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Abstract

The essential matrix, which encodes the epipolar con-
straint between points in two projective views, is a corner-
stone of modern computer vision. Previous works have pro-
posed different characterizations of the space of essential
matrices as a Riemannian manifold. However, they either do
not consider the symmetric role played by the two views, or
do not fully take into account the geometric peculiarities of
the epipolar constraint. We address these limitations with a
characterization as a quotient manifold which can be easily
interpreted in terms of camera poses. While our main focus
in on theoretical aspects, we include experiments in pose
averaging, and show that the proposed formulation produces
a meaningful distance between essential matrices.

1. Introduction
The essential matrix and the epipolar constraint, intro-

duced in [10], have been a major mainstay of compute vision
for the last thirty years, and are the basic building block in
any Structure from Motion (SfM) system. Its robust estima-
tion from image data is now textbook material [8, 11]. In
practical terms, the space of essential matrices is a subset
of R3×3, but the algebraic relations imposed by the epipolar
constraint render its geometry far from trivial. There have
been a few attempts to interpret this space as a Riemannian
manifold. The earliest works in this aspect are [12, 13],
which use the relative pose between the two cameras (with a
normalized translation) to parametrize the space of essential
matrices (i.e., each essential matrix is given as the product
of a skew-symmetric matrix with a rotation). This implies a
preferential treatment of one of the two cameras, whose local
reference frame is chosen as a global reference frame, thus
breaking the natural symmetry of the constraint. A different
representation, based on the Singular Value Decomposition
(SVD) of the essential matrix, was used in [5, 9, 15, 16].
While this representation has a natural symmetry, previous
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works do not provide an intuitive geometric interpretation
of its parameters. Also, they do not properly take into ac-
count the well-known twisted-pair ambiguity (the fact that
four different pairs of poses correspond to the same essential
matrix), and the algorithm used for the computation of the
logarithm map (which is related to the notion of geodesics
in this space) is neither efficient nor rigorously motivated.

In this paper, we propose a characterization related to the
aforementioned SVD representation, and show how:

1. Our approach naturally arises from a particular choice
of the global reference frame, and that the parameters
have a clear geometric meaning.

2. The cheirality constraint (i.e., the constraint that all
the points lie in front of both cameras) impacts our
representation and how it can be used to simplify the
structure of the space.

3. To endow the space with a Riemannian manifold struc-
ture, and how to naturally obtain geodesics in this space
from those in the space of camera rotations.

4. To efficiently compute the logarithm map and distance
function, and how these can be used in a two-view SfM
problem using the Weiszfeld algorithm.

Some material in this paper might appear quite basic
for any reader versed in computer vision. However, it is
necessary to revisit it and place it in the context of our work.

2. Definitions and notation
In this section we recall several notions from Riemannian

geometry and group theory. We mention just the minimum
necessary to follow the paper, and we refer the reader to the
literature for the complete and rigorous definitions [3].

At a high level, a manifold M is defined by a topological
space together with a set of overlapping local coordinate
charts, which allow to locally parametrize the space and
smoothly pass from one chart to the other. The tangent space
at a point x ∈ M, denoted as TxM, can be defined as the
linear space containing all the tangent vectors corresponding
to the curves passing through x. We use the notation v∨

to denote the vector of coordinates of v in some basis for
TxM. A vector field X assigns a tangent vector to each x
in M or a subset of it. A Riemannian manifold (M, 〈·, ·〉)
is a manifold equipped with a metric, that is, a collection
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of inner products 〈·, ·〉x over TxM which varies smoothly
with x. The metric is used to define the length of a curve
γ : R ⊃ [a, b]→M. A curve is a geodesic if the covariant
derivative of its tangent is zero, i.e., ∇γ̇ γ̇ ≡ 0 (where ∇
is the so-called Levi-Civita connection). The exponential
map expx : TxM → M maps each tangent vector v to the
endpoint of the unit-speed geodesic starting at x with tangent
v. The logarithm map logx is the inverse of the expx and is
defined (in general) only on a neighborhood of x. We use
the shorthand notation Log = log∨. For any point x and any
curve γ(t) in M sufficiently close together, the logarithm is
related to the distance function by these two relations:

d
(
x, γ(t)

