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Abstract

We propose an approach for segmenting the individual
buildings in typical skyline images. Our approach is based
on a Markov Random Field (MRF) formulation that exploits
the fact that such images contain overlapping objects of
similar shapes exhibiting a “tiered” structure. Our con-
tributions are the following: (1) A dataset of 120 high-
resolution skyline images from twelve different cities with
over 4,000 individually labeled buildings that allows us to
quantitatively evaluate the performance of various segmen-
tation methods, (2) An analysis of low-level features that
are useful for segmentation of buildings, and (3) A shape-
constrained MRF formulation that enforces shape priors
over the regions. For simple shapes such as rectangles,
our formulation is significantly faster to optimize than a
standard MRF approach, while also being more accurate.
We experimentally evaluate various MRF formulations and
demonstrate the effectiveness of our approach in segment-
ing skyline images.

1. Introduction

We are interested in extracting the detailed structure of
buildings within photographs of skylines as shown in Fig. 1.
The skylines of cities such as Chicago, New York, Hong
Kong and Tokyo, among others, are a subject of great in-
terest among professional and amateur photographers alike,
hence one can find an immense number of these pictures on
the web. Some of these cities are known for their exception-
ally tall buildings, others for their unique designs, and these
photographs provide a gist of their architectural styles.

Automatic segmentation of individual buildings from
images can be used in a number of applications for design-
ers and artists such as renderings of these from novel view-
points, information overlays, creation of virtual cities, and
other applications such as ‘geo-location’ by matching indi-
vidual buildings to a dataset of known buildings.

The proposed task is quite challenging for a number of
reasons. Skylines typically contain many tightly packed
buildings that partially occlude one another leading to com-
plex occlusion patterns. Furthermore, different facades of
the same building can appear quite different from one an-
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Figure 1: Photos of skylines of Chicago and Miami and
their labeling of individual buildings using our method.

other due to sunlight. However, these images are highly
structured — buildings are typically convex objects, roughly
rectangular, and all the buildings stand on the ground plane.
These constraints can be incorporated as priors for auto-
matic segmentation algorithms.

Current semantic segmentation algorithms typically do
not consider such detailed labels. For example, datasets
such as PASCAL VOC [7], or MSRC [16] consider labeling
of pixels into one of the dozens of labels. In geometric la-
beling [1 1], the goal is to roughly label pixels into a number
of coarse level orientations such as frontal, left/right-facing,
or semantic categories such as ground, sky or porous. In
order to systematically study this problem, we introduce a
dataset of 120 images from twelve cities of the world with
buildings that are individually segmented. Each image typ-
ically contains between 30 — 40 buildings, and the dataset
contains over 4,000 individual buildings, which serves as a
test bed for our experiments (Sect. 3).

We study the problem in an automatic as well as inter-
active setting. In the interactive setting, we assume that we
are provided with an image, some ‘seed’ pixels for each
building, and the upper and lower boundaries delineating
the region containing all the buildings (as seen in Fig. 2).
In the ‘automatic’ setting we are only provided with the im-
age and the upper and lower boundaries. On our dataset we
found that automatic methods [11] for obtaining such re-
gions work reasonably well, hence we focus on the task of
segmenting the individual buildings. Our evaluation metrics
and tasks are described in Sect. 3.1.

We also experimentally evaluate color and texture mod-

els for representing the appearance of buildings, and find
that texture based Gaussian mixture models can provide sig-
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nificant improvement over color models (Sect. 5.1). These
serve as local evidence (or ‘unary’ potentials) in a Markov
Random Field (MRF) formation of our problem. Several
leading approaches for semantic segmentation are based on
MRFs — a probabilistic model of pixel labels that incorpo-
rates local evidence and smoothness of nearby pixels labels.
These approaches, though general purpose, do not easily
allow the incorporation of higher-order priors such as the
overall shape and size of the regions. To this end we pro-
pose a shape-constrained MRF that allows explicit control
over the shape, and utilizes the fact the ‘tired” structure ex-
hibited by occluding buildings implies that only the upper
boundary of an object is ‘owned’ by each object.

