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Abstract

In this paper, we present the first local descriptor de-
signed for dynamic surfaces. A dynamic surface is a sur-
face that can undergo non-rigid deformation (e.g., human
body surface). Using state-of-the-art technology, details on
dynamic surfaces such as cloth wrinkle or facial expres-
sion can be accurately reconstructed. Hence, various re-
sults (e.g., surface rigidity, or elasticity) could be derived
by microscopic categorization of surface elements. We pro-
pose a timing-based descriptor to model local spatiotem-
poral variations of surface intrinsic properties. The low-
level descriptor encodes gaps between local event dynam-
ics of neighboring keypoints using timing structure of lin-
ear dynamical systems (LDS). We also introduce the bag-
of-timings (BoT) paradigm for surface dynamics charac-
terization. Experiments are performed on synthesized and
real-world datasets. We show the proposed descriptor can
be used for challenging dynamic surface classification and
segmentation with respect to rigidity at surface keypoints.

1. Introduction
Non-rigid surfaces or soft tissues (such as human bod-

ies, faces, organs, cloths, or fluids) are dynamic surfaces
that can be represented by sequences of 3D models. The
complexity and constant change in geometry and topology
of these objects pose challenges for applying traditional vi-
sion algorithms to the sequences. Over the past few years,
new algorithms have been proposed for vision tasks such as
registration, segmentation and categorization of such data.
Among these tasks, the microscopic categorization of sur-
faces is of specific interest to us, because it is critical to
surveillance applications, such as detecting organ anoma-
lous behavior, skin aging, leaks in tanks at power plant, or
assessing fabric quality.

The reconstruction of 3D dynamic surfaces that repre-
sent real-world visual and spatial information can nowadays
be achieved with high accuracy (i.e., below 0.5 cm) and in
reasonable time thanks to recent progresses in sensing tech-
nologies. For example, 3D video (i.e., sequence of full 3D

Figure 1. Timing-based local descriptors extracted from dynamic
surface keypoints for local surface characterization (e.g., rigidity
classification). Center) Dynamic surface with intrinsic informa-
tion (shape index) observed across time. Right) Local descriptors
obtained at keypoints from gaps between local event dynamics us-
ing timing structure of dynamical systems.

models) representing live human performances or daily ac-
tivities (e.g., dance, or yoga) can be obtained using various
techniques (see multiview stereo [28, 18], or depth data fu-
sion [20]).

As we can assume that dynamic surfaces representing
real-world objects show temporally continuous variations
and have remarkable temporal statistics (e.g., clothing that
wrinkles, or speaking face), they can therefore be charac-
terized by modeling surface local deformation dynamics
across time. In [43], the authors demonstrated that surface
rigidity can be characterized by modeling intrinsic property
dynamics using linear dynamical systems (LDS), which
have long history in dynamics modeling (see dynamic tex-
tures [34, 11, 12, 4, 44, 33]). However their model only
accounts for system state duration of independent observa-
tions, and is so far limited to binary classification. On the
other hand, we propose to: 1) take into account spatial and
timing distribution of observations by considering keypoint
neighborhood, 2) form low-level local descriptors based on
timing structure gaps between LDS states (see Fig. 1 for il-
lustration), and 3) introduce bag-of-timings (BoT) for clas-
sification. To the best of our knowledge, this is the first
local descriptor designed to represent spatiotemporal event
dynamics of dynamic objects (see Sect. 2). In addition, it
outperforms prior results for classification tasks on public

1



datasets, and returns finer granularity as we classify differ-
ent rigidity levels, which is also a new contribution.

Our experiments on synthesized and real data with
ground truth showcase classification of 3D dynamic surface
keypoints with respect to deformation types. In particular,
we use public datasets of 3D video of human performances
which are challenging, of good quality, and popular in CV
and CG publications (i.e., data from MIT [9], Univ. Sur-
rey [37], and INRIA [3]). The next section deals with re-
lated work. Section 3 presents the proposed dynamic sur-
face spatiotemporal local descriptor. Section 4 gives details
on the BoT paradigm. Section 5 shows experimental results
on synthetic and real-world datasets. Section 6 concludes
with a discussion on our contributions.

