set m =
200 to be the number of superpixels in all the experiments.
Functional Space and Segmentation Functions. The
key concept of the functional map framework is to equip
each image Ii with a linear functional space F i. Here
we consider F i to be the space of functions, which are
piecewise constant on each super-pixel. Thus, for an image
with m super-pixels F i

∼= Rm. Moreover, following [20]
we approximate F i by only considering the subspace Fi

spanned by the first K = 30 eigenvectors of the normalized
cut Laplacian matrix Li. We use these eigenvectors as the
standard basis, and encode each f ∈ Fi as a vector of
coefficients f ∈ RK . Note that in the remainder of this
paper, we will project any function in the original space
f ∈ F i into this reduced space f ∈ Fi.
Functional Maps. A functional map between images Ii
and Ij is a linear map Xij : Fi → Fj . In the remainder
of this paper, we will use bold face Xij to denote the



(a) Input images (c) Initialization

(d) Continuous optimization

(b) Optimizing consistent maps

(e) Combinatorial optimization

Figure 1. The pipeline of the proposed image co-segmentation framework. Our method begins by computing consistent functional maps
between similar input images. Given the optimized functional maps, it extracts for each class an initial seed set of images and the
corresponding segmentation functions. It then alternates between jointly optimizing the segmentation functions and using the optimized
segmentation functions to refine and extend the image set associated with each class.

matrix representation of Xij in the standard basis associated
with Fi and Fj . As demonstrated in the single-class co-
segmentation work [20], high-quality functional maps can
be computed using linear constraints on Xij that enforce
descriptor preservation across pairs of images, and global
consistency constraints on the entire collection of maps
reflecting the presence of a shared object.

In the case of multiple object classes, it is not reasonable
to expect globally consistent functional maps. Therefore,
we adapt the formulation in [20] to the setting where only
subsets of maps are consistent, which is significantly more
challenging both conceptually and algorithmically. We also
show how the segmentation functions can be optimized for
and diffused to only appropriate subsets of images.

2.2. Approach overview

The proposed joint image co-segmentation technique
consists of two major stages (Fig. 1), as summarized below.
Consistent partial functional maps. We extend the con-
sistent functional map framework of Wang et al. [20] to
handle the case where there exist only partial similarities
between images in terms of shared objects. We introduce
a formulation that utilizes both continuous and discrete
latent variables to model partial similarities and show how
to optimize the induced objective function via two-level
alternating optimizations.
Segmentation function optimization. Given the optimized
functional maps between pairs of images, we proceed to
extract consistent segmentation functions (multiple per im-

age). This stage alternates between a combinatorial phase,
which determines the existence of each object in each im-
age, and a continuous phase to estimate their locations, by
jointly optimizing the segmentation functions. Specifically,
the combinatorial phase begins with initializing a few seed
images for each class, and then gradually augments the
images contained in each class during successive iterations.
The objective function in the continuous phase considers
the saliency of each segmentation function, the mutual ex-
clusiveness of different segmentation functions on the same
image, as well as the consistency between segmentation
functions of the same class and the optimized functional
maps. We show how to effectively optimize the induced
segmentation functions via alternating optimization.

3. Consistent Functional Maps Among a Het-
erogenous Image Collection

In the first stage of our pipeline, we estimate the func-
tional maps Xij between certain pairs of images in our col-
lection, connecting them into a network. Since the number
of input images can be large, computing functional maps
between all pairs of images is computationally expensive.
Furthermore, for dissimilar images, estimated functional
maps can be noisy and may pollute the network. Therefore,
we connect each image with its k-nearest neighbors (we
use k = 30) in terms of the GIST descriptor [12] to form
a similarity graph G, and only compute functional maps
along the edges of G. In the following, we first describe the
formulation, and then show how to solve the optimization



problem.

3.1. Formulation

The objective function consists of a pair-wise term,
which forces functional maps to align image clues, and a
consistency term, which ensures the consistency of func-
tional maps among the network.
Pair-wise objectives. The pair-wise objective is similar to
the one in [20], where we force each functional map to
agrees with image descriptors and to transfer functions of
similar frequencies:

fpair = ∥XijDi −Dj∥1 + λ∥XijΛi − ΛjXij∥2F , (1)

where Di ∈ RK×367 stacks the image descriptors [20]
(e.g., color, BoW) from image Ii; Λi is the diagonal matrix
of eigenvalues of the normalized Laplacian on the super-
pixel graphs of images Ii; in our experiments λ = 100.
Consistency term. To enforce the consistency of functional
maps, we introduce L = 100 latent functions f1, · · · , fL