We propose several greedy approaches to optimize the
proposed MRF formulation (Sect. 4). Similar to approaches
like a-expansion [6], we pick one label at a time and update
the pixels with respect to that label. However, unlike ex-
pansion moves where only background pixels can change to
foreground, we allow refinement moves where foreground
labels can change to any background as well. The ‘tiered’
structure of the labels allows us to infer the background la-
bel underneath each foreground pixel. Furthermore, one
can order the buildings from front to back based on the y-
coordinate of the ‘seeds’, which serves as a natural order in
which we consider region refinement.

One such approach called rectangle MRF does this via
an explicit search over all potential rectangles for each
building. This search can be done quickly even on relatively
high resolution images using ‘integral images’. Another ap-
proach called tiered MRF does this via a dynamic program-
ming, approximating the upper boundary of a building as a
1D monotonic curve, i.e., the x-coordinates along the curve
are monotonic. The former approach allows us control the
shape of each region but does a poor job at approximating
its upper boundary. Hence we propose a hybrid approach
called refined MRF, that starts with the solution of rectangle
MREF and refines the upper boundary within the horizontal
bounds of the rectangle using dynamic programming. This
achieves the best results while being an order of magnitude
faster than a-expansion using graph-cuts (Sect. 5.2).

The automatic setting is suitable for low-level image seg-
mentation methods such as SLIC [1], graph-based segmen-
tation [8], and gPb regions [2]. However, none of these
methods explicitly consider shape priors. We show that
starting from a set of regions automatically selected from
any such segmentation method, one can improve the results
using shape priors (Sect. 5.3).

2. Related work

There has been significant interest in the recent past to
understand the natural outdoor by looking at the buildings,
mountains and surroundings [3, | 1]. Semantic understand-
ing of the outdoor with additional geometric cues can help

Figure 2: The skyline-12 dataset. Sample images from
the dataset are shown in top 2 rows. Each image (middle)
is annotated with individual buildings (bottom). In the in-
teractive setting for segmentation the methods are also pro-
vided the top (red) and bottom (green) boundaries, as well
as ‘seeds’ for each building shown as blue strokes.

in 3D layouts and better visualization. Our work is related
to this, except we aim to extract the fine-grained detailed
structure of the regions within the image.

Our work can be considered in the framework of se-
mantic pixel labeling. Optimization for labeling pixels is
a widely studied area of research. Most of the successful
methods for semantic segmentation [12, 18] cast it as an en-
ergy minimization problem consisting of local and pairwise
potentials in Markov Random Fields. Methods like [4, 15]
popularized this framework for binary interactive segmen-
tation of natural images in an energy minimization frame-
work. Graph cut with a-expansion [0] has emerged as a
popular approach to solve multi-label segmentation. The
optimization reduces to a sequence of binary labeling prob-
lems each of which can be computed using graph-cuts. Al-
though, extremely general, the process can be expensive for
large images both in terms of computational complexity and
memory. We introduce methods that are an order of mag-
nitude faster and more accurate for labeling skyline images
that exploits the spatial structure of the objects.

For tiered scenes, Felzenzwalb and Veksler [9] intro-
duced a dynamic programming based solution to obtain a
globally optimal solution. However the complexity scales
exponentially with the number of labels, hence is impracti-
cal for our setting. Zheng et al. [19] propose a faster ap-
proximation to [9] by decomposing multi-label tiered la-



beling to a series of binary labeling problems exploiting
the topological priors. Our approach takes a similar route,
but we incorporate higher order priors such as the overall
shape and aspect ratio of each region that cannot be eas-
ily expressed as topological priors. Another approach for
incorporating topological priors such as inclusion or exclu-
sion is [17], but is also computationally expensive. Freed-
man and Zhang [10] propose an approach for incorporating
shape priors in a MRF formulation, but it assumes that the
location of the shape is known making it unsuitable for our
case. In our setting both topological and shape priors play
a key role, and we show that the combination can improve
results without sacrificing speed (Sect. 5.2).

