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Abstract

In this paper, we would like to evaluate online learning
algorithms for large-scale visual recognition using state-of-
the-art features which are preselected and held fixed. To-
day, combinations of high-dimensional features and linear
classifiers are widely used for large-scale visual recogni-
tion. Numerous so-called mid-level features have been de-
veloped and mutually compared on an experimental basis.
Although various learning methods for linear classification
have also been proposed in the machine learning and nat-
ural language processing literature, they have rarely been
evaluated for visual recognition.

Therefore, we give guidelines via investigations of state-
of-the-art online learning methods of linear classifiers.
Many methods have been evaluated using toy data and nat-
ural language processing problems such as document clas-
sification. Consequently, we gave those methods a unified
interpretation from the viewpoint of visual recognition. Re-
sults of controlled comparisons indicate three guidelines
that might change the pipeline for visual recognition.

1. Introduction
By virtue of recent advances in computer science and

because of the culture of sharing of multimedia information
such as photographs, vast quantities of labeled images have
been used for visual recognition [14, 26, 34, 39]. Combi-
nations of high-dimensional features and linear classifiers
have been especially studied. Such high-dimensional fea-
tures are generated from each image by pooling many mid-
level features. Each mid-level feature is coded from a local
descriptor. Recently, many techniques for coding and pool-
ing have been proposed and compared using well-known
datasets [3, 6].

During the last decade, numerous online learning meth-
ods for linear classification have also been widely stud-
ied [1, 8, 10, 11, 12, 33, 39] to address vast quantities of
data which cannot be loaded on RAM at a time. Given
the t-th training sample, xt ∈ Rd, associated with a la-

1. Perceptron can compete against the latest methods.

• Provided that the second guideline is observed.

2. Averaging is necessary for any algorithm.

• First-order algorithms w/o averaging cannot
compete against second-order algorithms.

• When averaging is used, the accuracies of all
algorithms become very close to each other.

• Averaging accelerates not only first-order al-
gorithms but also second-order algorithms.

3. Investigate multiclass learning first.

• Both one-versus-the-rest learning and multi-
class learning achieve similar accuracy.

• However, one-versus-the-rest takes much
longer CPU time to converge than multiclass
does.

Figure 1. Three guidelines for online learning for large-scale visual
recognition.

bel, yt ∈ Y = {y1, . . . , ym}, the sample is classified with
the present weight vector, µyi

t ,1 as ŷt = argmaxyµ
y
t · xt.

The classifiers suffer from a loss when they misclassify the
datum and get updated as µt+1 = µt+τtxt, where τt deter-
mines the step size. Because learning can be performed by
holding one datum, online learning methods are appropri-
ate for large-scale problems. Additionally, state-of-the-art
methods outperform batch learning methods such as Sup-
port Vector Machine (SVM) as reported in [9, 16].

Despite progress in online learning methods, few evalu-
ations of these methods have been reported for large-scale
visual recognition. Almost all approaches to obtain lin-
ear classifiers have been online versions of SVM [1, 2, 36]
with a one-versus-the-rest (OVR) manner. Furthermore, the
original SVM is not a multiclass classifier. With OVR, we
divide training samples into a positive class or a negative
class for each label. Then we train binary SVM for each

1Here, bias b is included in µt as µ⊤
t ← [µ⊤

t , b] by redefining x⊤
t ←

[x⊤
t , 1].
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label. When we use OVR, however, the quantities of sam-
ples in the two classes (positive and negative) are imbal-
anced. Moreover, learning with OVR takes more CPU time
because OVR might update many more weights than multi-
class (MUL) in each step.

Our intuition tells us that the newest learning method
performs best for large-scale visual recognition. However,
this intuition is doubtful because the online learning meth-
ods have not been evaluated nor compared for visual recog-
nition. Most online learning methods are evaluated us-
ing synthetic datasets and natural language datasets such as
document classification.

As described in this paper, to give guidelines to choose
learning methods for large-scale visual recognition, we in-
vestigate state-of-the-art online learning methods over vari-
ous mid-level features using large-scale datasets.

Our main contributions are summarized as follows:

• To evaluate and discuss online learning algorithms on
unified combinations of mid-level features and local
descriptors.

• To propose averaged and sample-reweighted versions
of second-order algorithms [10, 11, 12].