)
= ‖Logx

(
γ(t)

)
‖, (1)

d

dt

1

2
d2
(
x, γ(t)

)
= −Logx

(
γ(t)

)T
γ̇(t)∨. (2)

Given a map between manifolds f : M→ M̃, we define Df
as the differential of the map, i.e., the linear operator (the
Jacobian, in local coordinates) that maps TxM to Tf(x)M̃
for any x ∈ M and satisfies, for any locally defined curve
γ(t) ∈M, the expression(

d

dt
f
(
γ(t)

))∨
= Df

(
γ(t)

)
γ̇∨. (3)

A group is a setG together with an operation ◦ : G×G→
G which satisfy the four axioms of closure, associativity,
identity element (denoted as e ∈ G) and inverse element. A
group action “·” on a set M is a mapping · : G×M →M
which satisfies the properties g · (h · x) = (g ◦ h) · x and
e ·x = x for all g, h ∈ G, x ∈M . The group action induces
an equivalence relation between the points in M , and we
say that x is equivalent to y, i.e., x ∼ y if there exist g ∈ G
such that g · x = y. We denote all the elements equivalent
to x ∈M as the equivalence class [x]. The quotient space
M/G is the space of all equivalence classes. The canonical
projection π : G→M/G maps each point x ∈M to [x].

In this paper, we will heavily use the space of 3-D ro-
tations SO(3) = {R ∈ R3×3 : RTR = I, det(R) = 1},
and, to a less extent, the space of rigid body transformations
SE(3) = SO(3) nR3. We will also use SO(3)2, the carte-
sian product of SO(3) with itself. The space SO(3) is a Lie
group, i.e., it is at the same time a group (with matrix multi-
plication as group operation) and a manifold. The tangent
space at R ∈ SO(3) is TRSO(3) = {RV : V ∈ so(n)},
where so(3) is the space of 3× 3 skew-symmetric matrices.
We can identify a tangent vector v ∈ TRSO(3) with a vector
of local coordinates w ∈ R3 using the usual hat (·)∧ and vee
(·)∨ operators, given by the relations

w =

w1

w2

w3

 (·)∧

�
(·)∨

v = R

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 . (4)

With this notation, the standard metric for SO(3), with
v1, v2 ∈ TRSO(3), is given by

〈v1, v2〉 = (v∨1 )T v∨2 . (5)

The exponential and logarithm maps for SO(3) can be com-
puted in closed form by using the Rodrigues’ formula [11].

We denote as Rx(θ), Ry(θ), Rz(θ), the rotations around
the x, y and z axes, respectively, with angle θ ∈ [−π, π),
and as ez the unit vector aligned with the z axis. We denote
as I ∈ R3×3 the identity matrix and as Pz = diag(1, 1, 0)
the standard projector on the xy-plane. We denote as (A)ij
the element in row i, column j of the matrix A. For standard
vectors a ∈ R3, [a]× : R3 → so(3) denotes the matrix
representation of the cross product operator, i.e., [a]×b =
a× b for all a, b ∈ R3. We use [a]inv

× : so(3)→ R3 to denote
the inverse of this linear mapping.

3. Derivation of the essential matrix
As customary, we model the pose of camera i as gi =

(R′i, T
′
i ) ∈ SE(3), where gi represents the transformation

from camera to world coordinates. Given an image xi in
homogeneous coordinates and the corresponding depth λi,
the 3-D point in world coordinates is given by

X = λiR
′
ixi + T ′i . (6)

Note that a change of world coordinates represented by g =
(R0, T0), i.e., X 7→ R0X + T0 induces a transformation of
the camera representation equivalent to multiplying gi by g
on the left, i.e., (R′i, T

′
i ) 7→ (R0R

′
i, R0T

′
i + T0).