Automatic segmentation methods exploit the local simi-
larity in defining segments and boundaries [1, 2, 8]. While
all these methods are quite accurate for generic segmenta-
tion, skylines prove to be much harder due to intra-region
color and texture variations. We show that our automatic
approach can be initialized from any of these unsupervised
segmentation techniques and provides a significant boost
over them by exploiting shape priors (Sect. 5.3).

3. The skyline-12 dataset

We introduce a new dataset skyline-12 consisting 10
skyline images each of the following twelve cities —
Chicago, Dallas, Frankfurt, Hong Kong, Miami, New York,
Philadelphia, Seattle, Shanghai, Singapore, Tokyo and
Toronto. The photographs taken during daytime with va-
riety of dense and complex skylines. All the images are
obtained from Flickr and are of an average resolution of
1500 x 2500 pixels, with largest image is of 4092 x 10476
pixels and smallest one is of 384 x 576 pixels.

All images in the dataset are manually annotated with the
individual buildings at pixel level, as well as the upper and
lower boundaries delineating the regions containing all the
buildings. Moreover, to study the problem in the interac-
tive setting we also provide ‘seed’ pixels for each building.
Such seeds may be provided by the user in an interactive
application, but in order to systematically evaluate various
methods, we use the same seeds as input to various meth-
ods. Fig. 2 shows a sample image from our dataset with the
annotations and seed pixels.

3.1. Tasks and evaluation

Interactive setting. In this setting the input is an image Z,
the upper and lower boundaries delineating the region con-
taining the buildings, as well as seed pixels {.S;} for each
building b;,i € {1,...,N}. Output of the methods is a
labeling of all the pixels in the building region into one of
N labels or background. Performance is measured as the
average overlap of the segmentations of each building b;
as explained below. Let Gz and Pr denote the ground-
truth and the predicted labeling, and let G% and P% de-

note the set of pixels labelled as 7 in each. The overlap is
computed as the intersection over union of these sets. The
AverageOverlap(Gz, Pr) is defined as:
N . .
1 Gy NP
AverageOverlap(Gz, Pr) = — Y L1 —ZL
g p(Gz, Pr) N 2 GLU P

We average this across all the images in the test set and
report a single Mean Average Overlap (MAQO) score for a
method. This measure has been used in past for evaluation
of segmentation in [2, 7, 13].

Automatic setting. In this setting we are only given an
image 7 and the upper and lower boundaries as described
earlier. The output of a segmentation algorithm is a label-
ing of each pixel in the image into M regions. We com-
pute similar average overlap scores as before, but first com-
pute a bipartite matching between the ground-truth regions
and segmented regions. For all N ground truth regions, we
compute the bipartite matching m : N — M of highest
score where the score of matching is given by the intersec-
tion over union of the pixels. The average overlap in this
setting is defined as:
1 LGPyt
AverageOverlap(Gz, Pr) = max + Z Ry 0]
=1 YT T

Here unassigned ground truth regions get a score of zero.
This measure is similar to the Best Segment Score (BSS)
criteria used in [13] with the key difference that each seg-
mented region can contribute to only one building. For a
given automatic method, we report MAO scores after per-
forming the matching of labels within each image.

4. Approach

We formulate the overall labeling as an energy minimiza-
tion problem. For set of pixels P and set of possible labels
L, the energy of a labeling F' : P — L, is defined as

E(F) = ZDP(FP) + Z Vpa(Fp, Fo) (1)

peP p,gEN

Where Vp4(a,b) = Aexp (—7 I, — Iq)Q) -1(a # b) and
I,, denotes the image intensity at pixel p. The optimal label-
ing can be obtained by F* = argmin; E(f).

The unary term D, measures the color and texture simi-
larity of the pixel compared to the color and texture models
estimated from a set of seed pixels (Sect. 5.1). In the inter-
active setting these seeds are provided as input, as described
earlier. In the automatic setting, we initialize these seeds
from unsupervised low-level segmentation algorithms.