• To provide a source code, including all online learning
algorithms compared in this paper.2

The remainder of this paper is organized as follows: Sec.
2 introduces related works for large-scale visual recogni-
tion. In Sec. 3, we overview the state-of-the-art algorithms
from various perspectives. Qualitative and quantitative dis-
cussions are given, respectively, in Sec. 4 and Sec. 5. From
these discussions, the three guidelines in Fig. 1 are ob-
tained. Finally, we conclude this paper in Sec. 6.

2. Related Works

To achieve generic object recognition, large datasets are
required because numerous objects with various appear-
ances must be assessed. For example, with ImageNet [15],
there are 14 million images for the 20,000 words in Word-
Net. Therefore, scalability of the data amount is necessary.

For scalability, combinations of high-dimensional fea-
tures and linear classifiers have been widely studied [26,
34]. Mid-level features have been improved from traditional
Bag-of-Visual-Words (BoVW) models [13]. Although a
BoVW vector for each descriptor has only one non-zero
element, recent mid-level features extract richer informa-
tion: second-moment [31], first-moment [22, 42], and zero-
moment [37, 40, 41] with respect to between descriptors
and code words. Those features have been compared with
common datasets. Some studies [3, 6] have compared the
conventional features in a unified evaluation setting.

2http://www.mi.t.u-tokyo.ac.jp/static/projects/mil_averaged_learning/

Perceptron [33] has started the development of online
learning algorithms for linear classification. As described
in Sec. 3, these algorithms are divisible into two groups:
first-order methods and second-order methods. Percep-
tron and gradient-based online SVMs [1, 2, 18, 36] are
first-order methods. Recently, second-order algorithms
[5, 9, 10, 11, 12, 16, 17] have been studied thoroughly for
adaptive updates for each dimension using second-order in-
formation. They outperform batch SVM.

Although many proposals of mid-level features and their
evaluations [3, 6] exist, few works describe investigations
of learning methods for linear classifiers. In [4], only first-
order algorithms and the averaging technique are evaluated.
In [23], linear SVMs (including OVR and multiclass) have
been investigated for large-scale problems. In [7], a link be-
tween Perceptron and SGD-SVM is discussed, but no quan-
titative comparison is included.

Furthermore, evaluations of these algorithms for visual
recognition are rare. In [26, 30], some versions of SGD-
SVM are evaluated with ImageNet [15]. [30] also proposed
a reweighting OVR. In papers proposing the algorithms, the
use of synthetic data and commonly used ML/NLP datasets
is typically described. In natural language datasets, feature
vectors are based on the Bag-of-Words (BoW) model, in
which each dimension in the feature vector for each da-
tum represents the presence of a certain word in the da-
tum. In such cases, feature vectors tend to be sparse. Con-
sequently, many researchers devote attention to adaptive
learning when the occurrence ratio of each dimension of
feature vectors differs. In visual recognition problems, how-
ever, feature vectors tend to be much denser than those of
NLP problems.

3. Online Learning Algorithms
In this section, we introduce state-of-the-art online learn-

ing methods [1, 8, 10, 11, 12, 33] for linear classification.
All update rules of the methods are summarized in Table 1.

Fundamentally, each method has been proposed as learn-
ing for binary classification. Two commonly used tech-
niques apply binary classifiers themselves to multiclass
problems. One is the one-versus-the-rest (OVR) technique
described in Sec. 1. The other is the one-versus-one (OVO)
technique. With the OVO, we train m(m− 1)/2 classifiers
for all pairs of labels. We use the OVR because the OVO
requires numerous classifiers for labels of many kinds.

The overview of binary learning is shown in Fig. 2. In
an online learning scheme, t-th sample, xt, is classified
with the t-th weights, µt, by checking the sign of the inner
product, µt · xt. Samples are permuted randomly for sta-
ble learning because arranging samples in label order makes
convergence slow. We can verify the prediction by checking
if the margin, γt = yt(µt ·xt), is greater than zero because
of the ground truth, yt = ±1. However, we seek to enlarge



Initialize µ0 = 0 and Σ0 = I
while classifiers are not converged do

for t = 1, 2, . . . , N do
Receive sample xt ∈ Rd.
Predict ŷt = sign(µt · xt).
Get true label yt and margin γt = yt(µt · xt).
if γt < E

Set µt+1 = µt + αtytΣtxt.
Set Σ−1

t+1 = Σ−1
t + βtdiag(xt)

2.
end if

end for
end while

Figure 2. Overview of learning binary classifiers.

the margin γt for stable classification. Therefore, we check
if γt > E, where E ≥ 0.