We now derive the essential matrix from two camera
poses (R′i, T

′
i ) and the two images xi, i = 1, 2, of a same

3-D point X . We follow a general approach [2] as opposed
to the traditional one which uses one camera as the global
reference frame. From (6), and using the properties [a]×a =
0 and bT [a]×b = 0 for all a, b ∈ R3, we have:

λ1R
′
1x1 + T ′1 = λ2R

′
2x2 + T ′2 (7)

λ1R
′
1x1 = λ2R

′
2x2 + (T ′2 − T ′1) (8)

λ1[T ′2 − T ′1]×R
′
1x1 = λ2[T ′2 − T ′1]×R

′
2x2 (9)

xT1 R
′
1
T

[T ′2 − T ′1]×R
′
2x2 = 0 (10)

The essential matrix is then defined as

E = R′1
T

[T ′2 − T ′1]×R
′
2. (11)

4. The normalized essential space
In this section, we define a canonical decomposition of

the essential matrix in terms of two rotations by choosing
a global reference frame aligned with the baseline between
the two cameras. Then, we define the normalized essential
space, and analyze its structure as a quotient space (which
includes the twisted pair ambiguity). We also give an inter-
pretation in terms of vector transformations.



4.1. The normalized canonical decomposition

Since (10) is a homogeneous equation, we cannot deter-
mine the scale of E from image data alone. Also, while E
does not depend on the choice of global reference frame, this
is not true for its decomposition (11). To remove most of the
degrees of freedom, we use the following.

Proposition 4.1. Any essential matrix E admits, up to scale,
the following normalized canonical decomposition:

E = RT1 [ez]×R2. (12)

Proof. Starting from (11), choose a global scale such that
‖T ′2 − T ′1‖ = 1 and let R0 ∈ SO(3) be such that R0(T ′2 −
T ′1) = ez . There are infinite candidates for such rotation
(we pick one using Householder transformations). Then,
by applying the transformation g0 = (R0, 0) and using the
property R[a]×R

T = [Ra]× for all R ∈ SO(3), we have

E = (R0R
′
1)T [R0(T ′2 − T ′1)]×R0R

′
2 (13)

which is of the form (12) with Ri = R0R
′
i, i = 1, 2.

Intuitively, the change of world coordinates performed in
the proof above aligns the vector T ′2 − T ′1 with the z-axis. In
this way, the translation direction is known, and we are left
with only the information about the two rotations.

Remark 1. Notice that [ez]×Rz
(
π
2

)
= Pz = diag(1, 1, 0).

Hence, E = RT1 Pz(Rz
(
π
2

)
R2) is a valid SVD of E.

The value of Remark 1 is twofold. First, it provides a
practical way to compute the decomposition (12). Second,
it relates our representation with the one of [15], giving a
geometric meaning to the SVD of E.

We define the normalized essential space ME as the
image of SO(3)2 under the map (12). Since, according
to Prop. 4.1, this map is surjective, ME corresponds to the
space of all the essential matrices.

4.2. Ambiguities of the canonical form

While the map (12) is surjective, it cannot be also injec-
tive, because it is known that the space of essential matrices
is five-dimensional, while SO(3)2 is six-dimensional. The
extra degree of freedom corresponds to a rotation of the
global reference frame around the baseline (i.e., to a particu-
lar choice of R0 in the proof of Prop. 4.1). However, it turns
out that this is not the only ambiguity. To be more precise,
consider any two points Qa, Qb ∈ SO(3)2 which, through
(12), correspond to the essential matrices Ea, Eb. We define
an equivalence relation “∼” between points in SO(3)2 as

Qa ∼ Qb ⇐⇒ Ea = Eb, (14)

where, again, equality is intended up to scale (since Ea and
Eb are normalized, this reduces to a “up to a sign flip”).

Proposition 4.2. Define the groups

Hz = {(Rz(θ), Rz(θ)) : θ ∈ [−π, π)}, (15)

Hπ =
{

(I, I),
(
Rx(π), Rx(π)

)
,(

I,Rz(π)
)
,
(
Rx(π), Ry(π)

)}
(16)

acting on the left on SO(3)2 by simple component-wise left
multiplication. Then, the equivalence class of a point Q with
respect to “∼” is exactly given by

[Q] = {SzSπQ : Sz ∈ Hz, Sπ ∈ Hπ}. (17)

The proof involves first showing that Hz and Hπ are sub-
group of SO(3)2, and then showing that the only matrices
satisfying (17) are those in the equivalence class [Q]. The
details can be found in the additional material. In the fol-
lowing we will use Sz = (Sz1, Sz2) and Sπ = (Sπ1, Sπ2)
to denote points in Hz and in Hπ , respectively.