A standard approach for solving multi-label MRF as de-
scribed above is the a-expansion [0]. In each iteration a



Figure 3: Given a label « (left) one can infer the back-
ground labels underneath o by copying the labels from the
top to bottom because of the tiered structure (right).

label « is picked, and binary segmentation problem is for-
mulated by replacing all the other labels to a single back-
ground label as follows:

E(F) = ZD;(FP) + Z qu(vaFq) (2)

peP p,qEN

where, F : P — {0,1}7, D (1) = D,(a) and D, (0) =
Dy(159) where 159 is the current background label at pixel
p. In typical labeling problems the background pixel label is
unknown at pixels which are labelled «, hence only expan-
sion moves are considered by setting the background costs
of such pixels high. However due to the tiered nature of
the labels we can induce the background labels for pixels
labelled o by copying the background labels from the top
to bottom as illustrated in Fig. 3. This allows us to simulta-
neously expand or contract the regions with label a. This is
important as it allows us to only adjust the upper boundary
of each building at a time leading to faster algorithms.

The optimal solution to the binary problem can be ob-
tained using graph cuts. Although this is an effective and
general purpose approach, running graph cuts can be quite
expensive on large images such as ours, requiring several
minutes to find the optimal labeling. Our key idea is to re-
place the search over binary segmentations by a search over
a parametric shape family. For buildings we can explicitly
search over the space of feasible rectangles much faster than
possible segmentations. Furthermore, the ‘tiered’ structure
of the buildings provides a natural ordering of the build-
ings according to their depth order. In practice we order the
buildings according to the lowest seed pixel, i.e., the build-
ing with the lowest seed is considered first.

Our algorithm is as follows — we initialize the ‘frontier’
f to the the lower boundary [ of the building region. At each
iteration we pick the next building « in the ordered list. We
formulate a binary segmentation problem using Eqn. 2 and
estimate its upper boundary €2,,. Then, we update the fron-
tier by taking the column-wise maximum of the frontier, the
upper boundary €2,. The corresponding labeling F is up-
dated as well. This process is repeated a few times over all
buildings. The algorithm is shown in Algo. 1 and few itera-
tions of the process are shown in Fig. 4. Below we describe
two efficient ways of searching over the upper boundary.

Algorithm 1 Greedy skyline segmentation

Require: data D, pairwise V, boundary (I, u)
1: Initialize, initial labeling F from unary labels
2: foriter := 1 to K do
3:  Initialize, frontier f < [
4 for o :=1toNdo
5 Q. < upperBoundary(a, F, D, V, f,u)
6: f+ max(f, Q)
7 F < updatelLabels(F, £2,)
8 end for
9: end for

Rectangle MRF. In this formulation we constrain the up-
per boundary of the building to be exactly rectangular, i.e.,
for each building we only need to estimate the three val-
ues (L, T, R), the left, top and right of the building within
the feasible set, i.e., within the current upper and lower
boundaries and enclosing the seed pixels of the building.
Moreover, we can also constrain the aspect ratios to a de-
sired range, as well as enforce width and height constraints
learned on the training data. For a given value of (L, T, R)
the energy can be computed in O(1) time using integral im-
ages of the unary and pairwise terms. For a region of size
m X n, i.e., m rows and n columns, there are O(mn?) rect-
angles to consider, hence the complexity of each iteration of
rectangle MRF is O(mn?). Compare this to the worst case
complexity of graph-cut which is O(m3n?).

Tiered MRF. Constraining the upper boundaries as rect-
angles can be a poor approximation to many buildings. Here
we refine the shape of the upper boundary. However, in-
stead of a general 2D curve we restrict the upper boundary
) to be ‘x-monotonic’, i.e., it intersects each column ex-
actly once. This is a good approximation to buildings seen
in typical skylines that are convex. The key advantage of
the x-monotonic structure is that the optimal solution can
be found using a simple extension of the dynamic program-
ming algorithm proposed in [9, 19]. At each column j we
maintain the optimal cost of a path ending in each row :.
Let, [, u; denote the lower and upper bounds at column j.
Setting, C; _1 = 0,Vi and [_; = u_; = u;, we have the
following recurrence relation for C; ; for i € [I;, u;]:

