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Abstract

Saliency prediction typically relies on hand-crafted
(multiscale) features that are combined in different ways to
form a “master” saliency map, which encodes local image
conspicuity. Recent improvements to the state of the art on
standard benchmarks such as MIT1003 have been achieved
mostly by incrementally adding more and more hand-tuned
features (such as car or face detectors) to existing mod-
els [18, 4, 22, 34]. In contrast, we here follow an entirely
automatic data-driven approach that performs a large-scale
search for optimal features. We identify those instances of a
richly-parameterized bio-inspired model family (hierarchi-
cal neuromorphic networks) that successfully predict image
saliency. Because of the high dimensionality of this param-
eter space, we use automated hyperparameter optimization
to efficiently guide the search. The optimal blend of such
multilayer features combined with a simple linear classifier
achieves excellent performance on several image saliency
benchmarks. Our models outperform the state of the art
on MIT1003, on which features and classifiers are learned.
Without additional training, these models generalize well
to two other image saliency data sets, Toronto and NUSEF,
despite their different image content. Finally, our algorithm
scores best of all the 23 models evaluated to date on the
MIT300 saliency challenge [16], which uses a hidden test
set to facilitate an unbiased comparison.

1. Introduction
The visual world surrounding us is astonishingly com-

plex. Yet, humans appear to perceive their environment
and navigate in it almost effortlessly. One biological key
strategy to reduce the computational load and bandwidth
requirements is selective, space-variant attention. Effective
attentional mechanisms guide the gaze of the observer to
salient and informative locations in the visual field. Mim-
icking such a selective processing has been the subject of in-
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Figure 1. Saliency prediction example from the MIT300 challenge.
Our model, Ensemble of Deep Networks (eDN), comes closest to
human data on this benchmark; also shown are Judd and CovSal
(ranked 2nd and 3rd, respectively).

tense research both in neuroscience [15] and in computer vi-
sion, where saliency-based preprocessing has found a wide
applicability from image/video compression and quality as-
sessment to object and action recognition.

Early algorithms for saliency prediction typically fol-
lowed the Feature Integration Theory [31] and fused to-
gether hand-crafted image features — such as orientation,
contrast, color — extracted on multiple scales. These mod-
els differ in their approach to combine individual feature
maps into one “master” map. Many approaches, includ-
ing the classical Itti and Koch [14] model, compute normal-
ized center-surround difference maps of the individual fea-
tures and combine these using a weighting scheme. A more
recent fusion scheme expresses feature conspicuity by the
equilibrium distribution of a fully connected graph [10].

Other approaches defined saliency in terms of informa-
tion theory, e.g. by self-information [33], information max-
imization [5], or discriminant saliency that distinguishes
target from null hypotheses [7]. Recently, spectrum-based
methods demonstrated good performance despite low com-
putational complexity [12, 11, 28].

Finally, several data-driven algorithms have been pro-
posed that use ML techniques to predict saliency. While
Kienzle et al. [19] directly learned a classifier from fixated
image patches, many authors learned the weights associated
with a set of predefined features, e.g. [18, 34, 4].

Recent improvements to the state of the art have been
achieved mostly by incrementally adding more and more
hand-tuned features to such existing models [18, 4, 22, 34].
For example, state-of-the-art performance on the MIT1003
eye-tracking benchmark is achieved by training a classifier
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on a combination of a large variety of both low-level and
high-level features, including “object” detectors for cars,
faces, persons, and the horizon [18, 4].

More recently, however, image feature learning has
gained momentum in the computer vision community, as
a result of the approach’s superior performance on several
vision tasks ranging from scene classification to object and
face recognition (e.g. [20, 24, 1]). In the context of saliency,
first attempts employed independent component analysis to
learn V1-like features [5] for gaze prediction, whereas the
authors in [29] learned high-level concepts in an unsuper-
vised way from fixated image patches.

