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Abstract

Recently introduced cost-effective depth sensors cou-
pled with the real-time skeleton estimation algorithm of
Shotton et al. [16] have generated a renewed interest in
skeleton-based human action recognition. Most of the ex-
isting skeleton-based approaches use either the joint loca-
tions or the joint angles to represent a human skeleton. In
this paper, we propose a new skeletal representation that
explicitly models the 3D geometric relationships between
various body parts using rotations and translations in 3D
space. Since 3D rigid body motions are members of the
special Euclidean group SE(3), the proposed skeletal rep-
resentation lies in the Lie group SE(3)×. . .×SE(3), which
is a curved manifold. Using the proposed representation,
human actions can be modeled as curves in this Lie group.
Since classification of curves in this Lie group is not an easy
task, we map the action curves from the Lie group to its Lie
algebra, which is a vector space. We then perform clas-
sification using a combination of dynamic time warping,
Fourier temporal pyramid representation and linear SVM.
Experimental results on three action datasets show that the
proposed representation performs better than many exist-
ing skeletal representations. The proposed approach also
outperforms various state-of-the-art skeleton-based human
action recognition approaches.

1. Introduction

Human action recognition has been an active area of re-
search for the past several decades due to its applications
in surveillance, video games, robotics, etc. In the past few
decades, several approaches have been proposed for rec-
ognizing human actions from monocular RGB video se-
quences [1]. Unfortunately, the monocular RGB data is
highly sensitive to various factors like illumination changes,
variations in view-point, occlusions and background clutter.
Moreover, monocular video sensors can not fully capture
the human motion in 3D space. Hence, despite significant

Figure 1: Representation of an action (skeletal sequence) as a
curve in the Lie group SE(3)× . . .× SE(3).

research efforts over the past few decades, action recogni-
tion still remains a challenging problem.

A human body can be represented as an articulated sys-
tem of rigid segments connected by joints, and human mo-
tion can be considered as a continuous evolution of the spa-
tial configuration of these rigid segments [24]. Hence, if
we can reliably extract and track the human skeleton, ac-
tion recognition can be performed by classifying the tem-
poral evolution of human skeleton. But, extracting the hu-
man skeleton reliably from monocular RGB videos is a very
difficult task [9].

Sophisticated motion capture systems can be used to ob-
tain the 3D locations of landmarks placed on the human
body. But, such systems are very expensive, and require the
user to wear a motion capture suit with markers which can
hinder natural movements. With the recent advent of cost-
effective depth sensors, extracting the human skeleton has
become relatively easier. These sensors provide 3D depth
data of the scene, which is robust to illumination changes
and offers more useful information to recover 3D human
skeletons. Recently, Shotton et al. [16] proposed a method
to quickly and accurately estimate the 3D positions of skele-
tal joints using a single depth image. These recent advances
have resulted in a renewed interest in skeleton-based human
action recognition.
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Existing skeleton-based action recognition approaches
can be broadly grouped into two main categories: joint-
based approaches and body part-based approaches. Inspired
by the classical moving lights display experiment by Jo-
hansson [6], joint-based approaches consider the human
skeleton simply as a set of points. These approaches try
to model the motion of either individual joints or com-
binations of joints using various features like joint posi-
tions [5, 8], joint orientations with respect to a fixed coordi-
nate axis [20], pairwise relative joint positions [19, 22], etc.
On the other hand, body part-based approaches consider the
human skeleton as a connected set of rigid segments (body
parts). These approaches either model the temporal evolu-
tion of individual body parts [21] or focus on (directly) con-
nected pairs of body parts and model the temporal evolution
of joint angles [12, 13].

In this paper, we propose a new body part-based skeletal
representation for action recognition. Inspired by the ob-
servation that for human actions, the relative geometry be-
tween various body parts (though not directly connected by
a joint) provides a more meaningful description than their
absolute locations (clapping is more intuitively described
using the relative geometry between the two hands), we ex-
plicitly model the relative 3D geometry between different
body parts in our skeletal representation. Given two rigid
body parts, their relative geometry can be described using
the rotation and translation required to take one body part to
the position and orientation of the other (figure 3). Mathe-
matically, rigid body rotations and translations in 3D space
are members of the special Euclidean group SE(3) [11],
which is a matrix Lie group. Hence, we represent the rel-
ative geometry between a pair of body parts as a point in
SE(3), and the entire human skeleton as a point in the Lie
group SE(3) × . . . × SE(3), where × denotes the direct
product between Lie groups.

