
Subspace Clustering for Sequential Data

Stephen Tierney and Junbin Gao
School of Computing and Mathematics

Charles Sturt University
Bathurst, NSW 2795, Australia
{stierney, jbgao}@csu.edu.au

Yi Guo
Division of Computational Informatics

CSIRO
North Ryde, NSW 2113, Australia

yi.guo@csiro.au

Abstract

We propose Ordered Subspace Clustering (OSC) to seg-
ment data drawn from a sequentially ordered union of sub-
spaces. Current subspace clustering techniques learn the
relationships within a set of data and then use a separate
clustering algorithm such as NCut for final segmentation.
In contrast our technique, under certain conditions, is ca-
pable of segmenting clusters intrinsically without providing
the number of clusters as a parameter. Similar to Sparse
Subspace Clustering (SSC) we formulate the problem as
one of finding a sparse representation but include a new
penalty term to take care of sequential data. We test our
method on data drawn from infrared hyper spectral data,
video sequences and face images. Our experiments show
that our method, OSC, outperforms the state of the art meth-
ods: Spatial Subspace Clustering (SpatSC), Low-Rank Rep-
resentation (LRR) and SSC.

1. Introduction
In many applications such as machine learning and im-

age processing high dimensional data are ubiquitous. This
high dimensionality has adverse affects on the computation
time and memory requirements of algorithms that want to
extract information. Fortunately, it has been shown that
high dimensional data often lie in a small number of much
lower dimensional subspaces [1]. In most cases the assump-
tion is that data lies in a union of subspaces. The goal of
subspace clustering is to cluster the data according to their
residing subspaces.

There are many tasks in machine learning that can be
represented by the union of subspaces model. For exam-
ple extracting feature trajectories of a rigidly moving object
in video [2] and identifying face images of a subject under
varying illumination [3]. In this work we apply the union of
subspaces model to high dimensional sequential data. We
assume that this data is sampled at specific points in time
or space in uniform intervals. This data is also known as

time series data. For example hyper spectral drill core data
[1] is obtained by sampling the infrared reflectance along
the length of the core. The mineralogy is typically strati-
fied meaning segments of mineral compounds congregate
together [4]. Another example is video data which as a
function of time has a sequential structure [5] where we can
assume most frames are similar to their neighbours until a
scene change.

In this work we exploit the the sequential nature of se-
quential data by incorporating a neighbour penalty term
into our model to enforce similarity. We show that the
new model formulation improves subspace clustering re-
sults for sequential data and describe a method to extract
the clusters without knowing the number of clusters a priori.
Through experimental evaluation we show that our algo-
rithm OSC outperforms state-of-the-art subspace clustering
methods on real-world problems of video scene segmenta-
tion and face clustering (see Figures 1 and 2 respectively).

2. Preliminaries
Consider a matrix of column wise samples X =

[x1,x2, . . . ,xN] ∈ RD×N . Each sample or datum can be
represented by a linear combination of some atoms in a dic-
tionary A = [a1,a2, . . . ,an] ∈ RD×n:

X = AZ (1)

where Z = [z1, z2, . . . , zN] ∈ Rn×N is a coefficient matrix.
Under this representation, each column zi of the coefficient
matrix Z can be interpreted as a new representation for each
data sample xi under the dictionary.

Let X be a set of data vectors drawn from a union of k
subspaces {Si}ki=1 of unknown dimensions {di}ki=1. With-
out knowing the dictionary A one can use the following
self-expressiveness property of data [1] to find the sub-
spaces:

each data point in a union of subspaces can be ef-
ficiently reconstructed by a combination of other
points in the data

Figure 1: Video scene segmentation: given a sequence of video frames the goal is to cluster the frames that belong to the
same scene. Clusters (scenes) highlighted by coloured borders.

Figure 2: Face clustering: given an ordered set of face images the goal is to cluster images that belong to the same subject.