In this work, we explore the usefulness of such bio-
inspired hierarchical features to predict where people look
in natural images. Our approach is structured as fol-
lows. We generate a large number of instances of a richly-
parameterized bio-inspired hierarchical model family, and
select those that are predictive of image saliency. The com-
bination of several independent models should improve per-
formance [27], but a brute-force search for the best mix-
ture is computationally prohibitive. Therefore, we use hy-
perparameter optimization [2, 3] to speed up the search
both for individual models and their combinations and find
a discriminative image representation for saliency. We
then demonstrate that a simple linear classifier that oper-
ates on such representation outperforms the state of the art
on the MIT1003 benchmark [18]. Moreover, these repre-
sentations that were learned on MIT1003 generalize well
to two other image saliency data sets, Toronto [5] and
NUSEF [26], despite their different image content. Ad-
ditionally, we show that our model outperforms all 22 al-
gorithms evaluated to date on the MIT300 saliency bench-
mark (see Figure 1 and [16]). Our results demonstrate that
a richer, automatically-derived base of hierarchical features
can challenge the state of the art in saliency prediction.

In summary, we make several contributions to the field.
First, we introduce hierarchical feature learning to the area
of visual saliency, yielding state-of-the-art results on four
benchmarks, including an independent third-party evalua-
tion with a hidden test set. Furthermore, we implemented
an automated approach to optimize hierarchical features for
saliency prediction, as opposed to a more traditional use
of hand-tuned features. Finally, we make publicly avail-
able the software to compute our saliency maps at http:
//coxlab.org/saliency

2. Bio-inspired saliency features
We start by reviewing the broad class of biologically-

inspired visual representations that we use here and present
adjustments to this architecture to suit the task at hand. We
then outline ways to efficiently search this vast represen-
tation space for instances that are particularly discrimina-
tive for saliency. We combine these building blocks and

describe our feature learning pipeline in Section 2.3.

2.1. Richly-parameterized multilayer visual repre-
sentations

Typical saliency features are hand-tuned and have a
loose connection to the architecture of biological visual sys-
tems. To derive more complex, biologically more plausible
saliency features, we consider a broad class of bio-inspired
hierarchical models [24] that has previously been shown to
excel in various recognition tasks from face verification [24]
and identification to object recognition [3]. These models
belong to the more general class of convolutional neural
networks [21] and, accordingly, have a hierarchical multi-
layer structure. Inspired by the organizational principles in
the primate visual cortex, hierarchies are assembled from
linear filtering and non-linear transformation stages.

More specifically, each network layer is comprised of
a set of operations that correspond to basic mechanisms
known to take place in the visual cortex. These operations
are parameterized by a large number of architectural vari-
ables, hence, are highly configurable. We can here only
give a very brief overview and refer the reader to [24, 25] for
more details of exact layer layout, range of parameters, and
a demonstration of the effectiveness of such representations
in the context of face recognition. The set of operations:

1. Linear filtering by convolution with a bank of random
uniform filters: F li = N l−1 ∗ Φli, where N l−1 is the
normalized input (multichannel image or feature map)
of layer l, l ∈ {1, 2, 3}, and Φli, i ∈ {1, . . . , kl}, is
a random filter. This operation produces a stack of kl

feature maps F l.
Parameters: filter shapes slf × slf , slf ∈ {3, 5, 7, 9} and
filter count kl ∈ {16, 32, 64, 128, 256]

2. Activation with a bounded activation function: Al =
Activate(F l) such that

Activate(x) =

 γlmax if x > γlmax
γlmin if x < γlmin
x otherwise

(1)

Parameters: γlmin ∈ {−∞, 0}, γlmax ∈ {1,+∞}
3. Spatial smoothing by pooling over a spatial neighbor-

hood al × al: P l = Pool(Al) such that

P l = Downsampleα

(
pl
√

(Al)pl ∗ 1al×al
)

(2)

Parameters: al ∈ {3, 5, 7, 9}, exponent pl ∈
{1, 2, 10}, α downsampling factor

4. Local normalization by the activity of neighbors across
space (bl × bl neighborhood) and feature maps kl:
N l = Normalize(P l) such that

N l =

{
Cl

‖Ĉl‖2
if ρl‖Ĉl‖2 > τ l

ρlCl otherwise
(3)

http://coxlab.org/saliency
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where Cl = P l − δlP̂ l with δl ∈ {0, 1} controlling
whether or not the local mean P̂ l is subtracted, and
Ĉl = Cl ∗ 1bl×bl×kl
Parameters: ρl stretching param., τ l threshold, δl, bl

Any individual instantiation of this family of visual rep-
resentations can contain an arbitrary number of layers that
are stacked on top of each other. To constrain the computa-
tional complexity, we here consider only one- to three-layer
(L1–L3) feature extractors (also called “models”).

