
Latent Regression Forest: Structured Estimation of 3D Articulated Hand Posture

Danhang Tang Hyung Jin Chang∗ Alykhan Tejani∗ Tae-Kyun Kim
Imperial College London, London, UK

{d.tang11, hj.chang, alykhan.tejani06, tk.kim}@imperial.ac.uk

Abstract

In this paper we present the Latent Regression Forest
(LRF), a novel framework for real-time, 3D hand pose es-
timation from a single depth image. In contrast to prior
forest-based methods, which take dense pixels as input,
classify them independently and then estimate joint po-
sitions afterwards; our method can be considered as a
structured coarse-to-fine search, starting from the centre of
mass of a point cloud until locating all the skeletal joints.
The searching process is guided by a learnt Latent Tree
Model which reflects the hierarchical topology of the hand.
Our main contributions can be summarised as follows:
(i) Learning the topology of the hand in an unsupervised,
data-driven manner. (ii) A new forest-based, discriminative
framework for structured search in images, as well as an
error regression step to avoid error accumulation. (iii) A
new multi-view hand pose dataset containing 180K anno-
tated images from 10 different subjects. Our experiments
show that the LRF out-performs state-of-the-art methods in
both accuracy and efficiency.

1. Introduction

Since the widespread success of real-time human body
pose estimation [10], the area of hand pose estimation has
received much attention within the computer vision com-
munity. Accurate and efficient hand pose estimation is ben-
eficial to many higher level tasks such as human computer
interaction, gesture understanding and augmented reality.
In this paper we introduce a method for real-time 3D hand
pose estimation from a single depth image.

State-of-the-art human body pose estimation techniques
consist mainly of data-driven, bottom-up approaches, in
which pixels are independently assigned body part la-
bels [15] or vote for joint locations [5, 18, 13]. However, in
comparison to the human body, the hand has far more com-
plex articulations, self-occlusions and multiple viewpoints;
thus, these approaches require exponentially more data to

∗These authors contributed equally to this work.

Figure 1: Our method can be viewed as a search process,
guided by a binary Latent Tree Model(LTM); starting from
root of the LTM, we minimise the offset to its children at
each level until reaching a leaf node which corresponds to
a skeletal joint position. For simplicity, we only show the
searching process for one joint.(All figures best viewed in
colour and high-definition)

capture this variation, making their direct application diffi-
cult.

Furthermore, few bottom-up approaches use a global re-
finement step, such as enforcing dependency between local
outputs [16] or kinematic constraints [17]. Without such
procedures, highly unlikely or even impossible poses can
be produced as output.

In contrast, other approaches to hand-pose estimation
have used a more top-down, global approach in which hy-
potheses are generated from a 3D hand model and poses are
tracked by fitting the model to the test data [3, 6, 1, 12].
Whilst these model-based approaches inherently deal with
the kinematic constraints, joint articulations and viewpoint
changes, their performance heavily relies upon accurate
pose initialisation and structural correlation between the
synthetic model and testing subject (i.e. hand width and
height).

In this paper, we present the Latent Regression Forest
(LRF) for real-time 3D hand pose estimation from a sin-
gle depth image. We formulate the problem as a dichoto-
mous divide-and-conquer search for skeletal joints which

1

is conducted as a structured coarse-to-fine search, guided
by a learnt topological model of the hand (see Figure 1).
Furthermore, the topological model is used to enforce im-
plicitly learnt global kinematic constraints on the output.
Additionally, by training in a discriminative manner using
our new diverse hand pose dataset, our approach is able to
generalise to hands of various shapes and sizes as demon-
strated in our experiments. Our experiments show that the
LRF outperforms state-of-the-art methods in both accuracy
and efficiency. The main contributions of our work can be
summarised as follows:
1) Unsupervised learning of the hand topology: We rep-
resent the topology of the hand by a Latent Tree Model[2]
which is learnt in an unsupervised fashion. This topological
model is used while training the Latent Regression Forest
to enable a structured coarse-to-fine approach.
2) Latent Regression Forest: We introduce a framework
for structured coarse-to-fine search in depth images. Guided
by the learnt Latent Tree Model, we learn binary decision
trees that iteratively divide the input image into sub-regions
until each sub-region corresponds to a single skeletal joint.
Furthermore, an error regressor is embedded into each stage
of the framework, in order to avoid error accumulation.
3) A new multi-view hand pose dataset: We present a
new hand pose dataset containing 180K fully 3D annotated
depth images from 10 different subjects.