We update µ using a step size αt as µt+1 = µt+αtytxt

in first-order algorithms. Recent second-order algorithms
use Σt ∈ Rd×d as confidence information for the dimen-
sions where non-zero values frequently appear not to be up-
dated widely. We must learn d × d elements for each label
if Σt is a full matrix. Therefore, diagonal matrices are com-
monly used. In Fig. 2 and Fig. 3, diag(xt) is a diagonal
matrix having elements of xt as diagonal elements.

An overview of multiclass (MUL) learning is portrayed
in Fig. 3. Given the sample, xt, and its label, yt, which
now represents the label number, we treat a violating label,
y′t = argmaxy∈Y\yt

µy
t · xt. Then we redefine the margin,

γt = µyt

t · xt − µ
y′
t

t · xt, and check if γt > E. Because
almost all algorithms are proposed for binary classification,
we modify them for multiclass learning in accordance with
[8]. The details are described in Supplemental Materials.

Whether a classifier is for binary or for multiclass, the
label for a sample xt is predicted as ŷt = arg max

y
µy

t · xt.

3.1. Perceptron

Perceptron, which was proposed in [33] more than half
a century ago, is a traditional algorithm to obtain a linear
classifier. The last layer of Deep Convolutional Neural Net-
work [24] is similar to the multiclass version of this algo-
rithm. Margin γt is simply expected to be more than zero.
Although the step size is also simply defined as αt = 1 in
[33], we tune the fixed step size αt = C for better accuracy.

3.2. Stochastic Gradient Descent SVM

The objective function of the original SVM, which is
batch learning, is the following:

µ = arg min
µ

1

2
∥µ∥2 +

N∑
n=1

αn max{0, 1− γn}, (1)

Initialize µ0 = 0 and Σ0 = I
while classifiers are not converged do

for t = 1, 2, . . . , N do
Receive sample xt ∈ Rd.
Predict ŷt = argmaxy∈Y (µ

y
t · xt).

Get ...
true label yt,
violating label y′t = argmaxy ̸=yt(µ

y
t · xt),

and their margin γt = µyt

t · xt − µ
y′
t

t · xt.
if γt < E

Set µyt

t+1 = µyt

t + αtΣ
yt

t xt.
Set µy′

t
t+1 = µ

y′
t

t − αtΣ
y′
t

t xt.
Set (Σyt

t+1)
−1 = (Σyt

t )−1 + βtdiag(xt)
2.

Set (Σy′
t

t+1)
−1 = (Σ

y′
t

t )−1 + βtdiag(xt)
2.

end if
end for

end while
Figure 3. Overview of learning multiclass classifiers.

where N is the number of all training samples. This batch
version of SVM can be converted to online learning meth-
ods by introducing stochastic gradient descent (SGD) [1, 2]
or sub-gradient descent [36]. Pegasos [36] used a sub-
gradient of the object function with a subset of training
samples. When the size of this subset becomes one, the
algorithm closely simulates the stochastic gradient descent
(SGD-SVM) [1, 2] as:

µt+1 = µt − αt∇(λ∥µ∥2 +max{0, 1− γt}), (2)

where λ is a hyperparameter that must be tuned manually.
As described in [1], there is also a second-order version of
SGD using an approximation of the Hessian for the objec-
tive function. In this paper, first-order SGD is used because
the first-order version is commonly used for visual recogni-
tion [26, 30].

The most important problem is to design step size αt. A
usual technique [1, 2] states that αt = 1/λ(t + t0) with
another hyperparameter t0. The other [7, 30] is to define
that αt = C where 1 ≫ C > 0.

Another problem is related to regularization. We should
tune the parameter λ. One empirical definition is λ = 1/N
whereN is the data amount. Using a naive implementation,
we must regularize all classifiers whether 1−γt > 0 or not.
One famous approach is divide µt into ltrt, where lt is the
L2 norm of µt and rt is normalized vector of µt. Conse-
quently, regularization can be performed by multiplying lt
by (1−αtλ). However, [7] obviates regularization by defin-
ing λ = 0. Instead, the authors use early stopping, which is
stopping training using a validation dataset. This version of
SGD-SVM is the same as a variation of Perceptron called
Margin Perceptron [19]. Indeed, [30] uses fixed step size



αt = C and discards regularization for large-scale datasets.
Experimental results in [30] show that SGD-SVM without
regularization (Margin Perceptron) achieves similar or su-
perior performance to SGD-SVM with L2 regularization.