Both sparse subspace clustering (SSC) [1] and low-rank
representation (LRR) [6] take this strategy by using the data
samples themselves as the dictionary. That is, A = X. In
this case, the coefficient matrix Z becomes a square matrix
of size N × N . In fact, we have the secondary interpreta-
tion for Z for which the element zij is the similarity of data
points xi to xj , because

xi = Xzi. (2)

In other words each point can be written as a linear com-
bination of other points. In general N > D, in this unre-
stricted case there are near infinite possibilities for the co-
efficient matrix Z. The choice of Z is the main point of
difference among subspace clustering techniques, which we
discuss in section 3.

3. Related Work
Little prior work exists on the matter of subspace cluster-

ing on time series data. As such we provide a brief overview
of the recent developments in field of subspace clustering.
We refer readers to more comprehensive reviews of this
field found in [7] and [1].

In recent years compressed sensing techniques have been
applied to subspace clustering. Sparse Subspace Clustering
(SSC or L1-Graph) by Elhamifar & Vidal [8, 1] aims to find
the sparsest representation using `1 approximation. More
specifically every point in the data as a set of sparse lin-
ear combinations of other points from the same subspace.
Mathematically we write this sparse formulation as

min
E,S,Z

λ1
2
‖E‖2F + λ2‖S‖1 + ‖Z‖1 (3)

s.t. X = XZ+E+ S, diag(Z) = 0

where E is Gaussian noise and S is high magnitude sparse
noise. From these sparse representations an affinity matrix
Z is compiled. This affinity matrix is interpreted as a a

graph upon which a clustering algorithm such as Normal-
ized Cuts (NCut) [9] is applied for the final segmentation.
This is the typical approach of modern subspace clustering
techniques.

Rather than compute the sparsest representation of each
data point individually Low-Rank Representation (LRR) by
Liu et al. [6] attempts to incorporate global structure of the
data by computing the lowest-rank representation of a set
of data points. This low rank representation is achieved by
approximating rank with the nuclear norm as follows

min
E,Z

λ‖E‖1,2 + ‖Z‖∗ (4)

s.t. X = XZ+E

where ‖E‖1,2 =
∑n
i=1 ‖ei‖2 is called the `1,2 norm and pe-

nalises column specific error, meaning some columns of the
reconstruction error E can be large but most will be small.
In many cases LRR can outperform SSC but its computa-
tional complexity is higher [7, 10] and it is unable to be
separated and computed in parallel.

Of most relation to our work is Spatial Subspace Clus-
tering (SpatSC) from Guo et al. [4], which extends SSC by
incorporating an extra penalty term to model the sequential
ordering of data. The penalty term indirectly forces simi-
larity for neighbouring data points in the affinity matrix Z.
In contrast our method OSC takes a more direct approach,
which enforces sequential similarity in a more holistic man-
ner. We provide further comparison in section 4.

4. Our Contribution
Most subspace clustering techniques do not take into ac-

count the information that is implicitly encoded into ordered
data. That is that data samples or columns are either neigh-
bours in a space or time domain. One example of time or-
dered data is video, each frame can be vectorised into a sin-
gle column xi and placed side by side with neighbouring
frames to form X. This sequential ordering should be re-

flected in the coefficients of Z so that neighbours are similar
i.e. zi ≈ zi+1.

In [4] the following spatial subspace clustering (SpatSC)
algorithm was proposed

min
Z,E

1

2
‖E|2F + λ1‖Z‖1 + λ2‖ZR‖1 (5)

s.t. X = XZ+E, diag(Z) = 0

where R is a lower triangular matrix with −1 on the diago-
nal and 1 on the second diagonal

R ∈ ZN×N−1 =


−1
1 −1

1 −1
.

1 −1

 .