In the following, we describe our changes to generalize
this architecture to the task of saliency prediction.

A major difference of this work is related to the general
purpose of these features. The original approach aimed at
obtaining a compact, fixed-size representation of an image
that can then be fed into classifiers for a single, global deci-
sion (e.g. face identity). In contrast, here we seek localized
representations of images. We keep the input image at high
resolution and label individual pixels of the output feature
map by their saliency.

Furthermore, the models in [24] were limited to
grayscale input. Because of the importance of color in
determining the saliency of a region we extend the mod-
els to multispectral input. Additionally, we also consider
the YUV color space, which provides decorrelated lumi-
nance and chrominance channels (similar to the color space
employed by the human visual system). YUV has been
shown to give better results than RGB for saliency predic-
tion (e.g. [28]).

In addition to evaluating individual models, we augment
our feature set by representation blending. By combining
together multiple good representations one can take advan-
tage of the structural diversity of the individual models in
the blend. Such blending strategies have been shown to sig-
nificantly boost performance [27, 24].

2.2. Guided search for optimal saliency features

The guiding principle in the architectural design of the
above model family was configurability. To allow for a
great variety of feed-forward architectures, the model class
is richly parameterized. Depending on the number of lay-
ers, models have up to 43 architectural parameters (see
Sec. 2.1). The performance of any single model instantia-
tion may range from chance to state-of-the-art performance
depending on parameter configurations. To find good rep-
resentations for a specific task, we perform a large-scale
search over the space of all possible model candidates,
which are cross-validated on a separate screening set.

In principle, models can be drawn entirely randomly.
Indeed, random search was found to be an effective ap-
proach to search for particularly discriminative representa-
tions for recognition tasks [24]. However, for large enough
problems, random search is still prohibitively computation-
ally expensive. For example, in [24], “good” represen-

tations were found only after an exhaustive search of al-
most 13,000 models. Therefore, the model search should
not be random but guided towards better regions of the pa-
rameter space. Recently, automated hyperparameter opti-
mization [2, 3] was proposed to use Bayesian optimization
methods to guide search in a large parameter space. In an
object recognition scenario, these optimization algorithms
achieved the same results as an exhaustive random search
algorithm, in a fraction of the time required by random
search [3]. Here, we use the publicly available toolbox of
Bergstra et al. [3] to more efficiently search the vast bio-
inspired model space for optimal saliency features. This
method involves defining (i) a search space (as an expres-
sion graph) and (ii) a loss function to be minimized. In ad-
dition to a description of the bio-inspired model class, the
search space also contains the hyperparameters of classi-
fiers, such as the strength of regularization. The loss func-
tion we use is defined in the next section.

2.3. Feature learning pipeline

To evaluate the performance of our biologically-inspired
representations, we follow the standard saliency learning
pipeline of Judd et al. [18]. This offers a standardized way
to evaluate new features and makes our approach directly
comparable with the baseline method of [18].

Saliency prediction is formalized as a supervised learn-
ing problem. A training set of salient (i.e. the positive class)
and non-salient (negative class) image regions is obtained
from ground-truth empirical saliency maps (also called fix-
ation density maps) derived from real eye movement data.
For each image in the training set, we randomly pick 10
salient samples from the top 20% salient regions and 10
non-salient samples from the bottom 70% salient areas of
the empirical saliency map. At these selected locations, fea-
tures are extracted from the image and normalized (over the
entire training set) to zero mean and unit variance. Finally,
the labeled feature vectors are fed into an L2-regularized,
linear, L2-loss SVM, which is trained to predict for each
location in a new test image its probability of fixation (see
Fig. 2).