With the proposed skeletal representation, human ac-
tions can be modeled as curves (figure 1) in the Lie group
SE(3) × . . . × SE(3), and action recognition can be per-
formed by classifying these curves. Note that the Lie group
SE(3) × . . . × SE(3) is a curved manifold and classifica-
tion of curves in this space is not a trivial task. Moreover,
standard classification approaches like SVM and temporal
modeling approaches like Fourier analysis are not directly
applicable to this curved space. To overcome these difficul-
ties, we map the action curves from SE(3)× . . .× SE(3)
to its Lie algebra se(3) × . . . × se(3), which is the tangent
space at the identity element of the group.

Irrespective of the skeletal representation being used,
classification of temporal sequences into different action
categories is a difficult problem due to issues like rate vari-
ations, temporal misalignment, noise, etc. To handle rate
variations, for each action category, we compute a nominal
curve using dynamic time warping (DTW) [10], and warp

all the curves to this nominal curve. To handle the tempo-
ral misalignment and noise issues, we represent the warped
curves using the Fourier temporal pyramid (FTP) represen-
tation proposed in [19]. Final classification is performed
using FTP and a linear SVM classifier. Figure 4 presents an
overview of the proposed approach.

Contributions: 1) We represent human skeletons as points
in the Lie group SE(3)× . . .×SE(3). The proposed repre-
sentation explicitly models the 3D geometric relationships
between various body parts using rotations and translations.
2) Since SE(3) × . . . × SE(3) is a curved manifold, we
map all the action curves from the Lie group to its Lie al-
gebra, and perform temporal modeling and classification
in the Lie algebra. 3) We experimentally show that the
proposed representation performs better than many existing
skeletal representations by evaluating it on three different
datasets: MSR-Action3D [7], UTKinect-Action dataset [20]
and Florence3D-Action dataset [14]. We also show that
the proposed approach outperforms various state-of-the-art
skeleton-based human action recognition approaches.

Organization: We provide a brief review of the existing lit-
erature in section 2 and discuss the special Euclidean group
SE(3) in section 3. Section 4 presents the proposed skeletal
representation and section 5 describes the temporal model-
ing and classification approach. We present our experimen-
tal results in section 6 and conclude the paper in section 7.

2. Relevant Work
In this section, we briefly review various skeleton-based

human action recognition approaches. We refer the readers
to [1] for a recent review of RGB video-based approaches
and [23] for a recent review of depth map-based approaches.

Existing skeleton-based human action recognition ap-
proaches can be broadly grouped into two main categories:
joint-based approaches and body part-based approaches.
Joint-based approaches consider human skeleton as a set of
points, whereas body part-based approaches consider hu-
man skeleton as a connected set of rigid segments. Ap-
proaches that use joint angles can be classified as part-based
approaches since joint angles measure the geometry be-
tween (directly) connected pairs of body parts.

Joint-based approaches: Human skeletons were rep-
resented in [5] using the 3D joint locations, and the joint
trajectories were modeled using a temporal hierarchy of co-
variance descriptors. A similar representation was used with
Hidden Markov models (HMMs) in [8]. A set of 13 joint
trajectories in a 4-D XYZT space was used in [15] to repre-
sent a human action, and their affine projections were com-
pared using a subspace angles-based view-invariant simi-
larity measure. In [19], a human skeleton was represented
using pairwise relative positions of the joints, and the tem-
poral evolutions of this representation were modeled using a



hierarchy of Fourier coefficients. Furthermore, an actionlet-
based approach was used, in which discriminative joint
combinations were selected using a multiple kernel learning
approach. In [22], a human skeleton was represented using
relative joint positions, temporal displacement of joints and
offset of the joints with respect to the initial frame. Action
classification was performed using the Naive-Bayes nearest
neighbor rule in a lower dimensional space constructed us-
ing principal component analysis (PCA). A similar skeletal
representation was used with random forests in [27]. A view
invariant representation of human skeleton was obtained
in [20] by quantizing the 3D joint locations into histograms
based on their orientations with respect to a coordinate sys-
tem fixed at the hip center. The temporal evolutions of this
view-invariant representation were modeled using HMMs.