Therefore ZR = [z2 − z1, z3 − z2, ..., zN − zN−1]. The
aim of this formulation is to force consecutive columns of
Z to be similar. The third penalty term introduced in (5) is
for this purpose. Unfortunately ‖ZR‖1 only imposes spar-
sity at the element level in the column differences zi−zi−1
and does not directly penalise whole column similarity. In
effect this allows some values in consecutive columns to
be greatly different. On the contrary we wish to directly
penalise the similarity between consecutive columns and
maintain sparsity. To achieve this goal we replace the `1
norm of the third term with the `1,2 norm. That is, we will
consider the following problem instead

min
Z,E

1

2
‖E‖2F + λ1‖Z‖1 + λ2‖ZR‖1,2 (6)

s.t. X = XZ+E

Thus in (6), we replace the weaker penalty ‖ZR‖1 with the
stronger penalty ‖ZR‖1,2 to strictly enforce column simi-
larity. In summary the contributions of this work include:

1. We introduce the `1,2 norm over ZR to enforce col-
umn similarity, which outperforms state of the art
methods on sequential data.

2. We propose a new segmentation algorithm that ex-
ploits information encoded in our mostly block diag-
onal Z so that the number of clusters is no longer a
required parameter.

5. Solving the Objective Function
To solve (5), [4] uses the property of separation of the

`1-norm and adopts a row-wise formation to decouple the
columns in the third term. However the similar trick cannot
be used for problem (6) because of the new `1,2 norm over
ZR. Instead we will use the alternating direction method of

multipliers (ADMM) [11] to find a solution. As discussed
in [12] we cannot guarantee convergence when using this
approach. However in our experiments the algorithm al-
ways converged. First we remove the variable E by using
the constraint and thus the objective (6) can be re-written as
follows,

min
Z

1

2
‖X−XZ‖2F + λ1‖Z‖1 + λ2‖ZR‖1,2 (7)

To further separate the terms of variable Z, let S = Z
and U = SR, then the Augmented Lagrangian for the two
introduced constraints is

L(Z,S,U) =
1

2
‖X−XS‖2F + λ1‖Z‖1 + λ2‖U‖1,2

+ 〈G,Z− S〉+ γ1
2
‖Z− S‖2F

+ 〈F,U− SR〉+ γ2
2
‖U− SR‖2F (8)

We can solve (8) for Z,S,U in an alternative manner
when fixing the others, respectively.

1. Fixing S and U, solve for Z by

min
Z
λ1‖Z‖1 + 〈G,Z− S〉+ γ1

2
‖Z− S‖2F

which is equivalent to

min
Z
λ1‖Z‖1 +

γ1
2
||Z− (S− G

γ1
)||2F (9)

Problem (9) is separable at element level and each has
a closed-form solution defined by the soft thresholding
operator as follows, see [13, 14],

Z = sign
(
S− G

γ1

)
max

(∣∣∣∣S− G

γ1

∣∣∣∣− λ1
γ1

)
. (10)

2. Fixing Z and U, solve for S by

min
S

1

2
‖X−XS‖2F + 〈G,Z− S〉+ γ1

2
‖Z− S‖2F

+ 〈F,U− SR〉+ γ2
2
‖U− SR‖2F

Setting the derivative of the above objective with re-
spect to S to zero gives

(XTX+ γ1I)S+ γ2SRRT

=XTX+ γ2URT + γ1Z+G+ FRT

We can vectorize the above linear matrix equation into

[I ⊗ (XTX+ γ1I) + γ2RRT ⊗ I]vec(S)

= vec(XTX+ γ2URT + γ1Z+G+ FRT)

where ⊗ is the tensor product.

3. Fixing Z and S, solve for U by

min
U

λ2‖U‖1,2 + 〈F,U− SR〉+ γ2
2
‖U− SR‖2F

which is equivalent to

min
U

λ2‖U‖1,2 +
γ2
2
||U− (SR− 1

γ2
F)||2F

Denote by M = SR − 1
γ2
F, then the above problem

has a closed-form solution defined as follows,

U(:, i) =


‖M(:,i)‖−λ2

γ2

‖M(:,i)‖ M(:, i) if ‖M(:, i)‖ > λ2

γ2

0 otherwise
(11)

where U(:, i) and M(:, i) are the i-th columns of U
and M, respectively. Please refer to [6].