To search for good representations for saliency predic-
tion, we consider a subset of 600 images of the MIT1003
eye movement data set [18], and perform model search on
this set. To estimate the prediction error, we perform 6-
fold cross-validation. In the testing phase, we consider the
continuous output wTx + b of the SVM. By thresholding
these continuous saliency maps, image regions above the
threshold are classified as salient. A systematic variation
of the threshold leads to an ROC curve; the loss function
to be minimized by the hyperparameter optimization algo-
rithm (Sec. 2.2) is then 1-AUC (i.e. the Area Under the ROC
Curve). Note that both the architectural and learning param-
eters (parameter C of the linear SVM) were tuned simulta-
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Figure 2. Schematic diagram of our pipeline. Good Li multilayer feature extractors are found by guided hyperparameter search (not shown)
and combined into an optimal blend. Resulting feature vectors are labeled with empirical gaze data and fed into a linear SVM. For details
on operations inside each li layer see Sec. 2.1.

neously by hyperparameter optimization.
To identify those instances (or combinations thereof) of

the above described bio-inspired model family that success-
fully predict image saliency, we adopt a two-step search
procedure. First, we search for well-performing individual
L1, L2, and L3 models, keep these and perform another
search for optimal combinations of these selected models.
Our final saliency model is an ensemble of individual mod-
els, hence the name Ensemble of Deep Networks (eDN).

In the first screening stage, we independently screened
approximately 2000 L1, 2200 L2, and 2800 L3 models
on RGB input. For the sake of comparison, a fraction of
these models was screened with random search (∼1200 L2
and ∼2400 L3 models) and the rest with the more effi-
cient guided search (Sec. 2.2). We partially rely on ran-
dom search, because the best configurations returned by this
type of search tend to be less correlated than those found by
guided search. The rationale is that a greater diversity in
individual models may have a positive effect on the perfor-
mance of model blends.

In addition, we separately screened about 1900 L1, 1700
L2, and 1900 L3 models on YUV input. Of these, about
600 L3 models were drawn randomly.

In the second search stage, we selected 5 to 10 top-
performing models from each model class (a class being
defined by the number of layers, the input color space, and
the type of screening), and screened unconstrained combi-
nations of up to 8 of these models. The best ensemble was
found after around 1000 trials and consists of 6 architec-
turally diverse models: three L3-RGB models found with
random search, and one L2-YUV and two L3-YUV models
found with guided search. We note that other combinations,
including those with L1 models, were also found among
top-performing results.

Fig. 3 shows example outputs of individual models and
the optimal blend. The entire screening was performed on a
large CPU cluster and took approximately 1 week.

Figure 3. Output of best individual L1, L2, L3 (YUV) models and
the optimal blend. Left to right, top: input, histogram-matched
eDN saliency map (blend of 6 Li models), human saliency map;
Middle: raw L1, L2, and L3 output; Bottom: L1, L2, L3 output
histogram-matched to the human saliency map. While L1 models
detect edges, L2 and L3 capture higher-order structures.

2.4. Center bias and smoothness

Several studies have pointed out that gaze is biased
to the image center (often irrespective of the center fea-
tures). More and more models explicitly incorporate this
bias (e.g. [17, 32]). We follow [18] and extend our learned
features with a simple 1-D measure of the distance of each
pixel to the image center. Because some reference models
do not account for this bias, for a fair comparison, we in-
corporate the same distance-to-center feature in these mod-
els as well. In addition, we report results also without this
center feature. However, it should be noted that some al-
gorithms already have an implicit center bias due to border
effects.

As a final step, saliency maps are often smoothed to bet-



ter match the distribution of eye movements [17]. We de-
termine the optimal Gaussian blur level (σ=30px) through
cross-validation on a subset of the training set.

3. Evaluation: eye movement prediction

Because of the tight link between saliency, attention,
and eye movements, saliency models are typically evalu-
ated in terms of how well they predict human gaze in natural
scenes. We follow the same approach here.

3.1. Data sets

Feature search and performance evaluation were con-
ducted on the MIT1003 [18] data set. To test the general-
izability of the model, we use three additional benchmarks,
Toronto [5], NUSEF [26], and MIT300 [16].