2. Related Work
Local descriptors have been widely used as core methods

in computer vision research and applications for the past
two decades (e.g., for 3D reconstruction, or object recogni-
tion in videos). Performances and limitations usually rely
on their ability to be invariant to certain classes of transfor-
mation. The literature contains numerous work on texture-
based local description of 2D images [27, 29, 41]. As well,
the literature has provided several descriptors for 3D shape
models [39, 40]. However, most of existing 3D descrip-
tors are either designed for static and synthesized objects,
require surface texture, or are too sparse for object charac-
terization, while in our framework we deal with real-world
dynamic surfaces which can be textureless and noisy.

Nowadays, full 3D capture systems have become pop-
ular and accurate 3D dynamic surface can be obtained us-
ing various kinds of sensing devices (e.g., multiview video
cameras, RGB-D sensors, or 3D laser scanners) [22, 28,
1, 9, 19, 20]. Collected information is usually represented
as a stream of surface mesh models undergoing free-form
deformation across time, which geometrical structure (e.g.,
surface mesh connectivity) can be kept consistent using 3D
scene flow estimation, or surface-point matching and track-
ing [10, 26, 3, 42, 17]. Hence, low-frequency surface details
(e.g., wrinkles on solid color clothing) can be tracked accu-
rately, and deformation dynamics can be characterized for
various classification tasks [43].

Dynamic event modeling has received lots of interest
from the scientific community. Particularly, linear dynam-
ical systems (LDS), which are a generalization of Hidden
Markov Models (HMM) [32] where the underlying state-
space is continuous (instead of discrete), have been suc-
cessful at modeling complex time series. Note that the
Kalman filter is actually a popular method to estimate in-
ternal states from a sequence of observations assuming the
underlying system is a LDS. Dynamical models have been
widely used for dynamic texture modeling [34, 11], seg-
mentation [12, 4, 44], recognition [34, 33], and for facial

movement synchronization [24], or action recognition [6].
Let us mention that despite the large amount of work on

static and dynamic 3D facial expression recognition (FER),
temporal modeling is still unexplored for 3D dynamic fa-
cial expression recognition (see survey [36]). FER meth-
ods usually involve tracking of landmarks (obtained from
photometric-based local feature extraction), and rely on fea-
ture displacements (e.g., FACS). However to date, no free
dataset with annotated landmarks is available despite recent
progress [8]. Similarly, spatiotemporal statistical analysis
of medical data employs learning of specific motion pat-
terns (e.g., based on growth [14] or velocity [13]) that often
result from data simulations or involve additional physio-
logical features. Finally, work on non-rigid surface detec-
tion or modeling also refer to surface registration techniques
or (local) stress/fold region localization, which are out of
scope of this paper. For example, in [35] a 3D template
(planar mesh) is fit to a 2D textured surface using linear lo-
cal models assuming a single class of object.

In this paper, we use complex datasets representing real
human performances as introduced in Sect. 1. Deforma-
tion pattern models are necessary to perform classification
tasks as opposed to fitting rigid transformations, just as fit-
ting pixel trajectory is insufficient to perform classification
of dynamic texture [11, 4]. Note that the task is also diffi-
cult for humans because viewpoint and visual aspect can be
ambiguous.

3. Timing-Based Local Descriptor
We propose a low-level local descriptor to model surface

deformation dynamics. The descriptor captures spatiotem-
poral event statistics between neighboring keypoints using
timing structure of linear dynamical systems (LDS).

3.1. Background

Complex surface deformations can be modeled using
sets of LDS where observations across time are given
by surface intrinsic property variations such as shape
indices [43].

Shape index. The shape index σ describes local surface
topology at each surface point in terms of the principal cur-
vatures as a continuous parameter, while being invariant to
surface orientation [25]. σ encodes a curvature type (cup,
rut, saddle rut, saddle ridge, ridge, dome, cap) following its
value (see Fig. 1): σ = 2

π arctan κ2+κ1

κ2−κ1
∈ [−1, 1], where

κ1 and κ2 are the principal curvatures (κ1 ≥ κ2). Natural
scene classification is known to be more stable with shape
index than with Gaussian and mean curvatures. For curva-
ture tensor estimation, we implemented [7] based on normal
cycle. The tensor is averaged with Laplacian over geodesic
region. It can adapt to resolution sampling and filter noisy
objects.