4. Update G by

G = Gold + γ1(Z− S)

5. Update F by

F = Fold + γ2(U− SR)

6. Also update γ1 and γ2 by

γ1 = ργold1 ; γ2 = ργold2

6. Segmentation
Once a solution to (6) has been found the next step is to

segment the coefficient matrix Z to find the subspace clus-
ters. We discuss methods for segmentation depending on
amount and type of prior knowledge about the original data.
Unlike prior subspace clustering methods we do not always
require the number of clusters k to be known before hand.

1. If we assume that the data is drawn from a set of dis-
connected subspaces i.e. Z is block diagonal we can
use information encoded by ZR to find the cluster
boundaries. Ideally columns of ZR, i.e. zi − zi−1,
that are within a segment should be the zero vector or
very close to it because columns from the same sub-
space share similarity. Columns of ZR that greatly
deviate away from the zero vector indicate the bound-
ary of a segment as the similarity is low. First let
B = (|ZRij |) be the absolute value matrix of ZR.
Then let µB be the vector of column-wise means of
B. Then we employ a peak finding algorithm over µB

to find the segment boundaries. We call this method
“intrinsic segmentation”.

2. Alternatively if Z is block diagonal and noiseless we
can analyse the eigenspectrum of Z to find the num-
ber and size of each cluster [7]. Using the eigengap
heuristic we find a set of explanatory eigenvalues, the
number of eigenvalues indicates the number of clusters
and the magnitude of each indicates the cluster size.
If Z contains noise then the eigengap heuristic fails to
provide accurate cluster size but the number of clusters
will still be accurate [10].

3. If the number of clusters is known beforehand or es-
timated via eigenspectrum analysis we suggest using
Ncut [9] to segment the data. Ncut has been shown to
be robust in subspace segmentation tasks and is con-
sidered state of the art [1, 6]. In cases where Z is not
block diagonal or contains significant noise NCut will
provide better segmentation than previous methods.

7. Experimental Results and Applications
In this section we first evaluate the performance of OSC

on a synthetic experiment using data from real hyper spec-
tral mineral data. We then evaluate OSC on real world data
with video scene segmentation and face clustering exper-
iments. Parameters were fixed for each experiment. We
used parameters suggested by original authors of competing
methods where applicable (e.g. face clustering) and tuned
parameters for best performance in other experiments. In
order to evaluate performance consistently we used NCut
for final segmentation for every method in every experi-
ment.

We use the subspace clustering error metric from [1] to
compare results. The subspace clustering error (SCE) is as
follows

SCE =
num. misclassified points

total num. of points
(12)

In contrast to other works [1, 6] we provide minimum, max-
imum, median and mean data on clustering error for each
experiment. It is important to consider these ranges holisti-
cally when evaluating these methods.

Additionally we evaluate performance when extra noise
is added to each dataset, which to the best of our knowl-
edge has been avoided by others. In all experiments we used
Guassian noise with zero mean and unit variance. We mod-
ify the noise by varying magnitudes and provide results for
each magnitude of noise. We report the level of noise using
Peak Signal-to-Noise Ratio (PSNR) which is defined as

PSNR = 10 log10

(
s2

1
mn

∑m
i

∑n
j (Iij −Kij)2

)
(13)

where I is the noise free data, K is a noisy approximation
and s is the maximum possible value of an element of I.

(a) OSC (b) SpatSC (c) LRR (d) SSC

Figure 3: Examples of affinity matrices Z from the synthetic
experiment using hyper spectral mineral data.