Cij el min C;k,j—1+Ui,j+|Xk,j—Xi,j |+Yi,+7[k—il
j—1Uj—1

Where, Uiyj = Z;:lj D£t7j)(1)_DEt7j)(O)’ Xi’j =

2ty Vit () d Yij = Viig ) ). Here Vg is
the cost of an edge between pixels p and ¢ (Eqn. 1). The last
term 7 forces the path to be smoother. The terms U and X
can be precomputed allowing evaluation of the expression
on the right in O(m) time. Thus, the complexity of comput-
ing the optimal path is O(m?n). The optimal path within
l, u can be obtained by maintaining back-pointers.
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Figure 4: Progression of refined MRF algorithm for a sample image. In the first 3 iterations, three 3 buildings are selected in
the order, 1% in red, 2% in green and 374 in blue color. Similarly, intermediate 3 and last 3 iterations are shown on the right.

Refined MRF. The tiered MRF approach does not re-
spect the overall shape, hence we propose a hybrid approach
where we refine the upper boundaries of a building using
the dynamic programming approach proposed earlier only
within the left and right edges of a building found by the
rectangle MRF. This maintains the overall shape while al-
lowing better fits to the upper boundary. For a building of
width d this can be computed in O(m?3d).

5. Experiments

Images within each city in the dataset are split into train-
ing, validation and test sets of 3, 3 and 4 images each re-
spectively. This results in a training/validation set of 36
images and a test set of 48 images. We begin by seeking
the best representation of appearance of buildings by eval-
uating the appearance models in isolation on the validation
set. We then report segmentation results for two different
scenarios. In the interactive setting seeds are provided as
input, whereas in the automatic setting they are not. In
both the settings we report MAO numbers on the fest set.
All the parameter optimization is performed on the train-
ing/validation set. In addition to accuracy, we also present
a comparison of the running times of various methods.

One might be concerned about the potential overlap of
images from the same city in the training and test set. How-
ever most of our modeling is image specific, with the ex-
ception of few parameters such as « and S (described in the
next section) that trade off color and texture weights, the
‘texton’ dictionary used to estimate texture histograms, as
well as the MRF parameters such as A and 7. These pa-
rameters are kept fixed across all images. In an experiment
where we randomly split the cities into two halves, and us-
ing all the images from cities in one half for estimating op-
timal parameters, while predicting the results on the later
half, showed a difference in MAO of about 0.1% compared
to using the entire set for training. Hence, we believe that
the overlap is not a concern for overfitting in our approach.

5.1. Region representation

We start with a SLIC superpixel segmentation [1]. Su-
perpixels that contain seed pixels are assigned to the major-
ity label. To assign the affinity of a pixel to a region (unary

Description | MAQ

Color + Texture + Spatial | 53.4%
w/o Color | 50.3%

w/o Texture | 37.2%

w/o Spatial | 33.1%

Table 1: Quality of the unary potentials. MAO scores on
the validation set using unary potentials only.

potential), we use color and texture features. Color is mod-
elled with GMM same as [15], with C,(b, k) representing
the contribution towards the unary potential at pixel p in k%"
cluster for b*" building (label). The texture model is built
over a pre-trained textons as in [14]. We assign each pixel
to a texton, and compute the histogram of all (we use 32)
textons in its local neighbourhood of radius 10 pixels. For
this purpose, we cluster the histograms of the foreground
pixels using k-means (we choose, £ = 3). The contribution
of the texture T),(b, k) is defined as the x? distance of the
local histogram, h,, (i) computed at pixel p for i'" texton,
from the mean of the k" cluster, H;;x. i.e.,

32

Hippe — hy(i))?
10k =3 ) v

Finally, unary potential D,,(b) for pixel p and building (la-
bel) b is computed as,

a(B mkin Cobk)+(1—5) mkinTp(b7 k) + (1 —a)Sp(b)

where S, (b) is horizontal distance of the p'" pixel from
mean seed for the building. Parameters « and 3 are chosen
by cross-validation. Fig. 5 shows color, texture and spatial
models for a sample building in an image, along with the
final unary potential.