The MIT1003 data set [18] consists of 1003 images and
the eye movement data of 15 observers who free-viewed
these images. Because the feature search stage used 600 of
these images for training, the remaining 403 served as test
images. The Toronto benchmark [5] contains eye move-
ment data from 20 subjects watching 120 images. It is
considered a “hard” data set due to the lack of particu-
larly salient regions (such as faces/people). The recently
proposed NUSEF [26] is made up of 758 semantically-rich
images including affective content (expressive faces, nudes,
unpleasant concepts). A total of 75 observers viewed parts
of the image set. We here only consider the publicly avail-
able part (441 images).

Finally, for an independent evaluation, we submitted our
model for third-party evaluation on the MIT300 saliency
benchmark [16]. This set consists of 300 images viewed
by 39 observers whose gaze data is not public. To date, 23
saliency models have been evaluated on this platform.

3.2. Evaluation protocol

We follow the evaluation procedure outlined in Sec. 2.3.
In addition to ROC analysis, for the sake of compre-
hensiveness, we consider three other common evaluation
metrics: the Earth Mover’s Distance (EMD, in the con-
text of saliency see [34]), Normalized Scanpath Saliency
(NSS) [23], and a similarity score [17].

As reference for comparisons, we consider 11 state-
of-the-art saliency algorithms: GBVS [10], the multi-
scale quaternion DCT signature on YUV input (denoted
∆QDCT) [28], Judd [18], AWS [8], CovSal [6] (with co-
variances + means), Tavakoli [30], AIM [5], Goferman [9],
ICL [13], Image Signature (with LAB color space) [11],
and Boost [4], all with default parameters. This selection
is based on the top-performing models from two recent and
comprehensive reviews/taxonomies [4, 16].

To estimate the effective performance range, we used
two control measures. First, we computed “leave-one-sub-

Model RGB YUV
L1 0.6744 0.6705
L2 0.6737 0.7401
L3 0.7207 0.7977
eDN 0.8227

Table 1. AUC scores of best individual models and the optimal en-
semble of top models on MIT1003. Performance increases with
model complexity (i.e. # layers) and the use of YUV. The opti-
mal ensemble of Deep Networks (also found through automated
screening) gives highest performance. No center bias at this point.

ject-out” empirical saliency maps and used these to pre-
dict the eye movements of the left-out viewer. Since peo-
ple are still the best predictors of where other people look,
this measure constitutes an upper bound for prediction. Our
lower bound comes from the above-mentioned center bias
(e.g. [32]): a simple measure based on the distance of each
pixel to the image center predicts eye movements well.

3.3. Results on the MIT1003 benchmark

First, we analyzed individual model performance by sys-
tematically varying two meta-parameters: the number of
layers in each model (1, 2, or 3) and the input color space
(RGB or YUV). Performance (AUC) of the best class-
specific models is shown in Table 1. Consistent with ex-
pectations, performance increases with model complexity
(L1 < L2 < L3), i.e. models with more layers achieve
higher invariance. Confirming previous findings, use of the
YUV color space gives significantly higher prediction per-
formance than RGB. For the choice of the search algorithm,
guided search not only is more efficient than random search
(360 iterations give better results than 2400 w/o guidance)
but also exceeds the best random search performance.

The most significant performance boost is achieved with
ensembles of multiple good representations (see Table 1,
eDN). In contrast to [25], however, blends are not limited to
the combination of the top models, but derived — again in
an automated fashion — through guided screening. Blend-
ing is so beneficial because combinations take advantage of
the diversity of individual models. This explains why indi-
vidually weaker models (such as L3-RGB or L2-YUV) are
also represented in the best blend. One aspect of diversity
is the scale on which individual models operate. From the
combination of multiple models tuned to different scales, a
multiscale model emerges.