3.3. Passive–Aggressive

The largest benefit of Passive–Aggressive (PA) [8] is that
the update coefficient is calculated analytically according to
the loss. Here, we sought to decrease the hinge loss, 1− γt
and not to change the weight radically:

µt+1 = arg min
µ

1

2
∥µ− µt∥2 s.t. 1− γt = 0. (3)

The equation presented above is the objective function of
PA. Objective functions of all other algorithms explained
later are also defined as a form of each update.

This is solvable analytically with ease. An important
shortcoming is that µt+1 always classifies xt as yt, whether
yt is correct or not. It is impossible to design large datasets
that include no label noise. In [8], therefore, aggressiveness
parameter C is introduced to soften the condition:

µt+1 = arg min
µ

1

2
∥µ− µt∥2 + C(1− γt). (4)

This version is called PA-I [8]. Another version, PA-II, uses
the squared hinge loss, C(1− γt)

2, in the second term. Ac-
cording to [8], the accuracies of PA-I and PA-II are mutually
close. For these analyses, we used PA-I as PA.

3.4. ConfidenceWeighted

The main difference between Confidence-Weighted
(CW) [16] and PA is that CW has the confidence weight
Σ, a diagonal d × d matrix. If a classifier learns about a
certain dimension of feature vectors many times, then the
classifier must be more confident about that dimension. In
other words, the classifier is expected to update less con-
fident dimensions larger. Such an adaptive update makes
convergence faster than the first-order algorithms.

Therefore, CW considers weights as a normal distribu-
tion, N (µ,Σ). We expect that the (t + 1)-th weight from
N (µt+1,Σt+1) can classify xt correctly with a fixed prob-
ability, η. This condition is expressed as γt ≥ ϕ

√
vt, where

vt = x⊤
t Σtxt, and ϕ = Φ−1(η). Φ is the cumulative func-

tion of the normal distribution.
To preserve the current classifiers, Kullback–Leibler di-

vergence is used instead of the squaredL2 norm, ∥µ−µt∥2,
in PA. Consequently, the objective function is the following:

(µt+1,Σt+1) = arg min
µ,Σ

DKL (N (µ,Σ)∥N (µt,Σt))

s.t. ϕ
√
vt − γt = 0. (5)

In [16], the solution was approximated whereas exact
updates for binary and multiclass classifications were pro-
posed, respectively, in [10] and [9].

3.5. Adaptive Regularization of Weight

The salient shortcoming of CW is its poor adaptability to
label noise. Therefore, Adaptive Regularization of Weight
(AROW) [11] introduces the squared hinge loss as:

(µt+1,Σt+1) = arg min
µ,Σ

DKL (N (µ,Σ)∥N (µt,Σt))

+ C(1− γt)
2 + Cx⊤

t Σxt, (6)

where C is a constant parameter to be tuned.3 The third
term aims to converge classifiers faster.

3.6. Gaussian Herding

Gaussian Herding (NHERD) [12] is a modified version
of PA for second-order algorithms. As is true also for CW
and AROW, weights in HERD are expressed with normal
distributions, N (µ,Σ). Additionally, the t-th update is de-
fined as a linear transformation of the distributions with ma-
tricesAt. As a result, we obtained the objective function as:

(µt+1, At) = arg min
µ,A

1

2
(µ− µt)

⊤Σ−1
t (µ− µt)

+
1

2
Tr

(
(A− I)⊤Σ−1

t (A− I)Σt

)
+ C(1− γt)

2 +
C

2
x⊤
t AΣtA

⊤xt. (7)

3.7. Soft ConfidenceWeighted

Soft Confidence-Weighted (SCW) [38] solves the prob-
lem of CWs poor adaptability to label noise by softening the
condition according to the manipulation in PA [8]:

(µt+1,Σt+1) = arg min
µ,Σ

DKL (N (µ,Σ)∥N (µt,Σt))

+ C (ϕ
√
vt − γt) . (8)

The difference between Eq. (5) and Eq. (8) is the same
as the difference between Eq. (3) and Eq. (4); the condi-
tion is added to the equation with aggressiveness parameter
C. Therefore, there are two versions of SCW: SCW-I and
SCW-II. In particular, the last term of Eq. (8) would be
C(ϕ

√
vt − γt)

2 for SCW-II. For this study, we used SCW-I
as SCW.