Figure 2. Overview of timing-based local descriptor creation. a) Multivariate observations of intrinsic surface property at neighboring
keypoints. b) Representation of dynamical system timing structures using intervals {(sk, τk)}. c) Distributions of timing structure gaps
between system state pairs (each dot is an overlapping occurrence). The X-Y axis represent differences between starting (∆b = bi − bj)
and ending (∆e = ei − ej) times of two states. d) Vector-based representation of the descriptor as a histogram.

Linear dynamical systems. Let us assume a temporal se-
quence of multivariate observations Y = {y(t)}t≥0, y(t) ∈
Rc, and their hidden states X = {x(t)}t≥0, x(t) ∈ Ra

belonging to a continuous state space. A linear dynamical
system Di can then be defined as:{

x(t+ 1) = Aix(t) + gi + vi(t)
y(t) = Cx(t) + w(t),

(1)

where Ai ∈ Ra×a is the state transition matrix which mod-
els the dynamics of Di, gi is a bias vector and C ∈ Rc×a is
the observation matrix which maps the hidden states to the
output of the system by linear projection. vi(t) ∼ N (0, Qi)
and w(t) ∼ N (0, R) are process and measurement noises
modeled as Gaussian distributions with null averages and
Qi and R covariances respectively. Eq. 1 has been widely
utilized to model complex spatiotemporal variations (e.g.,
for dynamic textures [11, 33], human actions [6]). For
heterogeneous scenes or patterns, a mixture of N LDS
are used and all parameters are estimated by Expectation-
Maximization (e.g., see dynamic texture segmentation [4],
and facial movement recognition [24]).

3.2. System Dynamics Timing Structure

Timing structure of LDS represents the temporal re-
lationship between multiple LDS. Particularly, we model
timing gaps between event dynamics at neighboring key-
points of dynamic surface.

Timing structure. We use a hybrid linear dynamical
system model (HDS) to represent both dynamical and
discrete-event systems [4, 24]. Dynamical systems are
usually described by differential equations and are suitable
for modeling smooth and continuous physical phenom-
ena (see Eq. 1), while discrete-event systems describe
discontinuous changes in physical phenomena and in
subjective or intellectual activities. The HDS consists of:

(1) a set of N LDS D = {D1, ..., DN}, and (2) a finite
state machine (FSM) that serves as an abstraction for
LDS states and transitions. The FSM models the system
state transitions (i.e., switching) between the discrete
set of states S = {si}i=1...N , where each FSM state si
corresponds to an LDS Di (see [2, 31]). Particularly,
state transitions usually occur when (sudden) changes are
observable. Thus, a sequence (of length T ) of observed
dynamic events Y can be represented using Nt intervals
(or segment models [30]): {Ik} = {(sk, τk)}, where
k = 1, ..., Nt, sk ∈ S identifies a state, τk = ek − bk
is the duration of sk, bk and ek are starting and ending
times of sk respectively, and

∑Nt

k=1 τk = T . We exploit
this representation to characterize repetitive events. See
Fig. 2b) for illustration.

System dynamics timing gaps. Let us assume two obser-
vation sequences Y ≡ {Ik} and Y ′ ≡ {Ik′} (e.g., observa-
tions from two neighboring surface keypoints), and the set
of overlapping interval pairs I = {(Ik, Ik′) ∈ Y × Y ′ :
[bk, ek] ∩ [bk′ , ek′ ] 6= ∅}. The distribution of timing struc-
ture gaps between two states sm ∈ S and sn ∈ S ′ (of Y
and Y ′ respectively) can be defined as follows:

P (bk − b′k = ∆b, ek − ek′ = ∆e|
sk = sm, sk′ = sn, (Ik, Ik′) ∈ I),

(2)

where ∆b and ∆e represent differences between starting
and ending of two states sk and sk′ respectively. Note that if
∀(Ik, Ik′), |bk − bk′ | → 0 and |ek − ek′ | → 0, then all pairs
of overlapping intervals are synchronized. Eq. 2 tells how
much two states are synchronized statistically (Fig. 2c). In
practice, we introduce a temporal threshold dmax to discard
unrelated events:
‖(bk − bk′ , ek − ek′)‖2 > dmax ⇒ [bk, ek] ∩ [bk′ , ek′ ] = ∅.