that are shared by the input images, and formulate the
consistency term so that pair-wise functional maps link cor-
responding latent functions on each image. In the presence
of partial similarity, the technical challenge is to model the
fact that each latent function may only appear in a subset
of images. To address this issue, we introduce for each
image Ii a discrete latent variable zi = {zil ∈ {0, 1}, 1 ≤
l ≤ L} and a continuous variable Y i = (yi1, · · · ,yiL).
The discrete variables encode the association between the
latent functions and input images, i.e., zil = 1 if and only
if f l appears on Ii. The continuous variables encode the
latent functions on each image, i.e., yil is the corresponding
function of fl on image Ii. Note that if zil = 0, then
yil simply corresponds to the zero function 0. It is clear
that that these two latent variables satisfy the following
constraint:

Y iDiag(zi) = Y i. (2)

To model the independence among latent functions, we
introduce a big matrix Y that stacks the Y i in a column
and require that

Y TY = IL. (3)

In other words, the vectors that stack each set of correspond-
ing latent functions are orthogonal with each other.

Using these latent functions, we model the consistency
of pair-wise functional maps Xij as:

XijY i = Y jDiag(zi), (i, j) ∈ E . (4)

Intuitively, each Xij links shared functions between Yi and
Yj and maps the remaining functions in Y i to zero.

The consistency term is formulated to preserve (3) and

(4) in the least square sense:

fcons =µ
∑

(i,j)∈E

∥XijYi −YjDiag(zi)∥2

+ γ

N∑
i=1

∥Yi −YiDiag(zi)∥2, (5)

where µ = 100 and γ = 10 for all experiments. To ease the
optimization, zil are relaxed so that 0 ≤ zil ≤ 1.
Formulation. Combining fpair and fcons, we write down the
following optimization problem for optimizing consistent
functional maps

{X⋆
ij} = argmin

Xij

fcons +
∑

(i,j)∈E

fpair (6)

3.2. Optimization

Equation 6 is not convex, however, the special structure
in the objective function allows us to effectively optimize
it via alternating optimization. In other words, we alternate
between optimizing each type of parameter so that in each
iteration we solve a much easier sub-optimization problem.
Initializing the variables. We begin by optimizing the
functional maps between pairs of images by dropping the
consistency term. This amounts to estimating a standard
pair-wise functional map, which is convex and can be
solved by CVX:

X⋆
ij = argmin

Xij

∥XijDi−Dj∥1+λ∥XijΛi−ΛjXij∥2F .

(7)
The initial value of zi = 1T . After that, we fix Xij and

zi to optimize Y i. As described in [20], this amounts to
compute the top eigenvectors of a sparse matrix.
Optimizing Latent functions Yi, 1 ≤ i ≤ N . We first
fix the indicator vectors zi and functional maps Xij and
optimize the latent functions Y i, 1 ≤ i ≤ N . In this
case, the objective function is quadratic in Y i, and thus
the technical challenge is to enforce the orthornormality
constraint Y TY = IL. To address this issue, we employ
a standard optimization-on-manifold strategy. Specifically,
given the current value of Y , we seek a displacement of
dY to minimize the objective function. dY is forced to lie
within the tangent plane at Y , i.e., it satisfies Y T (dY ) = 0.
Since the objective function is quadratic in the variables,
this leads to solving a linear system. After obtaining the
optimal value of Y ← Y + dY , we project Y back onto
the manifold Y TY = IL. This is done by computing SVD
of Y = UΣV T and set Y ← UV T .
Optimizing indicator vectors zi, 1 ≤ i ≤ N . When
the latent functions Y i, 1 ≤ i ≤ N and the functional
maps Xij , (i, j) ∈ E are fixed, it is easy to see that all
indicator variables (i.e., elements of the indicator vectors)
are decoupled in the objective function As the objective
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Figure 2. Given an input image in (a), we map its ground truth
segmentation function for “apple bucket” to other images in (b).
The mapped results are shown in (c) when the maps are optimized
independently without any consistency enforced; (d) when the
maps are optimized with global consistency as in [20]; (e)when
the consistency term Eq. 5 is included. The maps optimized with
the proposed consistency term are capable of correctly matching
similar parts of other images.

function is quadratic in indicators variables, we can write
the optimal value of each indicator variable analytically as

z⋆il = argmin
0≤zil≤1

µ∥yil − zilyil∥2 + λ
∑

j∈N (i)

∥Xijyil − zilyjl∥2

= max
(
0,min

(
1,

µ∥yil∥2 + λ
∑

j∈N (i)