(a) OSC

(b) SpatSC

(c) LRR

(d) SSC

Figure 4: Clustering results from affinity matrices in Figure
3. OSC and SpatSC achieve perfect segmentation, while
LRR and SSC suffer from misclassification.

Decreasing values of PSNR indicate increasing amounts of
noise. Since the denominator of (13) will be 0 in noise free
cases we mark the PSNR as “Max”. PSNR values reported
are rounded averages.

7.1. Synthetic Experiment

We assemble synthetic data from a library of pure in-
frared hyper spectral mineral data. We randomly take 5
pure spectra samples from the library such that Ai =
[a1,a2, . . . ,a5] ∈ R321×5. Next we combine these sam-
ples into a single synthetic sample using uniform random
weights wi ∈ R5 such that xi ∈ R321 = Aiwi. We then
repeat xi 10 times column-wise giving us Xi ∈ R321×10.
We repeat this process 5 times and combine all Xi to create
our artificial data X ∈ R321×50 = [X1,X2, . . . ,X5]. The
aim is to correctly segment the 5 synthetic spectra.

We then corrupt data with various levels of Gaussian
noise and evaluate clustering performance of OSC against
SpatSC, LRR and SSC. The experiment is repeated for 50
variations of X. In the noise free case SSC performed
marginally better than OSC. At all other levels of noise OSC
outperforms every competitor. This experiment highlights
OSC’s robustness to noise. Since parameters were the same

PSNR OSC SpatSC LRR SSC

Max

Min 0% (49) 0% (43) 0% (12) 0% (50)
Max 22% 22% 56% 0%
Med 0% 0% 24% 0%
Mean 0.44% 1.16% 23.68% 0%

46

Min 0% (49) 0% (31) 0% (27) 0% (40)
Max 6% 28% 42% 30%
Med 0% 0% 0% 0%
Mean 0.12% 3.6% 8.8% 1.52%

24

Min 0% (26) 0% (1) 4% 16%
Max 20% 46% 52% 62%
Med 0% 10% 30% 40%
Mean 2.64% 15.88% 29.72% 41.48%

10

Min 0% (1) 14% 38% 50%
Max 24% 62% 70% 70%
Med 12% 42% 70% 70%
Mean 12% 42% 58% 62%

Table 1: Misclassification results for the synthetic hyper
spectral mineral data set with various magnitudes of Gaus-
sian noise, lower is better. Numbers in brackets indicate
how many times clustering was perfect, i.e. zero error.

across all noise magnitudes the experiment demonstrated
that OSC is less sensitive to parameter values than other
methods. Results can be found in Table 1.

We provide a visual comparison of affinity matrices Z
for this experiment in Figure 3. In this experiment we added
Gaussian noise at 20% magnitude. Visually we observe that
OSC provides affinity matrices which are more block diag-
onal and contain stronger and more numerous within block
weights than other methods. LRR produces the next best
affinity matrices, in terms of being block diagonal, but lacks
sparsity which allows for easier segmentation and more effi-
cient storage. Visual results of clustering accuracy for these
affinity matrices is provided in Figure 4.

7.2. Video Scene Segmentation

The aim of this experiment is to segment individual
scenes from a video sequence. The video sequences are
drawn from two short animations freely available from the
Internet Archive1. See Figure 1 for an example of a se-
quence to be segmented. The sequences are around 10 sec-
onds in length (approximately 300 frames) containing three
scenes each. There are 19 and 24 sequences from videos
1 and 2 respectively. The scenes to be segmented can con-
tain significant translation and morphing of objects within
the scene and sometimes camera or perspective changes.
Scene changes (or keyframes) were collected manually to
form ground truth data.

The pre processing of a sequence consisted of converting

1http://archive.org/

http://archive.org/

(a) OSC

(b) SpatSC

(c) LRR

(d) SSC

Figure 5: Clustering results from the video scene segmenta-
tion experiment. OSC achieves perfect segmentation while
SpatSC, LRR and SSC suffer from significant misclassifi-
cation.

colour video to grayscale and down sampling to a resolution
of 129× 96. Each frame in the sequence was vectorised to
xi ∈ R12384 and concatenated with consecutive frames to
form X ∈ R12384×300.