Part-based approaches: Human body was divided into
five different parts in [21], and human actions were repre-
sented using the motion parameters of individual body parts
like horizontal and vertical translations, in-plane rotations,
etc. Principal component analysis was used to represent an
action as a linear combination of a set of action basis, and
classification was performed by comparing the PCA coeffi-
cients. In [2], a human skeleton was hierarchically divided
into smaller parts and each part was represented using cer-
tain bio-inspired shape features. The temporal evolutions of
these bio-inspired features were modeled using linear dy-
namical systems. Human skeleton was represented using
3D joint angles in [3], and the temporal evolutions of these
angles were compared using DTW. In [12], few informative
skeletal joints were automatically selected at each time in-
stance based on highly interpretable measures such as mean
or variance of the joint angles, maximum angular velocity of
the joints, etc. Human actions were then represented as se-
quences of these informative joints, which were compared
using the Levenshtein distance. Skeletal sequences were
represented in [13] using pairwise affinities between joint
angle trajectories, and then classified using linear SVM.

3. Special Euclidean Group SE(3)

In this section, we briefly discuss the special Euclidean
group SE(3). We refer the readers to [4] for a general intro-
duction to Lie groups and [11] for further details on SE(3)
and rigid body kinematics.

The special Euclidean group, denoted by SE(3), is the
set of all 4 by 4 matrices of the form

P (R, ~d) =

[
R ~d
0 1

]
, (1)

where ~d ∈ R3, and R ∈ R3×3 is a rotation matrix. Mem-
bers of SE(3) act on points z ∈ R3 by rotating and trans-
lating them: [

R ~d
0 1

] [
z
1

]
=

[
Rz + ~d

1

]
. (2)

Elements of this set interact by the usual matrix multiplica-
tion, and from a geometrical point of view, can be smoothly
organized to form a curved 6 dimensional manifold, giving
them the structure of a Lie group [4]. The 4 by 4 identity
matrix I4 is a member of SE(3) and is referred to as the
identity element of this group.

The tangent plane to SE(3) at the identity element I4
is known as the Lie algebra of SE(3), and is denoted by
se(3). It is a 6 dimensional vector space formed by all 4 by

4 matrices of the form
[
U ~w
0 0

]
, where ~w ∈ R3 and U is a

3 by 3 skew-symmetric matrix. For any element

B =

[
U ~w
0 0

]
=


0 −u3 u2 w1

u3 0 −u1 w2

−u2 u1 0 w3

0 0 0 0

 ∈ se(3), (3)

its vector representation vec(B) is given by
vec(B) = [u1, u2, u3, w1, w2, w3]. (4)

The exponential map expSE(3) : se(3) → SE(3) and
the logarithm map logSE(3) : SE(3) → se(3) between the
Lie algebra se(3) and the Lie group SE(3) are given by

expSE(3)(B) = eB ,

logSE(3)(P ) = log(P ),
(5)

where e and log denote the usual matrix exponential and
logarithm respectively. Since log(P ) is not unique, we use
the value with smallest norm. Please refer to [11] for ef-
ficient implementations of the exponential and logarithm
maps of SE(3).

Interpolation on SE(3): Various approaches have
been proposed in the past for interpolation on SE(3) [25].
In this paper, we use a very simple piecewise inter-
polation scheme based on screw motions [26]. Given
Q1, Q2, . . . , Qn ∈ SE(3) at time instances t1, t2, . . . , tn
respectively, we use the following curve for interpolation:

γ(t) = QiexpSE(3)

(
t− ti

ti+1 − ti
Bi

)
for t ∈ [ti, ti+1], (6)

where Bi = logSE(3)

(
Q−1i Qi+1

)
for i = 1, 2, . . . , n− 1.

SE(3) × . . . × SE(3) : We can combine multi-
ple SE(3) using the direct product × to form a new Lie
group M = SE(3) × . . . × SE(3) with identity element
(I4, . . . , I4) and Lie algebra m = se(3)× . . .× se(3). The
exponential and logarithm maps for (B1, . . . , BK) ∈ m and
(P1, . . . , PK) ∈M are given by

expM((B1, . . . , BK)) = (eB1 , . . . , eBK ),

logM((P1, . . . , PK)) = (log(P1), . . . , log(PK)).
(7)

Interpolation on SE(3)× . . .×SE(3) can be performed by
simultaneously interpolating on individual SE(3).
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Figure 2: (a) An example skeleton consisting of 20 joints and 19
body parts, (b) Representation of a body part em in the global
coordinate system.
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Figure 3: (a) Representation of body part em in the local coordi-
nate system of en, (b) Representation of body part en in the local
coordinate system of em.