⟨Xijyil,yjl⟩

µ∥yil∥2 + λ
∑

j∈N (i)

∥yjl∥2
))
(8)

Optimizing functional maps Xij , (i, j) ∈ E . When the
latent variables Y i,zi, 1 ≤ i ≤ N are fixed, we can
optimize each pair-wise functional map Xij independently
by solving the following convex optimization problem:

X⋆
ij = argmin

Xij

∥XijDi −Dj∥1 + λ∥XijΛi − ΛjXij∥2F

+ µ∥XijY i − Y jDiag(zi)∥2F . (9)

Convergence detection. The alternating optimization de-
scribed above is guaranteed to converge to a local optimal
of f . We detect the convergence by checking

max
(i,j)∈E

∥Xij −Xprev
ij ∥

∥Xij∥
≤ 10−3.

Typically, the program converges in 8-10 iterations.

4. Optimizing Consistent Segmentations
In this section, we describe how to compute the asso-

ciation between each image and each class, i.e., Ck, 1 ≤

k ≤ M , and the segmentation functions sik, i ∈ Ck of
the corresponding objects in each image, by optimizing the
following three objectives:

• The segmentation functions should be consistent with
the optimized functional maps, i.e.,

Xijsik ≈ sjk, (i, j) ∈ G, 1 ≤ k ≤M. (10)

Note that sik = 0, if i /∈ Ck.

• The segmentation functions should align with sharp
edges in each image. As in [20], this is formulated
using the normalized cut Laplacian L as minimizing

sTikLisik, ∀i ∈ Ck, 1 ≤ k ≤M. (11)

• The segmentation functions for different classes
should be mutually exclusive, i.e.,

sTiksik′ ≈ 0, ∀i ∈ Ck, 1 ≤ k ̸= k′ ≤M. (12)

Note that the unknowns include both discrete variables,
i.e., Ck, 1 ≤ k ≤ M and continuous ones, i.e., the
segmentation functions sik, i ∈ Ck, 1 ≤ k ≤ K. Thus,
we deploy an iterative and decoupled optimization strategy.
Specifically, we begin by initializing the classes with a
small set of highly confident images, and then alternate
between optimizing the segmentation functions (Fig.4) and
expanding the sets for each object (Fig.3).

4.1. Initialization
To initialize the associations Ck and segmentation func-

tions sik, we solve a relaxed problem, where we only
optimize the mutual exclusiveness of the concatenated seg-
mentation function sk = (sik), i ∈ Ck of each class, i.e.,
siksik′ . In this case, to obtain segmentation functions for
each class we minimize the same quadratic form

fseg =
1

|G|
∑

(i,j)∈G

∥Xijsik − sjk∥2F +
γ

N

N∑
i=1

sTikLisik

= skLsk, (13)

using the combined Laplacian matrix L and setting γ =
10 in this paper. Thus, a reasonable initialization of the
segmentation functions is to set sk, 1 ≤ k ≤ M , to be the
first M smallest eigenvectors of L.

Given these initial segmentation functions sik, 1 ≤ i ≤
N, 1 ≤ k ≤M , we initialize each set Ck as

Ck = {i, s.t. ∥sik∥ ≥ max
i
∥si∥/2}.

This tries to select images for which we have high confi-
dence that the corresponding class is present, as if i /∈ Ck,
then sik must have a small magnitude.



4.2. Continuous Optimization
Given the fixed associations between the classes and the

input images, we optimize the corresponding segmentations
sik via constrained optimization. The objective function
consists of three terms. The first term measures the consis-
tency between sjk and Xijsik, (i, j) ∈ E , i.e., the induced
segmentations from its neighbors:

f cons
ij = ∥Xijsik − sjk∥2. (14)

The second term evaluates the mutual exclusiveness of the
segmentation functions in different classes on the same
image, i.e., asserting they should be orthogonal to each
other:

f exclu
i =

∑
(k,k′)∈{Ii∈Ck∩Ck′}

(sTiksik′)2. (15)

The final term evaluates the saliency of each segmentation.
In this case, we simply evaluate the normalized cut score in
terms of the normalized cut Laplacian Li:

f cut
i = sTikLisik. (16)

To avoid having all segmenting functions be the zero vector,
we include the regularization constraints

∑
i∈Ck

∥sik∥2 =

|Ck|, 1 ≤ k ≤ K. Combining these three objective terms,
we arrive at the following optimization problem:

minimize
sik,i∈Ck

M∑
k=1

∑
(i,j)∈E∩(Ck×Ck)