Tab. 1 presents the quality of the unary potentials. Labels
are obtained by taking the pixel-wise minimum of the costs
of each label. The tables shows that all the three compo-
nents (color, shape and texture) contribute to the final suc-
cess. Color alone is not sufficient, possibly due to wide
appearance variations of facades of a building caused by
sunlight. Adding texture significantly improves the perfor-
mance. The performance of the combination is not sensitive
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Figure 5: Figure shows color, texture, spatial models and the combined unary costs for a sample building (within the box)
with « = 0.35 and 8 = 0.4. The regions with low costs are darker (black) than the ones with high cost (yellow). The
corresponding image is the left skyline in Figure 8. (Note: images are costs, rescaled and resized for visibility.)

over a wide range of v and 3. For instance, MAQ for valida-
tion set does not vary significantly over values of o between
0.2-0.4 and S between 0.2-0.6. Optimum values of « and (3
obtained on the validation set are 0.35 and 0.20. While cal-
culating unary potentials for various experiments, all three
models are normalized to unit variance.

5.2. Interactive segmentation

In the interactive setting we compare tiered MRF, rect-
angle MRF and refined MRF with a standard MRF formula-
tion where a-expansion is used to solve the binary labeling
problem. We use publicly available code for max-flow/min-
cut for optimizing the problem [5]. For a fair compari-
son we run all the algorithms for K = 2 outer iterations
(Algo. 1). In our experiments we found that no significant
change in labeling after 2 iterations. For speed we also re-
size all the images to a maximum dimension of 2000 pixels,
and the results rescaled to the original size for evaluation.

Tab. 2 presents results in the interactive setting. All the
MREF formulations significantly improve over the unary po-
tentials. Our proposed approaches are about an order of
magnitude faster than the a-expansion. The rectangle MRF
achieves results almost as good as the standard MRF while
taking only 5.5s on average per image on commodity desk-
top with an Intel CPU @ 3.20GHz. Refinement on top im-
proves performance for a small additional time of 3.7s (for
a total of 9.2s). Tiered labeling is fast but not competitive
showing the value of enforcing shape priors.

In a typical skyline image, many buildings have two visi-
ble facades, each with different color and texture due to sun-
light, because of which the unary potentials are unreliable.
Here shape priors can provide additional cues to guide seg-
mentation. Fig. 6 shows the significance of shape priors in
segmenting buildings. The refined MRF outperforms both
standard MRFand tiered MRF, while preserving contigu-
ity and shape of the segments. While it correctly segments
buildings in most of the cases, there are images where rect-
angular shape prior is grossly incorrect. Two such examples
are show in Fig. 7. In the first case, refined MRF fails due
to irregular shapes of crowded and similar buildings. In the
later case, the rectangular shape prior is incorrect due to
concave shape of the buildings.

Method ‘ MAO ‘ Complexity/bldg. ‘ Speed/img.

Unary only | 54.5% | n/a n/a
Standard MRF | 62.3% | O(m®n®) 69.5s
Tiered MRF | 59.4% | O(m’n) 7.5s
Rectangle MRF | 62.0% | O(mn?) 55s
Refined MRF | 63.4% | O(mn? +m?d) 925

Table 2: Speed and accuracy tradeoff in the interactive
setting. For various methods MAO scores, worst case com-
putational complexities per building, and speed per image
(in seconds) averaged over the fest set are shown. All the
methods are run for K = 2 outer iterations (Algo. 1). Im-
ages are resized to a maximum dimension of 2000 pixels for
speed. The typical image is of size m x n = 1255 x 2000
pixels and has 34 buildings.

The automatic segmentations and ground-truth labels for
some example images from the dataset of various interactive
approaches are shown in Fig. 8. The rectangle MRF ob-
tains a rough approximation of building structure quickly,
which is then refined by refined MRF leading to more accu-
rate boundaries.

5.3. Automatic segmentation

In the automatic setting, we start with a baseline seg-
mentation, and refine it using our method. The initial seg-
mentation method is used to estimate the seeds which are
then used as input for the interactive segmentation methods
described in the earlier section.