4. Proposed Skeletal Representation

Let S = (V,E) be a skeleton, where V = {v1, . . . , vN}
denotes the set of joints and E = {e1, . . . , eM} denotes the
set of oriented rigid body parts. Figure 2 shows an example
skeleton with 20 joints and 19 body parts. Let en1 ∈ R3,
en2 ∈ R3 respectively denote the starting and end points of
body part en. Let ln denote the length of en.

Given a pair of body parts em and en, to describe their
relative geometry, we represent each of them in a local co-
ordinate system attached to the other. Figure 3 explains this
pictorially. The local coordinate system of body part en is
obtained by rotating (with minimum rotation) and translat-
ing the global coordinate system such that en1 becomes the
origin and en coincides with the x-axis (refer to figure 3(a)).
Let enm1(t), e

n
m2(t) ∈ R3 respectively denote the starting

and end points of em represented in the local coordinate
system attached to en at time instance t. Then[

enm1(t) e
n
m2(t)

1 1

]
=

[
Rm,n(t) ~dm,n(t)

0 1

]
0 lm
0 0
0 0
1 1

 , (8)

where Rm,n(t) and ~dm,n(t) are the rotation and translation
(measured in the local coordinate system attached to en)
required to take en to the position and orientation of em.

Similarly, we can represent en in the local coordi-
nate system attached to em (refer to figure 3(b)). Let
emn1(t), e

m
n2(t) ∈ R3 respectively denote the starting and

end points of en represented in the local coordinate system
attached to em at time instance t. Then[

emn1(t) e
m
n2(t)

1 1

]
=

[
Rn,m(t) ~dn,m(t)

0 1

]
0 ln
0 0
0 0
1 1

 , (9)

where Rn,m(t) and ~dn,m(t) are the rotation and translation
(measured in the local coordinate system attached to em)
required to take em to the position and orientation of en.

Since the lengths of body parts do not vary with time, the
relative geometry between em and en at time instance t can
be described using

Pm,n(t) =

[
Rm,n(t) ~dm,n(t)

0 1

]
∈ SE(3),

Pn,m(t) =

[
Rn,m(t) ~dn,m(t)

0 1

]
∈ SE(3).

(10)

At first glance it might appear that using only Pm,n(t)
or Pn,m(t) would suffice. Consider the case in which en
is rotating about an axis along em. Though there is rela-
tive motion between the two, the matrix Pm,n(t) will not
change. Similarly, if em is rotating about an axis along en,
then the matrix Pn,m(t) will not change. So, if we repre-
sent the relative geometry using only Pm,n(t) or Pn,m(t),
the representation will not change under certain kinds of
relative motions, which is undesirable. Hence, we use both
Pm,n(t) and Pn,m(t) to represent the relative geometry be-
tween em and en. Note that both Pm,n(t) and Pn,m(t) do
not change only when both em and en undergo same ro-
tation and translation, i.e., only when there is no relative
motion between them.

Using the relative geometry between all pairs of body
parts, we represent a skeleton S at time instance t using
C(t) = (P1,2(t), P2,1(t) . . . , PM−1,M (t), PM,M−1(t)) ∈
SE(3)× . . . × SE(3), where M is the number of body
parts. Using the proposed skeletal representation, a skeletal
sequence describing an action can be represented (figure 1)
as a curve {C(t), t ∈ [0, T ]} in SE(3) × . . . × SE(3).
Classification of action curves in the curved space SE(3)×
. . .×SE(3) is not a trivial task. Moreover, standard classi-
fication approaches like SVM and temporal modeling ap-
proaches like Fourier analysis are not directly applicable
to this space. To overcome these difficulties, we map the
action curves from SE(3) × . . . × E(3) to its Lie algebra
se(3)×. . .×se(3), which is the tangent space at the identity
element. The Lie algebra curve (in vector representation)
corresponding to C(t) is given by
C(t) =

[
vec(log(P1,2(t))), vec(log(P2,1(t))), . . . ,

vec(log(PM−1,M (t))), vec(log(PM,M−1(t)))
]
.

(11)



At any time instance t, C(t) is a vector of dimension
6M(M − 1). Hence, we represent actions as temporal evo-
lutions of 6M(M − 1)-dimensional vector.