∥Xijsik − sjk∥2

+ γ
∑
l ̸=k

∑
i∈Ck∩Cl

(sTilsik)
2 + α

M∑
k=1

∑
i∈Ck

sTikLisik

subject to
∑
i∈Ck

∥sik∥2 = |Ck|, 1 ≤ k ≤M. (17)

It is hard to optimize Eq. 17 directly because the term
(siksil)

2 is quartic in the segmentation function coeffi-
cients. However, the objective functions becomes quadratic
if we only optimize the segmentation functions associated
with each class. This leads to an alternating optimization
procedure. Specifically, at each step, we optimize the
segmentation functions associated with class Ck, i.e.,

minimize
sik,i∈Ck

∑
(i,j)∈E∩(Ck×Ck)

∥Xijsik − sjk∥2

+ γ
∑

i∈Cl,l ̸=k

(sTilsik)
2 + α

∑
i∈Ck

sTikLisik

subject to
∑
i∈Ck

∥sik∥2 = |Ck|. (18)

This optimization is performed for each class in order. In
practice, we found that the segmentation functions become
stable after 4-5 complete iterations.

Iteration 3Iteration 1

Figure 4. The generated segmentations are updated when more
images are included in this object class. This figure shows how
the image segmentations are improved as iterations go on.

4.3. Combinatorial Optimization
Given the current segmentation functions

sik, Ii ∈ Ck, 1 ≤ k ≤ M , we proceed to expand Ck by
propagating segmentation functions to other images using
the functional maps, and detecting salient segmentations.
Specifically, for each class Ck and for each image Ii /∈ Ck,
such that there exists an image Ij ∈ Ck and (i, j) ∈ E ,
we compute the induced segmentation sik by solving the
following constrainted optimization problem

maximize
sik

1

|N (i) ∩ Ck|
∑

j∈N (i)∩Ck

(sTikXjisjk)
2

− γ
∑

l ̸=k,i∈Cl

(sTiksil)
2 − αsTikLisik (19)

subject to ∥sik∥2 = 1. (20)

The first term in Eq. 19 prioritizes the agreement of sik
with the induced segmentation functions Xjisjk from its
neighboring images. The second term ensures that sik
is orthogonal to existing segmentation functions of other
classes on image i. The third term measures the saliency
of sik, with respect to the normalized Laplacian matrix
Li. Since the objective function in quadratic in sik, its
optimal value can be obtained using the standard eigen-
decomposition procedure.

After computing the segmentation function sik, we com-
pute the saliency score sTikLisik (agreement with normal-
ized cuts). We then include Ii into Ck if

sTikLisik < ϵmax
j∈Ck

sTjkLjsjk

sTjksjk
,

where we choose a conservative value ϵ = 1/2 to ensure
that we only include the most salient images.



Apple bucket

Baby

Figure 3. The segmentation propagation process on Flickr dataset. As iteration goes on, more images are included with the same foreground
object (“apple bucket” or “baby” in this example).

5. Experiments
5.1. Experiments on MSRC Dataset

We first evaluate our proposed method on the co-
segmentation dataset MSRC [18]. It includes 591 pixelwise
labeled images in 23 object classes with one object per
class. Images in each class contain a common object
with the similar appearance, e.g., cow, dog, etc. This is
a standard binary segmentation setting, therefore, many
existing single-class co-segmentation algorithms are
applicable. Table 1 gives a quantitative comparison with
[7, 8, 11], and the same classes are selected as reported
in [7]. [7] is designed for multi-class segmentation and
[8] and [11] are state-of-the-art foreground-background
cosegmentation methods. All methods are unsupervised
except for knowing the total number of objects. The
performance is measured by the intersection-over-union
score which is standard in PASCAL challenges.

Our method is significantly better than the state-of-the-
art methods in most of the cases. It is interesting to note
that our method works best for natural objects, such as
“Cat”, “Cow”, and “Sheep” despite their high appearance
variability. Our algorithm performs worse for images with
very cluttered background (“Face”). The lower accuracy for
“Bike” and “Chair” is caused by the coarse superpixels.