Intuitively, [Q] has four components, each one isomor-
phic to SO(2). In view of Prop. 4.2, the space ME can be
identified with the quotient space

ME =
(
SO(3)× SO(3)

)
/(Hz ×Hπ), (18)

where the actions of Hz and Hπ are defined above.
Since SO(3)2 has dimension six, and Hz has dimension

one, we get the well known fact that the normalized essen-
tial space has dimension five (being discrete, Hπ does not
change the intrinsic dimension of the space).

4.3. Geometric interpretation

Using the geometric interpretation given by the proof of
Prop. 4.1, we now show that also the epipolar constraint
xT1 Ex2 = 0 has a geometrical interpretation. Given an
essential matrix E = RT1 [ez]×R2, from Prop. 4.2 and the
equivalence [ez]×= PTz Rz

(
π
2

)
Pz , we have

xT1 Ex2 = (PzSzSπ1R1x1)TRz
(
π
2

)
(PzSzSπ2R2x2) = 0.

(19)
This can be interpreted as the following procedure:
• Take the images xi and rotate them as Rixi, i = 1, 2.

This is equivalent to expressing in global coordinates
the vectors corresponding to the images and centering
them at the origin. Notice that, by construction, the
transformed vectors and the z-axis ez all lie in the same
plane passing through the origin.

• Apply the action of an element of Sπ = Hπ (see Fig-
ure 1). If Sπ = (I, I), no changes are made. If Sπ =
(Rx(π), Rx(π)) (and considering also Hz), the direc-
tion of the baseline is reversed. If Sπ = (I,Rz(π)),
one of the cameras is rotated from front-facing to rear-
facing. Finally, if Sπ = (Rx(π), Ry(π)), the last two
cases are combined. Note that the coplanarity condition
of the transformed vectors with ez is preserved.
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Figure 1: Diagram depicting the geometric twisted pair ambiguity given by the four elements of Hπ

• Apply the action of an element of Hz , i.e., rotate the
two vectors around the z-axis by an arbitrary amount.
This is equivalent to a rotation around the baseline, and
does not change the coplanarity condition.

• Project the transformed vectors onto the xy-plane. In
practice, this sets the last coordinate to zero. Since
before the projection the vectors belonged to the same
plane, after the projection they will have the same di-
rection (but, in general, different lengths).

• Rotate one of the projected vectors by Rz
(
π
2

)
, e.g.,

Rz
(
π
2

)
(PzR2x2). Since the vectors were collinear,

they are now orthogonal and the inner product is zero.
Although this interpretation of (19) is probably not new,

in our context it shows that the action of Hπ corresponds
exactly to the well-known twisted-pair ambiguity in the de-
composition of the essential matrix.

5. The signed normalized essential manifold
In this section we review how the cheirality constraint

can be used to resolve the twisted pair ambiguity (i.e., to
choose an element of the group Hπ), and how this simplifies
the quotient structure of the normalized essential space into
what we call the signed normalized essential space. We
show that this space is a manifold, and that a metric and
the corresponding geodesics can be naturally induced from
SO(3)2. Finally, we give a Newton-based algorithm for
computing the logarithm map and the Riemannian distance.

5.1. Depth triangulation

We can use the simple geometrical interpretation of the
canonical form to estimate the depths of the 3-D points
enforce the cheirality constraint, i.e., the fact that all these
points need to be in front of both cameras.

From the discussion in Section 4.2, we have T ′2−T ′1 = ez
in the canonical form. Therefore, taking into account Hz

and Hπ , and assuming noiseless image points, (8) becomes

λ1Sz1Sπ1R1x1 = λ2Sz1Sπ2R2x2 + ez. (20)

Note that ez = Sz1ez = Sz2ez , hence we can cancel Sz
from (20). We then have the following proposition.

Proposition 5.1. There is only one choice of Sπ for which
the solution of (20) is positive, i.e., λ1, λ2 > 0.

The proof, which can be found in the additional material,
is similar to the one used to solve the twisted pair ambiguity,
i.e., to decide, given an essential matrix, which of the four
possible pose estimates to use [11].