The video sequences were then corrupted with various
magnitudes of Gaussian noise to evaluate clustering perfor-
mance. Results can be found in Table 2. Generally OSC
outperforms other methods and the error rates are consis-
tently low when compared to other methods which greatly
increase as the magnitude of the noise is increased. In Fig-
ure 5 we provide a visual example of OSC’s robustness
where we set the magnitude of noise at 30%. A sample
of frames from this sequence without noise can be found in
Figure 1

We performed a second set of experiments with the same
video sequences as before, however we interpolated the first
and last six frames of scenes boundaries to form a fading
transition. We provide an illustration of this in Figure 6.
We observed that as before OSC generally outperforms the
other tested methods and is most robust to noise. Results
can be found in Table 3.

7.3. Face Clustering

The aim of this experiment is to segment or cluster
unique subjects from a set of face images. Although this
task is not exactly suited to our assumption of clustering se-
quential data we ensure that in our tests the faces are kept
contiguous i.e. unique subjects do not mix. We can exploit

the spatial information since we know neighbours of each
data vector are likely to belong to the same subject. We
draw our data from the Exteded Yale Face Database B [15].
The dataset consists of approximately 64 photos of 38 sub-
jects under varying illumination. See Figure 2 for an ex-
ample. For each test we randomly pick 3 subjects from the
dataset then randomly order the images within each sub-
ject’s set. The images are resampled to 42×48 to form data
vectors xi ∈ R2016 and concatenated together in order to
ensure that subjects do not mix.

We repeated these tests 50 times for each level of corrup-
tion by Gaussian noise. Since the original data is already
corrupted by shadows (see Figure 2) the maximum magni-
tude of extra noise that we apply is lower than previous ex-
periments. Additionally we impose an additional constraint
diag(Z) = 0 on OSC (6) to avoid the trivial identity solu-
tion.

Results can be found in Table 4. We observed that OSC
outperforms all other methods in most cases. The power
of OSC is most noticeable with larger magnitudes of noise.
There was only a negligible difference between LRR and
SSC. We observed that SpatSC performed incosistenly in
this experiment, for example the mean error rate is lower
at 10% magnitude noise than without any noise. In con-
trast our method OSC was more stable and behaved more
predictably.

8. Conclusion and Future Work

We have presented and evaluated a novel subspace clus-
tering method, Ordered Subspace Clustering, that exploits
the ordered nature of data. OSC produces more inter-
pretable and accurate affinity matrices than other methods.
In ideal cases it is able to provide clustering without know-
ing the number of clusters, which other methods are not
capable of. We showed that this method generally outper-
forms existing state of the art methods in quantitive accu-
racy, particularly when the data is heavily corrupted with
noise.

While OSC outperforms other methods there are areas of
improvement remaining:

• It has been shown that LRR is much better than SSC at
capturing the global structure of data. As such we wish
to replace our core structure of sparse representation
with low-rank representation.

• As the computation of the `1,2 penalty is expensive it
would be better to have a faster alternative.

• The ZR structure limits us to sequentially structured
or 1D data. We hope to develop a new penalty which
can be defined by the user to suit other geometric struc-
tures such as images, which are 2D.