4. Common Qualitative Issues
Update rules of all learning methods are presented in Ta-

ble 1. Again, it is noteworthy that objective functions of PA,
CW, AROW, NHERD, and SCW are already shown in their
subsections. These algorithms are designed using a form of
each update while batch SVM is designed using a total loss.
In this section, we investigate two common issues.

3In [11], C is expressed as 1
2r

, where r is also a parameter to be tuned.
Here, we use C for unified description.



Table 1. Update rules. Variables in Fig. 2 and Fig. 3 are shown in the middle columns. The last column shows the parameters to be tuned.
For SCW, we show a slightly different form of update from that described in [38]. Details are described in Supplemental Materials. For
binary classification, γt = yt(µt · xt), vt = x⊤

t Σtxt, and l(xt)
2 = ∥xt∥2. For multiclass classification, γt = µyt

t · xt − µ
y′
t

t · xt,

vt = x⊤
t (Σ

yt
t + Σ

y′
t

t )xt, and l(xt)
2 = 2∥xt∥2. Whether the classification is binary or multiclass, ϕ = Φ−1(η) (Φ is the cumulative

function of the normal distribution), ψ = 1 + ϕ2/2, and ζ = 1 + ϕ2.

Method E αt βt Parameters
Perceptron [33] 0 C 0 C
SGD-SVM [1] 1 C 0 C

PA [8] 1 min
{
C, (1− γt)/l(xt)

2
}

0 C

CW [10] ϕ
√
vt max

{
0, 1

vtζ

(
−γtψ +

√
γ2t

ϕ4

4 + vtϕ2ζ

)}
2

−vt+
√

v2
t+4vt/(α2

tϕ
2)

η

AROW [11] 1 (1− γt)/(vt + 1/C) C C
NHERD [12] 1 (1− γt)/(vt + 1/C) 2C + C2vt C

SCW [38] ϕ
√
vt min

{
C,max

{
0, 1

vtζ

(
−γtψ +

√
γ2t

ϕ4

4 + vtϕ2ζ

)}}
2

−vt+
√

v2
t+4vt/(α2

tϕ
2)

C, η

4.1. OVR vs. MUL

Two common choices of OVR are e-OVR, for which the
number of negative samples is the same as the number of
positive samples, and u-OVR, for which all samples in other
classes are selected as negative samples. In [30], reweight-
ing samples for OVR (w-OVR) is proposed. In each itera-
tion,4 the number of negative samples is limited with respect
to the number of positive samples.

[30] experimentally compared MUL and OVR using
SGD-SVM. As a result, MUL outperformed e-OVR and
u-OVR. Moreover, w-OVR outperformed multiclass SGD-
SVM. Authentically, OVR is easily parallelized because a
classifier for each label can be learned independently. How-
ever, MUL can also be parallelized easily [21]. In general,
more accurate classifiers with less CPU time for learning
are preferred. Herein, we compare these OVRs and MUL
using state-of-the-art online learning methods.

4.2. Averaging

With most algorithms, training samples that are learned
later strongly influence the classifiers. In [20], the weighted
sum of µ1...T is proposed for testing. Particularly, averag-
ing them as µ̄ = 1

T (µ1 + µ2 + · · ·+ µT ) greatly facili-
tates convergence. Because averaging naively takes much
time, we used an efficient calculation described in Supple-
mental Materials. The authors of [32] insist that averaging
is a kind of approximation of second-order algorithm. In-
deed, averaged (first-order) SGD is proved to be an approx-
imation of Newton-like second-order SGD in [32].

In [26], averaging SGD-SVM outperforms SGD-SVM
for visual recognition. However, averaging weights us-
ing other state-of-the-art online learning methods are rarely
evaluated for visual recognition.

4Here iteration means learning through all T samples.

5. Experiments on ImageNet
This section shows highlights of experimentally obtained

results. Full results are provided in Supplemental Materi-
als. For general evaluation, we used various subsets of Im-
ageNet [15]. Namely, the dataset of ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) 2010, the subset
of ILSVRC 2010 dataset, and the subset of ILSVRC 2012
dataset5. Both ILSVRC 2010 and 2012 datasets include
1.2 million training images, 50,000 validation images, and
150,000 testing images for different sets of 1000 classes.