Performance of the various saliency algorithms (base-
lines, controls, and our best blend) is summarized as aver-
ages over all MIT1003 test images in the top part of Table 2.
eDN outperforms all individual saliency algorithms for all
four metrics. A small further performance gain (for AUC
and EMD) can only be achieved by Boosting [4], i.e. opti-
mally blending many top-performing algorithms from this



AUC EMD sim NSS
w/ C w/o C w/ C w/o C w/ C w/o C w/ C w/o C

M
IT

10
03

Chance – 0.4997 – 6.8160 – 0.2183 – 0.0092
Cntr 0.7933 – 3.9998 – 0.3501 – 0.9906 –
∆QDCT 0.8148 0.7628 4.0672 4.9867 0.3623 0.3039 1.1769 0.9279
ICL 0.8213 0.7720 3.8159 4.8848 0.4023 0.3222 1.4029 1.0442
CovSal 0.8214 0.7641 3.7077 4.9680 0.3952 0.2924 1.2787 0.9101
Signature 0.8248 0.7665 3.7262 4.9376 0.4095 0.3190 1.4036 1.0468
GBVS 0.8266 0.8097 3.7077 3.9457 0.3800 0.3467 1.2818 1.1168
Tavakoli 0.8314 0.7711 3.8219 4.6978 0.4085 0.2978 1.3931 0.8716
Goferman 0.8323 0.7625 3.6082 5.1569 0.4167 0.2970 1.4512 0.9002
AIM 0.8384 0.7716 3.6240 4.8270 0.4207 0.3018 1.4798 0.9400
Judd 0.8395 0.7892 3.5446 4.5729 0.4226 0.3425 1.5133 1.1637
AWS 0.8429 0.7530 3.5658 5.4005 0.4461 0.3129 1.6951 1.0965
eDN 0.8504 0.8227 3.4513 3.9099 0.4425 0.3780 1.6131 1.2765
Boost 0.8512 – 3.4174 – 0.4370 – 1.5282 –
Boost+eDN 0.8546 – 3.4616 – 0.4473 – 1.6577 –
Human 0.9008 – 0 – 1 – 3.2123 –

To
ro

nt
o

Chance – 0.4988 – 4.1171 – 0.3040 – -0.0038
Cntr 0.7836 – 2.5828 – 0.4116 – 0.8180 –
CovSal 0.8147 0.7616 2.3712 3.1187 0.5122 0.3812 1.4587 1.0090
ICL 0.8169 0.7807 2.4190 2.9943 0.5253 0.4333 1.6199 1.2483
Signature 0.8188 0.7903 2.3776 2.9054 0.5311 0.4658 1.5888 1.4464
GBVS 0.8274 0.8152 2.2494 2.2922 0.5335 0.4955 1.6293 1.4494
∆QDCT 0.8276 0.7777 2.3663 3.0311 0.5045 0.4178 1.4901 1.1647
Goferman 0.8295 0.7795 2.2490 3.1013 0.5553 0.4270 1.7712 1.2134
Tavakoli 0.8330 0.7742 2.6605 2.8214 0.5422 0.4068 1.5851 0.9972
AIM 0.8341 0.7853 2.2517 2.7369 0.5491 0.4262 1.6600 1.1640
Judd 0.8381 0.7913 2.2651 3.0407 0.5520 0.4428 1.7197 1.2777
AWS 0.8400 0.7542 2.3883 3.5976 0.5577 0.4073 1.7817 1.1991
eDN 0.8407 0.8152 2.2394 2.4384 0.5730 0.4870 1.7149 1.3126
Boost 0.8436 – 2.2217 – 0.5653 – 1.6954 –
Boost+eDN 0.8467 – 2.3077 – 0.5741 – 1.8213 –
Human 0.8820 – 0 – 1 – 2.5463 –

N
us

ef

Chance – 0.4995 – 5.6304 – 0.3356 – 0.0048
∆QDCT 0.7847 0.7357 3.7385 4.3315 0.4556 0.3947 0.9523 0.7554
Cntr 0.7851 – 3.6228 – 0.4395 – 0.7710 –
Tavakoli 0.7948 0.7198 3.9202 4.1310 0.4865 0.3677 1.0800 0.5800
ICL 0.7963 0.7354 3.5599 4.3918 0.4989 0.3985 1.1038 0.7625
GBVS 0.8032 0.7884 3.5051 3.5754 0.4858 0.4567 1.0696 0.9559
Signature 0.8033 0.7327 3.5382 4.4265 0.5205 0.3929 1.2143 0.7667
CovSal 0.8046 0.7162 3.5064 4.4868 0.5212 0.3661 1.1875 0.6285
Goferman 0.8062 0.7342 3.5211 4.4372 0.5172 0.3879 1.1977 0.7068
Judd 0.8130 0.7562 3.5319 4.3700 0.5263 0.4302 1.2814 0.9389
AIM 0.8133 0.7476 3.5364 4.2570 0.5281 0.4013 1.2790 0.8189
AWS 0.8144 0.7290 3.5550 4.7787 0.5350 0.4007 1.3260 0.8681
eDN 0.8242 0.8019 3.5360 3.7997 0.5509 0.4973 1.3879 1.2177
Human 0.8407 – 0 – 1 – 1.9543 –