Figure 3. Local descriptor spatial layout on Bouncing model (450
keypoints) [3]. Here, a keypoint consists of 6 connected vertices,
and we consider the K = 6 nearest keypoints as neighborhood.

3.3. Descriptor Spatial Layout

State-of-the-art dynamic event models usually consider
sets of independent features sparsely distributed in space [4,
38] or in time [24, 43]. However, natural scenes (e.g., in 3D
video or dynamic texture) often exhibit both time and space
dependent observations: a point P(t) at time t is correlated
to observations of P(t+ 1) and P′(t), where P′(t) belongs
to the (spatial) neighborhood V(P(t)) of P(t). Hence, we
propose to define our local descriptor by considering multi-
variate observations at neighboring keypoints.

We use a star-shaped spatial layout where observation
sequences are collected at the central keypoint and from its
neighbors [27, 45]. In the case of 3D video data, dynamic
surfaces are aligned and consistently segmented into regular
regions (e.g., sets of 6 connected vertices) which represent
keypoints (Fig. 3). This strategy allows us to alleviate 3D
video reconstruction surface noise and numerical approxi-
mation inherent to mesh-based representations [3].

3.4. Histogram of Timing Gaps

Following the description above, we form a low-level
local descriptor as a sparse histogram by assigning length
counts of timing structure gaps between the LDS states
computed at a keypoint and its K neighbors:

1. For each keypoint Pi, i = 1, ..., V , and its nearest
neighbors {Pj}, j = 1, ...,K, we compute the LDS
timing structures from Yi ≡ {Ik} and {Yj} ≡ {{Ik′}}
respectively (see Sect. 3.2).

2. For each interval Ik, we compute the timing structure
gaps between Ik and all intervals Ik′ (see Fig. 2b)).

3. Assuming Yi and {Yj} have Ni and Nj states respec-
tively, we initialize an empty histogram with Ni ∗ Nj
bins for each Pi; and then the pairs of overlapping
intervals (Ik, Ik′) ∈ I (see Sect. 3.2) contribute to a
descriptor bin bm,n, where m = 1, ..., Ni and n =
1, ..., Nj , as follows:

bm,n =
∑

(Ik,Ik′ )∈I

(
P (Ik|sk = sm, Yi) (3)

∗P (Ik′ |sk′ = sn, Yj) ∗ w(Ik, Ik′)
)
,

where P (Ik|sk = sm, Yi) = τk/T and P (Ik′ |sk′ =
sn, Yj) = τk′/T are probabilities that measure the rel-
evance of intervals Ik and Ik′ respectively (e.g., rela-
tive duration of intervals), andw(Ik, Ik′) quantifies the
interval pair synchronization:

w(Ik, Ik′) = 1− ‖(bk − bk
′ , ek − ek′)‖2
dmax

. (4)

Hence, contributions to bm,n are higher with pairs of
long and well synchronized intervals. The overall scheme
for descriptor creation is given in Fig. 2. As observations are
obtained from orientation invariant intrinsic features (see
shape index in Sect. 3.1) , and contributions are collected
from unordered circular neighborhood, the proposed de-
scriptor is also orientation invariant.

In practice, a local descriptor is computed for each sur-
face keypoint, whose neighborhood consists of the K = 6
nearest keypoints. The actual implementation uses a set of
N = 6 LDS to model all intrinsic surface variation dynam-
ics, which leads to a 6 ∗ 6 = 36-element vector for each
local descriptor. We set dmax = 0.1s by heuristics.

4. Bag-of-Timings
We introduce the bag-of-timings (BoT) paradigm for

dynamic surface classification, by treating timings of
local surface element (i.e., keypoint) dynamics as words
to be represented in a codebook, while in previous work
LDS state parameters were used as words (i.e., not timing
structure gaps) [33, 43]. Bag-of-words (BoW) are also
used for image classification where image features serve as
words [15].