5.2. Experiments on FLickr Dataset

We then evaluated our proposed method on the public
multi-class image dataset Flickr [9]. This dataset consists
of 14 groups, where each group contains between 10 and 20
images along with groundtruth pixel-level annotations. We
compare our method with other state-of-the-art methods,
including [9, 8, 6, 16] and summarize the comparison in
Table 2. For [9], an unsupervised version is applied for a fair
comparison. [8], [6] and [16] are applied to each subgroup
of images which share the same foregrounds. On the other
hand, our algorithm is applied to the entire dataset in a

class N [7] [8] [11] Ours
Bike 30 43.3 29.9 42.8 51.2
Bird 30 47.7 29.9 - 55.7
Car 30 59.7 37.1 52.5 72.9
Cat 24 31.9 24.4 5.6 65.9

Chair 30 39.6 28.7 39.4 46.5
Cow 30 52.7 33.5 26.1 68.4
Dog 30 41.8 33.0 - 55.8
Face 30 70.0 33.2 40.8 60.9

Flower 30 51.9 40.2 - 67.2
House 30 51.0 32.2 66.4 56.6
Plane 30 21.6 25.1 33.4 52.2
Sheep 30 66.3 60.8 45.7 72.2
Sign 30 58.9 43.2 - 59.1
Tree 30 67.0 61.2 55.9 62.0

Table 1. Performance of binary segmentation on MSRC.

completely unsupervised way. In the unsupervised setting,
after obtaining the segmentation functions for M different
clusters, we need to find the correspondences between each
cluster and each ground truth object. We pick the one-to-
one matching which maximizes the average accuracy. As
can be seen in Table 2, for image collections with irregularly
appearing objects, our algorithm can significantly improve
the performance in most of the classes.

5.3. Experiments on PASCAL­multi Dataset
Besides the standard benchmark datasets, we create a

more challenging multi-class dataset (“PASCAL-multi”)
based on PASCAL VOC 2012 dataset [3]. Given a pre-
selected set of class labels, a group of images is retrieved
from the PASCAL dataset such that each image only con-
tains a subset of the pre-selected labels. This can ensure the
pre-selected classes are the only re-occurring object classes
in the images. Images with foreground object smaller than
0.5% of the total image area are discarded as these objects
are not salient. This dataset is much more challenging than
the Flickr dataset in §5.2 due to its larger size and the larger



class N M [9] [8] [6] [16] Ours
Apple 20 6 40.9 32.6 24.8 25.6 46.6

baseball 18 5 31.0 31.3 19.2 16.1 50.3
Butterfly 18 8 29.8 32.4 29.5 10.7 54.7
Cheetah 20 5 32.1 40.1 50.9 41.9 62.1

Cow 20 5 35.6 43.8 25.0 27.2 38.5
Dog 20 4 34.5 35.0 32.0 30.6 53.8

Dolphin 18 3 34.0 47.4 37.2 30.1 61.2
Fishing 18 5 20.3 27.2 19.8 18.3 46.8
Gorilla 18 4 41.0 38.8 41.1 28.1 47.8
Liberty 18 4 31.5 41.2 44.6 32.1 58.2
Parrot 18 5 29.9 36.5 35.0 26.6 54.1

Stonehenge 20 5 35.3 49.3 47.0 32.6 54.6
Swan 20 3 17.1 18.4 14.3 16.3 46.5

Thinker 17 4 25.6 34.4 27.6 15.7 68.6
Average - - 31.3 36.3 32.0 25.1 53.1

Table 2. Performance comparison on the Flickr data set.

class imgNum Ncut [17] [2] Ours
Bike + person 248 27.3 30.5 40.1
Boat + person 260 29.3 32.6 44.6

bottle + dining table 90 37.8 39.5 47.6
bus + car 195 36.3 39.4 49.2

bus + person 243 38.9 41.3 55.5
chair + dining table 134 32.3 30.8 40.3
chair + potted plant 115 19.7 19.7 22.3

cow + person 263 30.5 33.5 45.0
dog + sofa 217 44.6 42.2 49.6

horse + person 276 27.3 30.8 42.1
potted plant + sofa 119 37.4 37.5 40.7

Table 3. Performance comparison on the PASCAL-multi data set.

object appearance variability.
We compare our framework with baseline methods [17]

and [2]. The number of foreground objects in each image
is provided as a prior for these two baseline methods. The
results are shown in Table 3; we can see that our method is
very robust when dealing with larger dataset and when the
foreground objects are not quite similar.

6. Conclusion
In this paper we have proposed a framework for multi-

class joint image segmentation. Unlike the traditional
image co-segmentation task which only has one foreground
object, we deal with images containing a large number of
objects, with a variable number of objects from multiple
classes appearing in each image. We have shown an
approach to this problem using the framework of functional
maps and demonstrated how it can be adapted to reflect
partial similarity between images. Based on the optimized
maps, segmentation functions for multiple groups emerge
from the image network, and the group assignment is
updated through a combination of continuous and discrete
optimization steps.

This framework is completely unsupervised, and the
object existence and segmentation are obtained simultane-

ously. It is straightforward to add supervision information,
such as image labels or ground truth segmentations of a few
images, but we leave that as future work.
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