Note that, we are using only the relative measurements
Pm,n(t) in our skeletal representation. We also performed
experiments by adding the absolute 3D locations of body
parts to the skeletal representation. The 3D location of a
rigid body part em can be described using its rotation Rm

with respect to global x-axis and the translation ~dm of its
starting point em1 from the origin (refer to figure 2(b)). But,
using the absolute locations of body parts did not give any
improvement, suggesting that the information about abso-
lute locations is redundant for the actions used in our ex-
periments. Hence, we just use the relative measurements in
this paper.

5. Temporal Modeling and Classification
Classification of curves in the Lie algebra into different

action categories is not straightforward due to various issues
like rate variations, temporal misalignment, noise, etc. Fol-
lowing [17], we use DTW [10] to handle rate variations.
During training, for each action category, we compute a
nominal curve using the algorithm described in Table 1,
and warp all the training curves to this nominal curve us-
ing DTW. We use the squared Euclidean distance in the Lie
algebra for DTW. Note that to compute a nominal curve all
the curves should have equal number of samples. For this,
we use the interpolation algorithm presented in section 3
and re-sample the curves in SE(3) × . . . × SE(3) before
mapping them to Lie algebra. To handle the temporal mis-
alignment and noise issues, we represent the warped curves
using the recently proposed Fourier temporal pyramid rep-
resentation [19] removing the high frequency coefficients.
We apply FTP for each dimension separately and concate-
nate all the Fourier coefficients to obtain the final feature
vector. Action recognition is performed by classifying the
final feature vectors using one-vs-all linear SVM. Figure 4
gives an overview of the entire approach.

6. Experimental Evaluation
In this section, we evaluate the proposed skeletal repre-

sentation using three different datasets: MSR-Action3D [7],
UTKinect-Action [20] and Florence3D-Action [14]. The
code used for our experiments can be downloaded from
http://ravitejav.weebly.com/kbac.html.

MSR-Action3D dataset [7]: This dataset was captured
using a depth sensor similar to Kinect. It consists of 20 ac-
tions performed by 10 different subjects. Each subject per-
formed every action two or three times. Altogether, there
are 557 action sequences. The 3D locations of 20 joints are
provided with the dataset. This is a challenging dataset be-
cause many of the actions are highly similar to each other.

Table 1: Algorithm for computing a nominal curve

Input: Curves C1(t), . . . ,CJ(t) at t = 0, 1, . . . , T.
Maximum number of iterations max and threshold δ.

Output: Nominal curve C(t) at t = 0, 1, . . . , T .

Initialization: C(t) = C1(t), iter = 0.
while iter < max

Warp each curve Cj(t) to the nominal curve C(t) using
DTW with squared Euclidean distance to get a warped
curve Cw

j (t).

Compute a new nominal C
′
(t) using

C
′
(t) = 1

J

∑J
j=1 C

w
j (t).

if
∑T

t=0 ‖C
′
(t)−C(t)‖22 ≤ δ (‖ · ‖2 denotes `2 norm)

break
end
C(t) = C

′
(t); iter = iter + 1;

end

UTKinect-Action dataset [20]: This dataset was cap-
tured using a stationary Kinect sensor. It consists of 10 ac-
tions performed by 10 different subjects. Each subject per-
formed every action twice. Altogether, there are 199 action
sequences. The 3D locations of 20 joints are provided with
the dataset. This is a challenging dataset due to variations
in the view point and high intra-class variations.

Florence3D-Action dataset [14] This dataset was cap-
tured using a stationary Kinect sensor. It consists of 9 ac-
tions performed by 10 different subjects. Each subject per-
formed every action two or three times. Altogether, there
are 215 action sequences. The 3D locations of 15 joints
are provided with the dataset. This is a challenging dataset
due to high intra-class variations (same action is performed
using left hand in some sequences and right hand in some
other) and the presence of actions like drink from a bottle
and answer phone which are quite similar to each other.