Classifiers trained with ILSVRC 2010 datasets are eval-
uated using 150,000 test samples. For both ILSVRC 2010
subsets and ILSVRC 2012 subsets, 100 training images
were extracted from each class. ILSVRC 2012 has test sam-
ples, but the ground truth is not provided. Therefore, 5000
validation samples were used for validation. The rest were
used for testing.

Parameters of online learning methods were tuned us-
ing validation data as follows: Cs in Perceptron, SGD-
SVM, PA, CW, AROW, NHERD and SCW were deter-
mined by selecting the best one from {2−4, 2−2, 20, 22, 24},
ηs in CW and SCW was determined by selecting from
{0.5, 0.6, . . . , 0.9}. Fundamentally, we allowed at most 10
passes over the data set for the best accuracy. We repeated
all evaluations five times. Herein, we present the results ob-
tained using the mean and the standard deviation.

5.1. ILSVRC 2010 Dataset

For this dataset, SIFT [27] descriptor and Fisher Vector
(FV) [31] were used. We extracted each descriptor from a
regular grid with step size 6 pixels at multiple patch sizes:
16×16, 25×25, 36×36, 49×49, and 64×64. As a result,
tens of thousands of descriptors were extracted for each im-

5http://www.image-net.org/download
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Figure 4. Comparison using ILSVRC 2010 1.2M dataset with
SIFT+FV. White bars are performances using a 100k subset of
ILSVRC 2010.

age. For FV, according to [30], we reduced the dimensions
of SIFT to 64 using PCA, and obtained a Gaussian Mixture
Model (GMM) with 16 components.

5.2. ILSVRC 2012 Dataset

We used four local descriptors: SIFT [27], Local Bi-
nary Pattern (LBP) [28], GIST [29], and CSIFT [35], and
three mid-level features: BoVW, Locality-constrained Lin-
ear Coding (LLC) [37], and FV [31]. The size of patch and
the grid width are the same as SIFT from ILSVRC 2010.
Our main contribution is to compare online learning algo-
rithms. Comparison with these mid-level features are done
in [6], although we also slightly contribute by comparing
them using various local descriptors.

LBP [28] is extracted from 2 × 2 cells in each patch.
From each cell, a histogram of 256 bins of local patterns
is extracted. Combinations of LBP and gradient based de-
scriptor, such as SIFT, are shown to be effective for large-
scale visual recognition [26]. GIST [29] is extracted from
4×4 cells in each patch. From each cell, responses from 20
Gabor filters are extracted on R, G and B channels. Usually,
GIST is used for a global feature. This report is the first de-
scribing the use of GIST as a local descriptor for mid-level
features. CSIFT, one variation of color SIFTs, is a 384-
dimensional descriptor that has been shown to perform best
with BoVW for visual recognition in [35].

Each mid-level feature is generated from each descrip-
tor. For FV, we reduced the dimensions of descriptors to
64 using PCA, and obtained a GMM with 256 components.
For BoVW and LLC, we learned 2048 codewords using k-
means. BoVW and LLC were calculated respectively over
1 × 1, 2 × 2, and 3 × 1 cells according to Spatial Pyramid
Matching [25]. Additionally, we reduced the memory us-
age with Product Quantization [22] according to [34]. We
divide mid-level features into each of eight dimension vec-
tors, and generate 256 clusters using k-means. All FVs of
training samples are quantized and approximated with the
centroids of each cluster when learning.

FVs LLCs BoVWs

Perceptron
SGD-SVM

PA
CW

AROW
NHERD

SCW20

10
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Figure 5. Comparison using ILSVRC 2012 subset. Each bar rep-
resents the mean accuracy among mid-level features from four de-
scriptors. For example, the accuracy using FVs is the mean of the
accuracies using SIFT+FV, LBP+FV, GIST+FV and CSIFT+FV.

5.3. Result 1: Accuracies of not Averaged Classifiers

Because of space constraints, we present summarized re-
sults here. For details, see the numerical results shown in
the Supplemental Material.

To compare all algorithms explained in Sec. 3, we first
used ILSVRC 2010 dataset. In Fig. 4 the accuracies of
all algorithms without averaging are shown6. We found the
same trend both in the 1.2M images and in the 100k images:
The second-order algorithms (right four algorithms in Fig.
4) tend to outperform first-order algorithms.