2. Related Work
Hand pose estimation has a long and diversified history

in the computer vision community. With the recent intro-
duction of low cost real-time depth sensors, this field, as
well as the closely related field of human body pose es-
timation, has received much attention. In this section we
will discuss some of the more recent related works to these
problems, however, we refer the reader to [4] for a detailed
survey of earlier hand pose estimation algorithms.

Many works for human body pose estimation use large
synthetic datasets in training and use either pixel-wise clas-
sification [15], or joint regression techniques [5, 18, 13, 16]
for pose estimation. However, in comparison to the human
body, the hand has far more complex articulations, self-
occlusions and multiple viewpoints; thus, these approaches
require exponentially more data to capture this variation,
making their direct application difficult.

Keskin et al. [8] propose a solution to the data-explosion
problem, by first clustering the training data followed by
training multiple experts on each cluster using the method
of [15]. Furthermore, due to the increased variation in the
hand, capturing ground-truth annotated real data is a prob-
lem in its own right. Tang et al. [17] investigate semi-
supervised learning for hand pose estimation using anno-
tated synthetic data and unlabelled real data.

Recently many tracking-based methods have also been

proposed for hand pose estimation. Oikonomidis et al. [12]
introduce a tracking based method for hand pose estimation
in depth images using particle swarm optimisation. De La
Gorce et al. [3] incorporate shading and texture informa-
tion into a model-based tracker, whereas Ballan et al. [1]
use salient points on finger-tips for pose estimation. Very
recently, Melax et al. [9] proposed a tracker based on phys-
ical simulation which achieves state-of-the art performance
in real-time.

Graphical models, especially tree-based models have re-
cently been used for estimating human body pose. Tian et
al. [19] build a hierarchical tree models to examine spa-
tial relationships between body parts. Whereas Wang and
Li [20] use a Latent Tree Model to approximate the joint
distributions of body part locations. Latent Tree Models, in
particular, are interesting as they are able to represent com-
plex relationships in the data [11] and, furthermore, recent
methods for constructing these models ([2, 7]) enable us to
learn consistent and minimal latent tree models in a compu-
tationally efficient manner.

3. Methodology

The hand pose estimation problem can be decomposed
into estimating the location of a discrete set of joints on the
hand skeleton model. We formulate this as a dichotomous
divide-and-conquer search problem, in which the input im-
age is recursively divided in to two cohesive sub-regions,
until each sub-region contains only one skeletal joint. To
attain robustness to the complex articulations of the hand,
the search is carried out in a structured, coarse-to-fine man-
ner, where the granularity of each search stage is defined by
a learnt topological model of the hand.

In Section 3.1 we discuss how we can learn the hand
topology in an unsupervised fashion. Following this, in
Section 3.2, we discuss how this topology is used to build
a Latent Regression Forest (LRF) to perform a structured,
coarse-to-fine search in the image space. Finally, in Sec-
tion 3.3 we discuss a strategy to reduce error propagation
within the LRF.

3.1. Learning the hand topology

To guide the search process, we desire to define a coarse-
to-fine, hierarchical topology of the hand, where the most
coarse level of the hierarchy is defined by the input to the
search, the entire hand, and the most fine level by the out-
puts, the skeletal joints.

Given training images annotated with the 3D positions
of all skeletal joints, we additionally define the 3D position
of the entire hand as the centre of mass of all points in the
depth image. Thus, our objective is to learn a hierarchical
topology starting from the centre of mass and ending at the
skeletal joints. This is achieved by modelling the topology

2

Figure 2: An comparison between (a) a traditional Regression Tree, where each patch sample is extracted from a depth image,
propagated down the tree and ends up at one leaf node; and (b) an Latent Regression Tree, where the whole point cloud is
propagated down the tree and keep dividing until ending up at 16 leaf nodes.

as a Latent Tree Model and making use of the recently pro-
posed Chow-Liu Neighbour-Joining (CLNJ) method [2] to
construct it.

A Latent Tree Model is a tree-structured graphical
model,M = (O ∪ L,E), where the vertexes are composed
of observable vertexes (skeletal joints and the hand posi-
tion), O, and latent vertexes, L = {l}, where l ⊆ O; and E
denotes edges(see Figure 3(c)(d)). In our work we only con-
sider binary tree models as to easily integrate them within
the Latent Regression Forest, which itself is composed of
binary trees.

The CLNJ method takes as input a pairwise distance ma-
trix,D, of all observable vertexes. Using the training set, S,
the distanceD between two observable vertexes, x and y, is
defined as:

Dxy =

∑
I∈S δ (I, x, y)

|S|
(1)

where δ (I, x, y) is a function measuring the distance be-
tween vertexes x and y in image I . In this work we compare
two different distance functions, the first being the standard
Euclidean distance between the 3D positions of x and y,
and the second being the geodesic distance.