5.2. The signed normalized essential manifold

In our context, Prop. 5.1 allows us to pick one of four
components in the equivalent class [Q], i.e., we can dispense
with the group Hπ and consider a new quotient space using
Hz alone, which we call the signed essential space. Just for
fun, we use the symbol M E(because it differs from “ME”
by a 180 degrees rotation). Formally, we have

M E=
(
SO(3)× SO(3)

)
/Hz. (21)

In general, a quotient space of a Riemannian manifold is
not a Riemannian manifold itself (because it does not satisfy
some necessary topological conditions or the choice of a
metric might not be an obvious). However, the action of Hz

has some “nice” properties which lead to the following.

Proposition 5.2. The space M Ecan be given a Rieman-
nian manifold structure for which the natural projection
πM E: SO(3)2 →M Eintroduces a local isometry between
a subspace of TQSO(3)2 and T[Q]M

E.

This proposition (for which the proof is somewhat techni-
cal, see the additional material) means that not only we can
endow M Ewith a Riemannian structure, but also that the
differential (i.e., the Jacobian, in local coordinates) of the nat-
ural projection πM Einduces an orthogonal decomposition
of the tangent space TQSO(3)2 as:

TQSO(3)2 = TV QSO(3)2 ⊕ THQSO(3)2, (22)

where the vertical space TV QSO(3)2 is the subspace of tan-
gent vectors tangential to the equivalence class [Q] and the
horizontal space THQSO(3)2 is its orthogonal complement.
Moreover, the same differential uniquely maps each vector
ṽ ∈ T[Q]M

Eto a vector v ∈ THQSO(3)2, called the hor-
izontal lift of ṽ. The metric 〈, 〉[Q] for M Eis then defined



from the metric 〈, 〉Q in SO(3)2 as

〈ũ, ṽ〉[Q] = 〈u, v〉Q (23)

In our case, the vertical space is one-dimensional, and
TV QSO(3)2 = span(vV ), where

vV = ([ez]×R1, [ez]×R2) =
(
R1[RT1 ez]×, R2[RT2 ez]×

)
.

(24)
By definition, then, the horizontal space at Q includes all

vectors vH such that vH⊥vV , i.e.,

0 = 〈vV , vH〉 = eTz (R1vH1 +R2vH2), (25)

where (vH)∨ = stack(vH1, vH2).
We can take (25) as the condition defining horizontal

vectors at Q. Given a vector v ∈ TQSO(3)2, let

pQ(v) = eTz (R1v1 +R2v2). (26)

We define the orthogonal projection of v onto THQSO(3)2

as

ΠH(v) = v − pQ(v)

2

[
RT1 ez
RT2 ez

]
. (27)

5.3. Geodesics and the exponential map

The goal of this section is to show that the natural pro-
jection of geodesics in SO(3)2 are geodesics in M E. The
key insight we will use is the following (see the additional
material for a proof).

Proposition 5.3. Let Q(t) : R → SO(3)2 be a geodesic
curve such that Q̇(t) ∈ THQSO(3) for all t. Then, Q̃ =
πM E(Q) is a geodesic curve in M E.

This result tells us that to find geodesics in M E, we can
focus on finding geodesics in SO(3)2 for which the tangent
vector is always horizontal. This idea is repeatedly used
in [4] to give expressions for the geodesics in the Stiefel and
Grassmann manifolds. Here we now show that if a geodesic
Q(t) ∈ SO(3)2 has a horizontal initial tangent vector Q̇(0),
then the tangent is horizontal for every t.

Proposition 5.4. Let V ∈ TSO(3)2 be a vector field of the
form

W (t)∨ = stack(R1(t)T ez, R2(t)T ez) (28)

defined along a geodesic Q(t) ∈ SO(3)2. Then we have

〈Q̇(t),W (t)〉 = 〈Q̇(0),W (0)〉. (29)

Proof. Denote the tangent to the geodesic Q(t) as Q̇(t)∨ =
stack(v1, v2), and let

m(t) = 〈Q̇(t),W (t)〉 = vT1 R
T
1 ez + vT2 R

T
2 ez. (30)

Taking the derivative we have

ṁ(t) = vT1 [v1]×
TRT1 w1 + vT2 [v2]×

TRT2 w2 ≡ 0. (31)

Since the first derivative of m(t) is identically zero, m(t)
must be constant, which implies (29).