For the initial segmentation we use either SLIC [!1],
graph-based segmentation [8], or gPb regions [2]. The way
we estimate seed regions is as follows: a skyline is parti-
tioned into N vertical divisions and largest K segments are
selected from each such division of the baseline. Buildings
in a skyline are layered due to varying depth of buildings
from camera. The uniform selection of segments is effec-
tive in selecting buildings in all layers. Generally, a skyline
has 2 — 3 such layers. In all experiments we set N = 20
and K = 2. Thus, we select N x K = 40 uniformly dis-
tributed largest segments from the output of a segmentation
algorithm and label these as different buildings. This serves
as a baseline. A number of pixels within the segments are
used as seeds for the interactive methods.
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Figure 6: Two examples where refined MRF improves over
the standard MRFand tiered MRF. On the top row, standard
MRFover-segments the building. In the bottom row, lack of
an explicit shape model in the tiered MRF causes it to in-
correctly extend the rightmost building. In both these cases
explicit shape priors enforced by the refined MRF enables
it to correctly segment the buildings.

B b

tiered MRF refined MRF
image standard MRF refined MRF

Figure 7: Some failures of the shape-constrained MRFs. On
the image in the top row, the buildings are not rectangular
and the refined MRF makes many mistakes, and the tiered
structure alone is more appropriate. On the bottom row, the
refined MRF incorrectly segments the concave buildings in
the bottom.

Method ‘ SLIC [1] ‘ Graph based [8] ‘ gPb [2]

Initial | 24.56% 20.17% 26.35%

Tiered MRF | 27.22% 25.86% 31.51%
Rectangle MRF | 27.33% 27.87% 32.79%
Refined MRF | 27.30% 27.42% 33.13%

Table 3: Performance in the automatic setting. Start-
ing from various baseline segmentation algorithms such as
SLIC, graph-based segmentation, and gPb regions, we per-
form an automatic labeling. The table shows the MAO
scores for various the methods. Seeds obtained from gPb
regions offer the best performance.

Tab. 3 compares various methods in the automatic set-
ting. The refined MRF and rectangle MRF give significant
performance boost over all these methods, an average 40%
improvement over graph-based segmentation and 25% im-
provement over gPb, in few images showing as much as
60% improvement over the baseline. The running time of
these methods are similar to those described in Tab. 2.

Among various low-level methods for segmentation,
SLIC and graph-based use only color, while gPb uses both
texture and color, hence the improved baseline. Nonethe-
less, our method improves over all of these methods mainly
due the utilization of shape priors. In an interactive setting
a user may use this as an input to guide effort in correc-
tion. The results for some images using the automatic ap-
proaches are shown in the last row of Fig. 8. Our method
may be made fully automatic using methods such as [ 1]
that can estimate the upper and lower boundaries. In our ex-
periments we found that although these methods are fairly
good, they still make mistakes. Hence to avoid confounding
factors for mistakes in our analysis, we choose to include
the boundary as part of the input for the automatic segmen-
tation methods.

6. Summary

We presented a user-guided approach for extracting the
structure of buildings within a skyline image. Our shape-
constrained MRF approach lets us exploit the shape priors
of the buildings and the tiered structure, allowing more ac-
curate parsing. Compared to standard approaches for op-
timizing MRFs such as a-expansion, our rectangle MRF
method is significantly faster, taking a few seconds to label
a 3 mega-pixel image. Further refinement within the con-
straints of the rectangle improves accuracy. This coarse-
to-fine approach for parsing may be used in other settings
where an explicit search over shapes is faster than graph-
cuts. Our preliminary results on improving automatic seg-
mentation methods using shape priors are also promising.
Finally, the skyline-12 dataset consisting of 120 high reso-
lution images with detailed annotations, and code for repro-
ducing the results presented, will be available for download
at the author’s website.
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Figure 8: Skyline segmentation results for three images. In first and second row, original skylines within the upper and
lower boundary and the corresponding ground truth segmentation are shown. In third, fourth, fifth and sixth row, outputs of
the interactive tiered MRF, rectangle MRF, refined MRF and automatic refined MRF are shown respectively.
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