Definition. A bag-of-timings (BoT) is a sparse vector
of occurrence counts of a vocabulary of dynamic surface
local descriptors. It is represented as a sparse histogram of
dynamic state timings as presented in the previous section.
To form a codebook (i.e., find the codewords), we cluster
all local descriptors using the K-medoids algorithm [23],
which is known to improve the robustness to noise and
outliers of the clustering, and is computationally more
efficient compared to K-means. Here, a medoid is the
descriptor of a cluster, whose average distance to all other
descriptors in the cluster is minimal. Distances between
descriptors can be computed using standard histogram
kernel dH (see Sect. 5). Assuming the total number V of
local descriptors on a dynamic surface, a pairwise distance
matrix D ∈ RV×V is computed only once to obtain the
set of G clusters, whose centers {F1, ..., FG} stand for the
codewords.

Soft-weighting. Let us consider the set of V descriptors
{di}i=1...V extracted from all points (i.e., the keypoints) of



a dynamic surface. Within the BoT framework, each de-
scriptor di contributes to a set of weights {wi1, ..., wiG}
associated to the codewords {F1, ..., FG} that characterize
the object (e.g., for classification). We use soft-weighting
as it is less sensitive to noise compared to other weight-
ing schemes (e.g.,term frequency and inverse document fre-
quency [21, 33]):

wil =

M∑
j=1

Nj∑
i=1

1

2j−1
sim(di, Fl), l = 1, ..., G, (5)

where M = 4 is the number of nearest codewords, Nj is
the number of descriptors whose jth closest codeword is Fl,
sim = 1− dH

max(D) is a similarity measure between descrip-
tors, and max(D) is the biggest element of the matrix D
(dH and D are as defined above). Finally, the set of weight
characterizing the surface is normalized with L1 norm.

For classification tasks, we use Support Vector Machines
(SVM) with Radial Basis Function (RBF) kernel to discrim-
inate the codewords: K(x, y) = exp−γd(x,y), where γ is a
free parameter learned by cross-validation, and d is a dis-
tance in the histogram space. We use RBF kernels with
distances d(xi, yi) =

∑
i |xi − yi|b, where b < 2, that are

Laplacian and sub-linear, popular in image retrieval, and
satisfy the Mercer’s condition [16]. In our experiments,
SVM show more stability than Nearest Neighbor (NN).

5. Experiments
Experimental results for dynamic surface classification

and segmentation are obtained with synthesized and
real-world public datasets of 3D video data. For baseline
comparison, we use state-of-the-art methods employing
dynamical system models [34, 5, 33, 43].

5.1. Classification

Baseline for comparison. In [5, 34], the authors use
a single LDS to model a video sequence (of dynamic
textures), the Martin distance is used to calculate distances
between LDS, and NN and SVM are used for classification.
In [33], the authors use one LDS per video feature, and a
bag-of-system (BoS) model with SVM for classification.
In [43], the authors use a set of N LDS to characterize
surface dynamics, and a BoS that accounts for the sta-
tistical distribution of LDS in time. We abbreviate these
approaches D+NN, D+SVM, BS+SVM 1, and BS+NN N
and BS+SVM N respectively. In what follows, we show
that the proposed local descriptor returns best performance,
while state-of-the-art approaches are ineffective for certain
challenging scenario.

Synthesized datasets. We created a synthesized dynamic
surface dataset to evaluate the timing-based local descrip-

tor performance.The dataset represents a rectangular sur-
face divided into 8 equal regions (ROI) undergoing vari-
ous deformations across time. The sequence consists of
176 frames and the mesh contains 4000 vertices (40 ∗ 100).
Each region undergoes a sinusoidal deformation: y =
λα sin(βπx), where λ is a constant scale factor, and α =
6, 4, 2, 8 and β = 10, 2, 7, 5 respectively, that occurs in
one out of two orthogonal directions (in order to evaluate
the orientation invariance property of the local descriptor).
Furthermore, a random noise (< 5%) is added to all vertex
positions to simulate real 3D video reconstruction artifacts.
As designed, state-of-the-art methods [34, 5, 33] (without
timing information) cannot be used to discriminate the dif-
ferent regions as all dynamical system models are identical
all over the surface. Hence, they are all assigned to the same
class.