To increase the reliability of our evaluations, we assessed
all algorithms using the ILSVRC 2012 subset. Moreover,
we investigated 12 combinations of local descriptors and
mid-level features including SIFT+FV. Figure 5 represents
the accuracies of all algorithms for each mid-level feature.
To compare the algorithms easily, we averaged four ac-
curacies from the same mid-level features generated from
four descriptors. Again, we can find the superiority of the
second-order algorithms. Particularly CW performs best on
nine combinations among all 12 combinations of descrip-
tors and mid-level features. AROW and SCW perform best
on the three remaining combinations.

5.4. Result 2: Averaging Does Boost All

When we compared all algorithms without averaging,
the second-order algorithms simply seemed to outperform
the first-order algorithms. However, Fig. 6 shows that aver-
aging dramatically eliminates the difference of accuracies.
The accuracies of second-order algorithms are also boosted.

For a comparison of several datasets, we again evalu-
ated the algorithms with averaging on ILSVRC 2012 subset.
Figure 7 shows the accuracies of all algorithms with averag-
ing for each mid-level feature. Results show three facts that
are little-noted in the literature, although averaging itself is
a well-known technique. First, second-order algorithms are
also boosted for all combinations. Secondly, when averag-
ing is used, SCW turns to perform best instead of CW with

6In [30], the accuracy of SIFT+FV with the same parameter is around
25%. The accuracies in Fig. 4 are slightly different, probably because of
the difference of SIFT extraction and GMM training.
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with averaging. The brighter shows the accuracy without averag-
ing for easy reference.
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Figure 7. Comparison using ILSVRC 2012 subset. Each bar rep-
resents the mean accuracy among mid-level features from four de-
scriptors.

many combinations of mid-level features and descriptors.
Thirdly, however, the differences among all algorithms are
narrowed again. As a result, first-order algorithms such as
Perceptron, SGD-SVM and PA achieve comparative perfor-
mance using several combinations including the result ob-
tained using ILSVRC 2010 dataset. Here, we conclude the
first guideline: Perceptron can compete against the latest
algorithms, only when averaging is employed.

The next question is whether the averaging just hasten
the convergence. Because online learning algorithms are
evaluated in ten iterations, we also stop learning earlier than
in the tenth iteration in almost all experiments. To do justice
to this inquiry, we continue learning until the 50th iteration
on the ILSVRC 2010 dataset.

Figure 8 shows the convergence of Perceptron and SCW.
Note that the accuracies are evaluated not using training
data but using test data. After some iterations, both aver-
aged and not-averaged classifiers seem to reduce their per-
formance on test data. This is true mainly because of an
overfit to the training data. Furthermore, the best accuracy
of the averaged classifier is better than the not-averaged
classifiers, even with many iterations. Averaging not only
accelerates the optimization but also improves the general-
ization accuracy. Therefore, we propose the second guide-
line: averaging is necessary for any algorithm.
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Figure 8. Comparison about averaging. For other algorithms, see
Supplemental Material.
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see Supplemental Material.

5.5. Result 3: MUL vs. OVRs

In Fig. 9, the relation between elapsed time for learn-
ing and accuracy using MUL and all OVRs on SIFT+FV
of ILSVRC 2012 is shown. First, Perceptron shortly be-
gins to overfit with OVRs. Secondly, especially for second-
order algorithms, MUL can converge faster than OVR. This
is true mainly because updating the weights becomes the
rate-limiting step. Prediction with current weights is rate-
limiting for first-order algorithms. Therefore, we propose
the third guideline: investigate multiclass learning first.

6. Conclusions
To realize generic object recognition, a large amount of

data is required. Considering scalability, combinations of
mid-level features and online learning for linear classifiers
are suitable for large-scale visual recognition.

As described in this paper, we gave qualitative and quan-
titative comparisons of these online learning algorithms. To
date, no report has described a study investigating state-of-
the-art algorithms for visual recognition or a study eval-
uating those algorithms in unified experimental settings.
When these algorithms were proposed, toy data and the
NLP dataset were used for evaluation. Comparison using
conventional settings for visual recognition must be con-
ducted. This paper presents three guidelines based on re-
sults of image classification: 1) Perceptron can compete
against the latest algorithms; 2) Averaging is necessary for
any algorithm; 3) Investigate multiclass learning first.
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