Combining Propositions 5.3 and 5.4, we get that the ex-
ponential map in M E, i.e.,

[Qb] = exp[Qa](va), [Qa] ∈M E, va ∈ T[Qa]M

E, (32)

is obtained by computing

Qb = expQa
(ṽa), Qa ∈ SO(3)2 (33)

where ṽa is the horizontal lift of va.

5.4. The distance and the logarithm map

Let Qa = (Ra1, Ra2) and Qb = (Rb1, Rb2) be two
points in SO(3)2. We would like to find the distance be-
tween [Qa] and [Qb] and the logarithm map log[Qa][Qb]. In
general, we cannot directly use the distance and logarithm
map in SO(3)2, because the tangent of the corresponding
geodesic is not horizontal. However, we can “move” Qb to
another representative of the equivalence class [Qb], so that
the geodesic between Qa and Qb corresponds to a geodesic
between [Qa] and [Qb]. This is formalized in the following:

Proposition 5.5. Define the cost

f(t) =
∑
i=1,2

fi, fi =
1

2
θ2i (t), θi(t) = d(Rai, Rz(t)Rbi),

(34)

and let topt = argmint f(t). Then, the logarithm

logQa

(
Sz(topt)Qb

)
= stack

(
{Log(RTaiRz(topt)Rbi)}i=1,2

)
(35)

is an horizontal vector in THQSO(3)2.

Using (1) and the isometry given by horizontal lifts, the
distance between the two elements in M Eis then given by

d([Qa], [Qb]) = ‖log[Qa][Qb]‖ = ‖logQa

(
Sz(topt)Qb

)
‖.

(36)
Intuitively, this distance is the least amount of rotation
needed to align two camera pairs (corresponding to two
essential matrices) with a common baseline.

Proof of Proposition 5.5. We will need the following result

d

dt
Rz(t)Rbi = [ez]×Rbi = Rbi[R

T
biez]×, i = 1, 2. (37)

Taking the derivative of each term fi we have

ḟi(t) = −〈logRai
(Rz(t)Rbi), Rbi(R

T
biez)

∧〉
= −Log(RTaiRz(t)Rbi)

TRTbiez

= −Log(RTaiRz(t)Rbi)
TRTaiRz(t)RbiR

T
biez

= −eTz Rai Log(RTaiRz(t)Rbi), (38)

where we used the fact that RT Log(R) = Log(R) and,
similarly, Rz(t)ez = ez . For t = topt we have ḟ1(topt) +

ḟ2(topt) = 0, which, together with (25), implies that the
vector is in the horizontal space at Qa.



The problem now is to find topt, the minimizer of f . In
general, this is a nonlinear optimization problem with mul-
tiple local minima (see Figure 2 for an example). However,
we can exploit its special structure to reliably and efficiently
find the global minimizer topt. First, consider each function
fi separately. The derivative of fi can be computed as

ḟi(t) = eTz Rai Log(RTaiRz(t)Rbi) = θi(t)e
T
z Raiui (39)

where (using the closed form expression of Log from [11])

ui =
1

2 sin θi(t)
[(RTaiRz(t)Rbi)− (RTaiRz(t)Rbi)

T ]inv
× ,

(40)

Notice that the derivative of f exists everywhere except
at a point tdi for which sin

(
θi(tdi)

)
= 0. The following

proposition gives a way to compute the location of this point.

Proposition 5.6. Let θi be defined as in (34), and define

c1i = (RbiR
T
ai)1,1 + (RbiR

T
ai)2,2 (41)

c2i = (RbiR
T
ai)1,2 − (RbiR

T
ai)2,1 (42)

φi = arctan2(c1i, c2i). (43)

Then, the function θi(t) is continuous, 2π-periodic and

sin(θi(tdi)) = 0 for tdi =
3

2
π − φi. (44)

Using the definition of DLog and its closed-form expres-
sion from [17], the second derivative of fi is given by:

f̈i(t) = eTz Rai DLog(RTaiRz(t)Rbi)R
T
aiez

= (eTz Raiui)
2 +

θ

2
cot
(θ

2

)
(1− (eTz Raiui)

2) (45)

Note that (as a simple plot can confirm)

0 ≤ θ

2
cot
(θ

2

)
≤ 1 for θ ∈ [−π, π]. (46)

This implies that f̈ ≥ 0, and that f is convex between
discontinuity points.