Figure 4a) shows a frame of the sequence. As deforma-
tions are subtle, all 8 regions appear flat. A shape index (see
Sect. 3) is computed at each surface point and allows us to
represent local topology (e.g., cups in blue, caps in yellow
as shown in Fig. 4b)). In Fig. 4c), the surface is sampled
into 250 regular regions (i.e., keypoints) where observation
sequences are obtained across time. We use N = 6 LDS
to model surface deformation dynamics. Figure 4d) shows
timing structures with interval representation at some key-
points (with K = 4 neighbors). Evaluations of our method
were performed with different parameters for the sake of
optimization (K = 1, 4, 6, 8, dmax = 0.1, 0.2, etc.). We
also tested several histogram distances dH and found that
Manhattan distance (reported) and histogram intersection
return best performances. Classification tasks were per-
formed using NN, and SVM where 50% of the keypoints
served for training, and 50% for testing (as described in
Sect. 4). We reported in Table 1 the baseline comparison
with K = 4 and dmax = 0.1.

Table 1. Synthesized data ROI classification.

ROI1+5 ROI2+6 ROI3+7 ROI4+8

[34, 5, 33] cannot discriminate
BS+NN N[43] 30.0% 100% 52.0% 78.3%
BS+SVM N[43] 62.4% 94.8% 78.4% 74.8%
BT+NN[ours] 16.7% 97.2% 82% 86.6%
BT+SVM[ours] 90.0% 98.3% 83.3% 86.6%

Thus, the experiments on synthesized data show that our
method outperforms state-of-the-art techniques (which are
not designed to cope with such scenario) for classification
of dynamical surfaces undergoing subtle deformations (see
Fig. 4). The results also highlight orientation invariance,
resistance to noise, and high classification performance.

Real-world datasets. For further evaluations, we use real-



Figure 4. Synthesized data classification using timing-based local descriptor. a) Synthesized dynamic surface containing various deforma-
tions (4000 vertices with noise). b) Local curvature estimated using shape index. c) Surface sampling into 250 keypoints. d) HDS computed
for each keypoint and K = 4 neighbors. e) Classification using BS+NN N [43]. f) BT+SVM [ours] outperforms state-of-the-art.

world public datasets of 3D video sequences reconstructed
from real human performances: Free and Lock sequences
from the University of Surrey [37], Samba, Bouncing,
Handstand and Crane from MIT CSAIL [9]. The sequences
represent real humans performing various actions, such as
turning, dancing, and jumping. Most subjects wear loose
clothing (e.g., T-shirt) whose details were accurately recon-
structed. The sequences were aligned using [3] in order to
track surface points and extract observations (i.e., shape in-
dex) across time. Nevertheless, we can observe that recon-
structed surfaces from [37] (such as Free) have local sur-
face noise due to drawbacks from multiview stereo recon-
struction, despite being visually compelling. On the other
hand, surfaces from [9] contain drawbacks for spatiotem-
poral reconstruction, and therefore reconstructed surfaces
seem more rigid and less prone to wrinkle. However, tem-
poral statistics can still be observed in different regions of
the object.

We evaluate our method against [34, 33, 43] for quan-
titative evaluations of rigid/non-rigid surface classification.
Each surface point is manually labeled as rigid or non-rigid
(see Fig. 5). Note that it can be confusing to determine
whether a region is rigid or non-rigid without referring to
videos. For example, in the Samba dataset, the subject
wears a dress that moves during the dance. However, the
top of the dress is tight and has little variations, while the
bottom of the dress is looser. For classification with SVM,
we selected 50% of keypoints for training, and evaluated
the classification with the remaining keypoints. Results are
reported in Table 2 (with K = 6). Confusion matrices be-
tween sequences also return consistent keypoint rigid/non-
rigid classification (> 90% true positives). Our approach
performs much better than state-of-the-art methods.

Figure 5. Annotations of rigid/non-rigid surface regions.