Table 2. Performance of saliency algorithms – with (w/ C) and without (w/o C) center bias – on the MIT1003, Toronto, and NUSEF
benchmarks for four metrics: AUC, similarity (sim), Normalized Scanpath Saliency (NSS) (the higher the better for all three) and EMD
(lower better). Feature search only used AUC as objective function. eDN outperforms individual models on MIT1003, on which features
and classifier are learned. A small further improvement can only be achieved by blending multiple individual top-performing algorithms
(see Boost [4] and Boost+eDN). eDN generalizes well to Toronto and NUSEF, despite their different image content. Small border artifacts
(due to repeated filtering) make eDN inherently biased to the center – hence the performance advantage in “w/o C” case.



table (Judd [18], GBVS [10], AWS [8] and Torralba). We
also note that Boosting results get better with inclusion of
eDN features, e.g. 0.8546 AUC for MIT1003 (see Table 2).

Many image processing steps used in saliency computa-
tions introduce border artifacts (see [33] for a detailed anal-
ysis of several algorithms). Because of repeated filtering
across multiple layers, our saliency maps suffer from some
border effects as well. Hence, similarly to GBVS, even our
non-centered maps (“w/o C” in Table 2) are still implicitly
biased to the center and have a performance advantage.

Example saliency maps for our algorithm and some ref-
erence methods are shown in Fig. 4.

3.4. Generalization to other data sets

To assess how well our learned features generalize to
other data sets, we first evaluated them on the Toronto and
NUSEF benchmarks. Results are shown in Table 2 (lower
part). Despite being trained on a different data set, eDN out-
performs the state-of-the-art approaches. This is surprising,
considering the significant database-specific differences in
image content. NUSEF was deliberately created to inves-
tigate semantics-driven attention to affective content. Con-
versely, Toronto lacks particular regions of interest (people,
faces), so that gaze is less coherent across viewers. Finally,
on the MIT300 saliency benchmark, our model achieves
0.8192 AUC (0.5123 similarity and 3.0129 EMD), slightly
better than the second best model of Judd et al. with 0.811
AUC (0.506 similarity and 3.13 EMD) — see [16].

4. Discussion and conclusion
Hierarchical feature learning has become a common ap-

proach in computer vision, but has not been adequately ex-
plored in the context of saliency prediction. Here, we ad-
dressed this issue and efficiently searched a large pool of
richly parameterized neuromorphic models for those rep-
resentations that are discriminative for saliency. Through
automated representation blending, we assembled powerful
combinations of diverse multilayer architectures that out-
perform the state of the art. In notable contrast to top-
performing hand-tuned models, our approach makes no as-
sumptions about what lower-level features (color, contrast,
etc.) or higher-level concepts (faces, cars, text, horizon)
attract the eyes. Instead, we allow the hierarchical mod-
els to learn such complex patterns from gaze-labeled natu-
ral images (e.g. see top row in Figure 4). We believe our
integrated and biologically-plausible approach is therefore
conceptually cleaner and more generic than approaches that
rely on domain-specific hand-crafted features. Although
trained only on part of the MIT1003 benchmark, our rep-
resentations generalize well to three other eye movement
data sets, in spite of their different image content. Despite
the large size of the model space (i.e. the model family is
as inclusive as possible), good candidates are found quickly

(within a couple of hundred trials) through novel hyperpa-
rameter optimization algorithms.

Our results show that methods employing rich,
automatically-derived feedforward representations can
challenge the state of the art in the field of saliency pre-
diction.
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