Basic pre-processing: In the case of MSR-Action3D
and UTKinect-Action datasets, each skeleton has 19 parts
and 20 joints, whereas in the case of Florence3D-Action
dataset, each skeleton has 14 parts and 15 joints. To make
the skeletal data invariant to absolute location of the hu-
man in the scene, all 3D joint coordinates were transformed
from the world coordinate system to a person-centric coor-
dinate system by placing the hip center at the origin. For
each dataset, we took one of the skeletons as reference, and
normalized all the other skeletons (without changing their
joint angles) such that their body part lengths are equal to
the corresponding lengths of the reference skeleton. This
normalization makes the skeletons scale-invariant. We also
rotated the skeletons such that the ground plane projection
of the vector from left hip to right hip is parallel to the global
x-axis. This rotation makes the skeletons view-invariant.

http://ravitejav.weebly.com/kbac.html


Figure 4: The top row shows all the steps involved in training and the bottom row shows all the steps involved in testing.

6.1. Alternative Skeletal Representations

To show the effectiveness of the proposed skeletal repre-
sentation, we compare it with the following four alternative
skeletal representations:

Joint positions (JP): Concatenation of 3D coordinates
of all the joints v1, . . . , vN .

Pairwise relative positions of the joints (RJP): Con-
catenation of all the vectors −−→vivj , 1 ≤ i < j ≤ N.

Joint angles (JA): Concatenation of the quaternions cor-
responding to all joint angles. We also tried Euler angles
and Euler axis-angle representations for the joint angles, but
quaternions gave the best results.

Individual body part locations (BPL): Each individual
body part is represented as a point in SE(3) using its rota-
tion and translation relative to the global x-axis. Mapping
the points from SE(3) to se(3), we get a 6M-dimensional
vector representation, whereM is the number of body parts.

For fair comparison, we used the temporal modeling and
classification approach described in section 5 with all the
representations.

6.2. Evaluation Settings and Parameters

For MSR-Action3D dataset, we followed the cross-
subject test setting of [7], in which half of the subjects were
used for training and the other half were used for testing.
Following [7], we divided the dataset into subsetsAS1, AS2

andAS3, each consisting of 8 actions, and performed recog-
nition on each subset separately. The subsets AS1 and AS2

were intended to group actions with similar movements,
while the subset AS3 was intended to group complex ac-
tions together.

For UTKinect-Action and Florence3D-Action datasets,
we followed the cross-subject test setting of [27], in which
half of the subjects were used for training and the remaining
half were used for testing.

In all the experiments, we used a three-level Fourier
temporal pyramid with 1/4 length of each segment as low-
frequency coefficients. The value of SVM parameter C was
set to 1 in all the experiments. As explained in section 5, for
each dataset, all the curves in SE(3) × . . . × SE(3) were
re-sampled to have same length. The reference length was
chosen to be the maximum number of samples in any curve
in the dataset before re-sampling. All the results reported in
this paper were averaged over ten different combinations of
training and test data.

6.3. Results

Comparison with other skeletal representations:
Table 2 reports the recognition rates for various skeletal rep-
resentations on MSR-Action3D dataset. The recognition
rates in the last row are the average of the recognition rates
for the three subsetsAS1,AS2 andAS3. We can clearly see
that the proposed representation performs better than var-
ious other commonly-used representations on all the sub-
sets. The average accuracy of the proposed representation is
10.6% better than the average accuracy of joint angles, 8.9%
better than the average accuracy of individual body part lo-
cations, 5.2% better than the average accuracy of joint po-
sitions, and 4.2% better that the average accuracy of rela-
tive joint positions. Better performance on subsets AS1 and
AS2 indicates that the proposed representation is better than
others in differentiating similar actions. Better performance
on subset AS3 indicates that the proposed representation is
better than others in modeling complex actions.

Table 3 reports the recognition rates for various skele-
tal representations on UTKinect-Action and Florence3D-
Action datasets. In the case of UTKinect-Action dataset, the
average accuracy of the proposed representation is 3% bet-
ter than the average accuracy of joint angles, 2.5% better
than the average accuracy of individual body part locations,
2.4% better than the average accuracy of joint positions, and



Table 2: Recognition rates for various skeletal representations on
MSR-Action3D dataset using the protocol of [7]

Dataset JP RJP JA BPL Proposed
AS1 91.65 92.15 85.80 83.87 95.29
AS2 75.36 79.24 65.47 75.23 83.87
AS3 94.64 93.31 94.22 91.54 98.22

Average 87.22 88.23 81.83 83.54 92.46

Table 3: Recognition rates for various skeletal representations on
UTKinect-Action and Florence3D-Action datasets

Dataset JP RJP JA BPL Proposed
UTKinect 94.68 95.58 94.07 94.57 97.08
Florence3D 85.26 85.20 81.36 80.80 90.88

1.5% better that the average accuracy of relative joint posi-
tions. In the case of Florence3D-Action dataset, the aver-
age accuracy of the proposed representation is 9.5% bet-
ter than the average accuracy of joint angles, 10.1% better
than the average accuracy of individual body part locations,
5.6% better than the average accuracy of joint positions, and
5.7% better that the average accuracy of relative joint posi-
tions. These results clearly demonstrate the superiority of
the proposed representation over various existing skeletal
representations.