Video 1 Video 2
PSNR OSC SpatSC LRR SSC OSC SpatSC LRR SSC

Max

Min 0% (12) 0% (11) 0% (4) 0% (5) 0% (3) 0% (3) 0.69% 0% (3)
Max 28.4% 49.33% 65.6% 44.4% 2.96% 28.29% 45.37% 44.39%
Med 0% 0% 19.9% 24.5% 0.96% 0.92% 2.72% 1.11%
Mean 6.58% 8.38% 21.29% 20.56% 1.02% 2.11% 13.42% 10.59%

46

Min 0% (12) 0% (14) 0% (5) 0% (5) 0% (3) 0% (3) 0% (3) 0% (3)
Max 32.1% 40.07% 44% 45.89% 2.96% 28.29% 35.6% 43.9%
Med 0% 0% 12.5% 21.54% 0.96% 0.92% 1.01% 1.11%
Mean 6.54% 5.74% 18.21% 21.5% 1.02% 2.11% 5.78% 10.79%

24

Min 0% (14) 0% (11) 0% (6) 0% (3) 0% (3) 0% (3) 0% (3) 0% (3)
Max 26.24% 50.62% 49.67% 59.33% 2.96% 28.29% 28.29% 100%
Med 0% 0% 8.89% 31.82% 0.96% 0.92% 0.96% 1.2%
Mean 2.22% 9.63% 14.05% 27.4% 1.08% 2.68% 2.89% 13.78%

10

Min 0% (11) 0% (4) 0% (6) 3.03% (0) 0% (1) 0% (1) 0% (3) 1.14%
Max 24.11% 53.45% 48% 100% 11.6% 32.07% 40.8% 63.79%
Med 0% 25.33% 8.66% 57.78% 1.05% 1.38% 0.96% 40.2%
Mean 3.38% 23.91% 12.94% 52.7% 2.01% 9.2% 4.21% 39.74%

Table 2: Misclassification results for the interpolated video data set with various magnitudes of Gaussian noise, lower is
better. In this test we interpolated the end and beginning of each scene together to form fading transitions. Numbers in
brackets indicate how many times clustering was perfect, i.e. zero error.

Figure 6: A sample of frames from the interpolated video test. We modified the existing video sequences to make a fading
transition between each scene. Clusters (scenes) highlighted by coloured borders.

Video 1 Video 2
PSNR OSC SpatSC LRR SSC OSC SpatSC LRR SSC

Max

Min 0% (2) 0% (3) 0% (1) 0% (2) 0% (9) 0% (11) 0% (5) 0% (11)
Max 36.23% 50.79% 66.3% 55.1% 27.2% 27.2% 41.9% 31.8%
Med 1.44% 1.19% 16.85% 35.85% 0.76% 0.37% 4.45% 0.41%
Mean 10.46% 12.38% 24.35% 27.82% 1.74% 1.58% 12.66% 5.29%

46

Min 0% (3) 0% (6) 0% (2) 0% (2) 0% (8) 0% (10) 0% (6) 0% (10)
Max 30.43% 50.79% 47.83% 61.22% 1.8% 27.2% 34.63% 28.46%
Med 1.28% 1.19% 12.24% 30.26% 0.76% 0.37% 0.84% 0.48%
Mean 8.85% 10.92% 19.06% 27.93% 0.68% 1.56% 6.06% 5.38%

24

Min 0% (3) 0% (8) 0% (4) 0% (1) 0% (4) 0% (7) 0% (8) 0% (6)
Max 38.78% 59.18% 49.65% 56.52% 2.16% 27.2% 27.2% 50%
Med 1.44 % 1.06% 8.68% 31.34% 0.95% 0.53% 0.67% 0.83%
Mean 8.36% 15.26% 14.61% 28.51% 0.92% 1.96% 2.63% 9.89%

10

Min 0% (1) 0.65% 0% (4) 12.5% (0) 0% (3) 0% (2) 0% (8) 0.61%
Max 46.94% 58.73% 50.72% 64.93% 12.61% 31.65% 40.76% 65.11%
Med 3.19% 28.21% 11.54% 51.32% 1.9% 1.05% 0.73% 33.72%
Mean 9.13% 27.11% 15.4% 49.85% 2.8% 8.78% 4.01% 35.18%

Table 3: Misclassification results for the video data set with various magnitudes of Gaussian noise, lower is better. Numbers
in brackets indicate how many times clustering was perfect, i.e. zero error.