To calculate the geodesic distance between vertexes x
and y in image I , we first construct a fully connected, undi-
rected graph of all observable vertexes in I . Edges in this
graph are then removed if there is a large depth disconti-
nuity along this edge in image space. What remains is a
graph in which the edges all lie along a smoothly transition-
ing depth path. The geodesic distance between two vertexes
can then be calculated as the shortest path connecting them
in this graph.

In Figures 3(a) and (b) we demonstrate the difference
between Euclidean and geodesic distance on a toy hand
model. Through different poses the Euclidean distance be-
tween two joints can change drastically while the geodesic
one remains largely unchanged; this robustness to pose is

preferable to the capture the topology of human hand.
In Figures 3(c) and (d) two Latent Tree Models gener-

ated using the Euclidean and geodesic metrics respectfully
are shown; as highlighted by the arrows, the Euclidean-
generated model groups sub-parts of fingers with different
fingers e.g. root of middle finger is grouped with index fin-
ger, whereas in the geodesic-generated model the fingers are
all separated.

3.2. Latent Regression Forest

The aim of a Latent Regression Forest (LRF) is to per-
form a search of an input image for several sub-regions,
each corresponding to a particular skeletal joint. Search-
ing is preformed in a dichotomous divide-and-conquer fash-
ion where each division is guided by the learnt Latent Tree
Model representing the topology of the hand.

A LRF is an ensemble of randomised binary decision
trees, each trained on a bootstrap sample of the original
training data. Each Latent Regression Tree contains three
types of nodes: split, division and leaf (see Fig. 2). Split
nodes perform a test function on input data and decides to
route them either left or right. Division nodes divide the cur-
rent search objective into two disjoint objectives and prop-
agate input data down both paths in parallel. Finally, leaf
nodes are terminating nodes representing a single skeletal
joint and store votes for the location of this joint in 3D
space.

In Section 3.2.1 we discuss how to build the LRF fol-
lowed by a discussion of the testing procedure in Section
3.2.2.

3.2.1 Training

Given a Latent Tree Model (LTM) of the hand topology,M,
for each vertex i ∈ M, i = 0...|M|, its parent is defined
by p(i) and its 2 children by l(i) and r(i). For each training

3

Figure 3: (a) Euclidean distance between two joints. (b) Geodesic distance between two joints. (c) LTM generated using
the Euclidean distance metric. (d) LTM generated using the geodesic distance metric. In (c) and (d) solid circles represent
observable vertexes and dashed ones latent vertexes. This figure is best viewed in colour.

depth image, I , a 3D position, ρIi , is associated with i. For
each observable vertex, i ∈ O, this is simply the position of
the associated joint; for each latent vertex, i ∈ L, the posi-
tion is represented by the mean position of the observable
nodes they are composed of. Therefore, each training sam-
ple can be represented as a tuple

(
I,ρIi

)
, where ρIi are the

3D positions of the associated vertex, i, in the image I .
Each Latent Regression Tree (LRT) in the Latent Re-

gression Forest is trained as follows: the LRT is trained in
stages, where each stage corresponds to a non-leaf vertex in
the LTM, M. Starting with the root vertex, i = 0, of M
we grow the LRT with the objective of separating the im-
age into two cohesive sub-regions which correspond to the
vertexes, l(i) and r(i), which are the children of the root
node.

This separation is achieved by growing a few layers of
Latent Regression Tree. At each node, we randomly gen-
erate splitting candidates, Φ = {(fi, τi)}, consisting of a
function, fi, and threshold, τi, which splits the input data,
S, into two subsets, Sl & Sr, s.t. Sl = {I|fi(I) < τi} and
Sr = S \Sl. A function, fi, for a splitting candidate, whilst
at the stage represented by the LTM vertex i is defined as:

fi(I) = dI

(
ρIi +

u

dI(ρI0)

)
− dI

(
ρIi +

v

dI(ρI0)

)
, (2)

where dI(·) is the depth at an image position, ρIi is the posi-
tion of the LTM vertex, i, in the image, I and vectors u and
v are random offsets. Similarly to [15], the offsets are nor-
malised to make them depth-invariant. However, in order to
avoid error accumulation in depth values, the normalisation
factor is always the centre of mass, 1

dI(ρI
0)

.
The splitting candidate, φ∗i , that gives the largest infor-

mation gain is stored at the LRT node, which is a split node
as in the standard Random Forest. The information gain
whilst at the stage represented by the LTM vertex i is de-
fined as:

IGi (S) =

l(i),r(i)∑
m

tr(ΣSim)−
{l,r}∑
k

Sk

|S|

l(i),r(i)∑
m

tr
(

ΣS
k

im

)
where ΣXim is the sample covariance matrix of the set of
offset vectors

{(
ρIm − ρIi

)
|I ∈ X

}
and tr (·) is the trace

function. The offset vectors indicate the offsets from the
current centre to each centre of the two subregions.