Table 2. Rigid/non-rigid surface classification (success ratio %).
Free Bouncing Samba

#vertices 4284 3848 5530
#keypoints 514 450 361
#frames 175 174 174
D+NN [34] 56% 42% 50%
D+SVM [34] 52% 50% 45%
BS+SVM 1 [33] 66% 70% 67%
BS+SVM N [43] 85% 89% 82%
BT+SVM N [ours] 89% 92% 87%

5.2. Segmentation

As discussed above, some regions could have be mis-
classified due to wrong annotation (e.g., around the chest
for Samba), hence we perform timing-based descriptor seg-
mentation to identify those regions. Note that in that case
we have to cope with surface noise, such as 3D recon-
struction artifacts or drawbacks from spatiotemporal con-
straints (i.e., unique templates are deformed over time) [3].
Here, we use K = 6 neighbors for each descriptor, and
achieve clustering using K-medoids. Segmentation is eval-
uated qualitatively. Surfaces are clustered into 4 clusters,
where each cluster stands for a rigidity class (i.e., from less



Figure 6. Real-world dynamic surface segmentation (using K = 6 neighbors and K-medoids for clustering). Rigid regions are mostly
located on faces and bare limbs, while less rigid regions (i.e., that deform the most) follow clothing folds and tips, and body joints.
Unaccuracies are due to 3D reconstruction artifacts (e.g., surface noise). In a), b) and c), pairwise descriptor distance matrices highlight
good clustering. (Blocs correspond to different body regions.)

to more rigid). Results are shown in Fig. 6. For the Samba
sequence in a), most rigid regions concern the face, bare
limbs, and the top of the body which is covered by tight
clothing. For other sequences, the face region and forearms
are mostly always rigid, while neck and joints are usually
less rigid. Regions corresponding to loose clothing (and
particularly along folds and at tips) belong to non-rigid clus-
ters, which is correct. We also provide pairwise descriptor
distance matrices. Here, rows and columns were consis-
tently reordered with respect to hand-made classes to high-
light the clustering efficiency (see matrix blocs).

Finally, we perform further segmentation validation us-
ing dynamic face datasets, as the face structure is read-
able and does not require a tedious annotation process. Se-
quences representing human faces are obtained by fitting a
face model (112 vertices) to real-world RGB-D data cap-
tured using Kinect sensor. Face models are then segmented
into 3 clusters using our approach (with K = 6 neigbors).
The sequence shown in Fig. 7 contains 300 frames and rep-
resents a singing human face. As observed, timing-based
descriptor segmentation highlights the different face regions
that are stressed during the performance (i.e., eyes, nose,
mouth, jaw, and forehead). To our knowledge, timing-based
surface segmentation with respect to rigidity level is a new
result that can potentially have numerous applications. Par-
ticularly segmentation cannot efficiently be achieved using
LDS state-based methods [34, 33, 43].

6. Conclusion

In this paper, we present the first local descriptor de-
signed for surface dynamics modeling. The descriptor cap-
tures local event dynamics timing structure between surface
keypoints. The approach is novel compared to the state-
of-the-art that usually relies on dynamical system state pa-
rameters to characterize dynamic events (of dynamic tex-
ture). Timing-based local descriptors are computed from

Figure 7. Dynamic face sequence. a) Face model shape indices. b)
Timing-based descriptor segmentation highlights active regions.

surface intrinsic property variation dynamics, which are
modeled using hybrid linear dynamical systems (HDS). Par-
ticularly, the descriptor accounts for local event dynamics
timing gaps. We also introduce the bag-of-timings (BoT)
paradigm to locally characterize dynamic surfaces at key-
points. The proposed descriptor is orientation invariant
by design, and can be used with (noisy) real-world data.
Evaluations are performed on challenging synthesized and
real-world datasets. We show that the local descriptor can
be used for dynamic surface classification and segmenta-
tion with respect to rigidity level, which is a new result.
We believe our model is promising for future research and
applications involving dynamic geometrical data obtained
from accurate 3D vision techniques or depth sensors (e.g.,
Kinect), and also data such as soft tissue organs (e.g., heart,
liver), cloths or fluids for diagnosis and anomaly detection.
Real-timeness should be achievable using observation win-
dows with online Viterbi algorithm (as with online HMM).
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