In summary, from the results above, we have that he func-
tion f is continuous, 2π-periodic and with positive second
derivative except at {tdi + 2kπ}, k ∈ Z. Assuming (without
loss of generality) the ordering −π2 ≤ td1 ≤ td2 ≤ π

2 , this
suggests an algorithm to find all the global minimizers of f
which considering separately the two intervals [td1, td2] and
[td2, td1 + 2π] (on which the function is convex and differ-
entiable). Since we have a closed form expression for f̈ , we
can use Newton’s method (with the additional projection of
the iterates to the interval). In addition, one can easily show
(using the intermediate value’s theorem on ḟ ) that if ḟ has
the same sign at the two extremum points of an interval, then

−3 −2 −1 0 1 2 3

0

5

10

Figure 2: An example realization of the cost f(t) from
(34). Blue and red lines: value of each term fi and of f ,
respectively. Black dashed line: location of the discontinuity
points {tdi} computed using Prop. 5.6. Red circles: local
minimizers {topt,i} computed in Algorithm 1.

that interval does not contain a local minimizer, and it can
be skipped. These steps are summarized in Algorithm 1 (see
also Figure 2). We use the notation ḟ+ and ḟ− to denote
right and left derivatives, respectively. Note that Algorithm 1
is only a basic version. A complete version would also con-
sider degenerate cases, where mi = 0 for some i ∈ {1, 2}
or where td1 = td2. In our experiments, we saw that an
interval could be skipped about 25% of the time, and that the
Newton’s iteration took about 5 to 8 iterations to converge
to the machine’s precision of 2 · 10−16 (as a comparison, the
method suggested in [15] only achieves a precision of 10−4

after about 5 iterations).

5.5. Comparison with previous formulations

Among the papers that use the relative pose between cam-
eras to parametrize the essential space, the definition of nor-
malized essential space used in [12] is compatible with ME ,
while the definition used in [13] (which includes the cheiral-
ity constraints explicitly) is compatible M E. For the papers
using the parametrization derived from the SVD [5,9,15,16],
the definition used is the same as M E. However, these pa-
pers (mistakenly) do not consider the action of the group
Hπ and the cheirality constraint. In particular, Prop. 4.2
shows that the claim made in [15] that an essential matrix E
corresponds uniquely to a point in M Eis false.

Algorithm 1 Global minimization of f(t)

1: Compute the points tdi, i = 1, 2 (assume td1 < td2).
2: Define intervals S1=[td1, td2] and S2 =[td2, td1 + 2π].
3: for i ∈ 1, 2 do
4: if sgn

(
ḟ+
(
min(Si)

))
6= sgn

(
ḟ−
(
max(Si)

))
then

5: Compute topt,i = argmint∈Si
f(t) using the pro-

jected Newton’s method.
6: end if
7: end for
8: Select topt as the point topt,i for which f is minimum.



6. The Weiszfeld algorithm and pose averaging
In principle, the Riemannian framework established in

this paper could be used in any optimization problem involv-
ing essential matrices (e.g., through any of the algorithms
given in [1]). Here, however, we show that the distance
obtained in §5.4 can be naturally and meaningfully used in a
proof-of-concept application to the two-view structure from
motion problem.

In a standard pipeline, the relative pose (R, T ) between
two calibrated views is computed using RANSAC (see [8]):
• Extract pairs of matching image points {xi1, x

j
2} ∈ R2.

• For i ∈ {1, . . . , N}, select a random subset Si of point
pairs {xi1, x

j
2}j∈Si

, estimate the essential matrixEi and
compute its support (i.e., the number of points which
approximatively satisfy the epipolar constraint).

• Compute the pose (R, T ) from the matrix Ei with the
largest support.