Figure 5 shows the confusion matrices for MSR-
Action3D AS1, MSR-Action3D AS2 and Florence3D Ac-
tion datasets. We skip MSR-Action3D AS3 and UTKinect-
Action datasets as the corresponding recognition rates are
very high. We can see that most of the confusions are be-
tween highly similar actions like hammer and high throw in
the case of MSR-Action3D AS1, draw X, draw tick, draw
circle, hand catch and side boxing in the case of MSR-
Action3D AS2, and drink, answer phone and read watch
in the case of Florence3D-Action dataset.
Comparison with state-of-the-art results:
Table 4 compares the proposed approach with various
state-of-the-art skeleton-based human action recognition
approaches. We can see that the proposed approach gives
the best results on all datasets. Specifically, it outperforms
the state-of-the-art by 6.1% on UTKinect-Action dataset
and by 8.8% on Florence3D-Action dataset.

Note that we have reported two different recognition
rates for the proposed approach on MSR-Action3D dataset.
The recognition rate of 92.46% corresponds to the exper-
imental setting of [7] and the recognition rate of 89.48%
corresponds to the experimental setting of [19]. In [19], in-
stead of dividing the dataset into three subsets, the actionlet-
based approach was applied to the entire dataset consist-
ing of 20 actions. This experimental setting is more difficult
compared to that of [7].

Some recent approaches like [13, 27] have reported
recognition rates around 94.5% for MSR-Action3D dataset
by combining skeletal features with additional depth-based
features. Since this paper’s focus is not on combining multi-

Table 4: Comparison with the state-of-the-art results
MSR-Action3D dataset (protocol of [7])

Histograms of 3D joints [20] 78.97
EigenJoints [22] 82.30
Joint angle similarities [13] 83.53
Spatial and temporal part-sets[18] 90.22
Covariance descriptors [5] 90.53
Random forests [27] 90.90
Proposed approach 92.46

MSR-Action3D dataset (protocol of [19])
Actionlets [19] 88.20
Proposed approach 89.48

UTKinect-Action dataset
Histograms of 3D joints [20] 90.92
Random forests [27] 87.90
Proposed approach 97.08

Florence3D-Action dataset
Multi-Part Bag-of-Poses [14] 82.00
Proposed approach 90.88

ple features, we only use the skeleton-based results reported
in [13, 27] for comparison.

It is interesting to note that even joint positions and rel-
ative joint positions (when used with the temporal mod-
eling and classification approach presented in section 5)
produce results better than the state-of-the-art reported on
UTKinect-Action and Florence3D-Action datasets. This
suggests that the combination of DTW, FTP and linear SVM
is well-suited for skeleton-based action classification.

7. Conclusion and Future Work

In this paper, we represented a human skeleton as a
point in the Lie group SE(3)× . . .× SE(3), by explicitly
modeling the 3D geometric relationships between various
body parts using rotations and translations. Using the pro-
posed skeletal representation, we modeled human actions as
curves in this Lie group. Since SE(3) × . . . × SE(3) is a
curved manifold, we mapped all the curves to its Lie alge-
bra, which is a vector space, and performed temporal mod-
eling and classification in the Lie algebra. We experimen-
tally showed that the proposed representation performs bet-
ter than many existing skeletal representations on three dif-
ferent action datasets. We also showed that the proposed ap-
proach outperforms various state-of-the-art skeleton-based
human action recognition approaches.

In our work, we used the relative geometry between all
pairs of body parts. But, each action is usually characterized
by the interactions of a specific set of body parts. Hence, we
are planning to explore various strategies to automatically
identify the set of body parts that differentiates a given ac-
tion from the rest. In this paper, we focused only on actions
performed by a single person. We are planning to extend
this representation to model multi-person interactions.



Figure 5: Confusion matrices: Left – MSR-Action3D AS1; Center - MSR-Action3D AS2; Right – Florence3D-Action
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