PSNR OSC SpatSC LRR SSC

Max

Min 0% (5) 0% (7) 0% (1) 0% (1)
Max 54.69% 56.25% 57.81% 57.81%
Med 3.66% 7.3% 3.69% 3.73%
Mean 10.56% 52.85% 10% 10.23%

46

Min 0% (1) 1.04% 0.52% 0.52%
Max 38.83% 64.58% 41.71% 42.78%
Med 3.17% 39.58% 4.17% 4.17%
Mean 8.22% 34.95% 8.53% 8.53%

24

Min 8.51% 26.83% 47.97% 47.97%
Max 59.3% 66.15% 66.15% 66.15%
Med 39% 44.85% 65.52% 65.33%
Mean 36.56% 49.42% 64.05% 63.97%

Table 4: Misclassification results for the face clustering
dataset with various magnitudes of Gaussian noise, lower is
better. Numbers in brackets indicate how many times clus-
tering was perfect, i.e. zero error.

Acknowledgment

The research project is supported by the Australian Re-
search Council (ARC) through the grant DP130100364.

References
[1] E. Elhamifar and R. Vidal, “Sparse subspace clus-

tering: Algorithm, theory, and applications,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 2013. 1, 2, 4

[2] C. Tomasi and T. Kanade, “Shape and motion from
image streams under orthography: a factorization
method,” International Journal of Computer Vision,
vol. 9, no. 2, pp. 137–154, 1992. 1

[3] R. Basri and D. W. Jacobs, “Lambertian reflectance
and linear subspaces,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 25, no. 2, pp.
218–233, 2003. 1

[4] Y. Guo, J. Gao, and F. Li, “Spatial subspace clustering
for hyperspectral data segmentation,” in Conference of
The Society of Digital Information and Wireless Com-
munications (SDIWC), 2013. 1, 2, 3

[5] R. Vidal, Y. Ma, and S. Sastry, “Generalized princi-
pal component analysis (gpca),” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 27,
no. 12, pp. 1945–1959, 2005. 1

[6] G. Liu, Z. Lin, and Y. Yu, “Robust subspace segmen-
tation by low-rank representation,” in International
Conference on Machine Learning, 2010, pp. 663–670.
2, 4

[7] R. Vidal, “A tutorial on subspace clustering,” Signal
Processing Magazine, IEEE, vol. 28, no. 2, pp. 52–68,
2011. 2, 4

[8] E. Elhamifar and R. Vidal, “Sparse subspace cluster-
ing,” in IEEE Conference on Computer Vision and
Pattern Recognition. IEEE, 2009, pp. 2790–2797.
2

[9] J. Shi and J. Malik, “Normalized cuts and image seg-
mentation,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 22, no. 8, pp. 888–905,
2000. 2, 4

[10] P. Xi, L. Zhang, and Z. Yi, “Constructing l2-graph for
subspace learning and segmentation,” 2012. 2, 4

[11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eck-
stein, “Distributed optimization and statistical learn-
ing via the alternating direction method of multipli-
ers,” Foundations and Trends in Machine Learning,
vol. 3, no. 1, pp. 1–122, 2011. 3

[12] R. Liu, Z. Lin, and Z. Su, “Linearized alternating
direction method with parallel splitting and adaptive
penalty for separable convex programs in machine
learning,” in ACML, 2013, pp. 116–132. 3

[13] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski,
“Convex optimization with sparsity-inducing norms,”
Optimization for Machine Learning, pp. 19–53, 2011.
3

[14] J. Liu and J. Ye, “Efficient l1/lq norm regularization,”
arXiv preprint arXiv:1009.4766, 2010. 3

[15] A. S. Georghiades, P. N. Belhumeur, and D. J. Krieg-
man, “From few to many: Illumination cone models
for face recognition under variable lighting and pose,”
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 23, no. 6, pp. 643–660, 2001. 6