In [6] an alternative approach is suggested, where instead
of using RANSAC, each sample Ei is decomposed into a
pose estimate (Ri, Ti) and then all the rotations {Ri} are
averaged. Toward this, they propose to minimize the cost

ϕ(R) =
∑
i

d(R,Ri)
p, (47)

where p = 1 (L1 averaging) or p = 2 (L2 averaging), by
using the Weiszfeld algorithm, which we report in Algo-
rithm 2 for points lying in a general Riemannian manifold
M. Strictly speaking, the traditional Weiszfeld algorithm
refers only to the version p = 1, but here we give a gener-
alized version for ease of exposition. The set I in (49) is
used to take into account the fact that wi becomes ill-defined
when p = 1 and the iterate x falls on one of the input points.
Intuitively, each iteration of the algorithm maps the input
points to the tangent space of the current iterate x(t), take the
average (with weights given by the relative distances) and
use the resulting vector to obtain the next iterate x(t+ 1).

In this section, we follow the same approach proposed
by [6], but we average essential matrices instead of rotations.

Algorithm 2 The Weiszfeld algorithm

Input: Points xi ∈M, i ∈ {1, . . . , N}.
1: Initialize x(0)
2: for t ∈ {0, . . . , Nt} do
3: Update x using:

wi(t) = d
(
x(t), xi

)p−2
(48)

I(t) =
{
i ∈ {1, . . . , N} : x(t) 6= xi

}
(49)

x(t+ 1) = expx

(∑
i∈I wi(t) logx(xi)∑

i∈I wi(t)

)
(50)

4: end for

In practice, the only difference is the use of the definition of
exp, log and Riemannian distance for M Ein Algorithm 2.
Note that the approach proposed here has the immediate ad-
vantage of naturally considering both rotation and translation
components together, while the approach of [6] considers
only rotations. We compare the two approaches against stan-
dard RANSAC on the fountain-P11 dataset from [14],
which includes the ground-truth pose for the cameras.

We used SIFT features extraction and matching [18] to
find corresponding points between every possible pair of
cameras. We excluded image pairs with less than thirty good
matches (as determined using the essential matrix from the
ground truth pose). We then use the five point algorithm [7]
to generate the RANSAC samples Ei. We compare four
versions of the Weiszfeld algorithm corresponding to the four
possible combinations of p = 1, 2 and M = M E, SO(3) by
using between 1 and 50 RANSAC samples. To initialize
the algorithm, we evaluate the cost at every input sample,
and use the half-way point between the two samples with
lower costs. Also, we set the number of iterations Nt to 30
(although, in our preliminary tests, the algorithms usually
converged in less than 15 iterations). As baseline, we use
the errors of the RANSAC solution after the same number
of samples and after 2000 samples. As the error measure,
we consider the geodesic distance between estimated and
ground-truth rotations. For our approach and the RANSAC-
based solutions, we also consider the angle between the
estimated translation direction and the ground truth. All
the results are averaged across all the image pairs and 30
independent sampling realizations.

We report the results in Figure 3. As one can see, the
Weiszfeld algorithm using the proposed distance on M E

outperforms the corresponding version using the distance
on SO(3) for both p = 1 and p = 2. Moreover, the use of
the cost with p = 1 produces better results than those using
p = 2, likely due to the fact that the first cost is more robust
to outliers in the samples. This dataset also shows that, while
our approach (which does not require setting a threshold)
gives reasonably good results, the efficiency of RANSAC
with a well-tuned threshold is quite hard to beat.

7. Conclusion
In this paper we considered a Riemannian structure for

the essential manifold, and introduced a novel, geometrical
interpretation which shed light on the limitations of pre-
vious approaches and on the connections with traditional
concepts in computer vision. We also proposed efficient
algorithms for computing the distance and logarithm map,
and considered an application to the problem of two-view
pose estimation using averages. In our future work we will
investigate relations between three views, and determine if
similar ideas can be applied to the space of trifocal tensors
and other similar objects.
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Figure 3: Results for two-view pose estimation. Rotation
(top) and translation angle errors (bottom) for the different
methods on the fountain-P11 dataset. Solid and dotted
lines represent the mean and median errors, respectively.
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