This process is then repeated recursively on each split of
the data, Sl & Sr, until the information gain falls below a
threshold.

At this point we introduce a division node which divides
the current search objective into two finer ones and enters
the next search stage. The division node duplicates the
training data and continues to grow the tree along two sepa-
rate paths, each corresponding to to one of the two children
of the current LTM vertex, i. Additionally, for each training
image, I , reaching this division node we store the vectors
θm =

(
ρIm − ρIi

)
corresponding to the 3D offsets of i and

its children m ∈ {l(i), r(i)}.
This process of split followed by division is then re-

peated until the LTM vertex, i, to be considered is a leaf; at
which point we create a leaf node in the LRT corresponding
to the skeletal joint represented by i. The leaf node stores
information about the 3D offset of i from its parent p(i),
that being

(
ρIi − ρIp(i)

)
.

As previously mentioned, the hand has many complex
articulations and self-occlusions, thus, in order to fully cap-
ture this variation the training set used is extremely large.

4

To retain training efficiency we make use of the fact that we
train in coarse-to-fine stages based on the learnt LTM. An
intuition is that coarse stages require less training data than
the fine ones, therefore we can gradually add more training
data at each stage of the training procedure.

For an LTM of maximum depth D, we split the train-
ing data, S, into D equally sized random, disjoint subsets
S0, ...SD−1. We start training an LRT with S0 for the first
stage, and for each stage after we add an additional subset
to the training data. That is, for stage d the training set is
composed of Sd ∪ Sd−1. The training procedure to grow a
single LRT is described in Algorithm 1.

Algorithm 1 Growing a Latent Regression Tree

Input: A set of training samples S; a pre-learned
LTMM = (O ∪ L,E) with maximum depth D.

Output: A LRT T
1: procedure GROW(S, M)
2: Equally divide S into random subsets S0, ...SD
3: Let i← 0, j ← 0 . Initialise ith node of LTM and
jth node of LRT

4: Let d← 0 . First stage of training
5: SPLIT(i, j,S0, d)

6: function SPLIT(i, j, S , d)
7: Randomly propose a set of split candidates Φ.
8: for all φ ∈ Φ do
9: Partition S into Sl and Sr by φ with Eq. 2.

10: Use the entropy in Eq. 3.2.1 to find the optimal φ∗
11: if IGi (S) is sufficient then
12: Save j as a split node into T .
13: SPLIT(i, l(j), Sl, d)
14: SPLIT(i, r(j), Sr, d)
15: else if i ∈ L then
16: Save j as a division node into T
17: Let S ← S ∪ Sd+1

18: SPLIT(l(i), l(j), S, d+ 1)
19: SPLIT(r(i), r(j), S, d+ 1)
20: else
21: Save j as a leaf node into T .
22: Return

3.2.2 Testing

At test time, pose estimation is performed on an image I
as follows; we define the starting position for the search,
ρIi=0 as the centre of mass of the depth image, which corre-
sponds to the root vertex of the LTM. Starting at the root of
the Latent Regression Forest, the image traverses the tree,
branching left or right according to the split-node function,
until reaching a division node. For each offset, θj stored at
the division node, 3D votes are accumulated in two Hough

spaces, H l and Hr, where the votes for H l are defined as{
ρIi +

θj

ρI0
|θj ∈ θl

}
and similarly for Hr. The modes of

these two Hough spaces now represent the two new posi-
tions, ρIl(i) and ρIr(i), from which the next search stage be-
gins. This process is then repeated recursively until each
path terminates at a leaf node.

This process will result in the image reaching multiple
leaf nodes, one for each terminating node in the LTM. Us-
ing the stored offsets at the leaf nodes, each leaf node votes
for its corresponding skeletal joint in a corresponding 3D
Hough space. Aggregating votes of all trees, we locate
the final positions of the joints by a structured search in
the Hough space, for which the structure is dictated by the
learnt LTM as follows. For each skeletal joint, we assign
to it a dependent observable vertex in the LTM which cor-
responds to the vertex with the smallest geodesic distance
as calculated in the matrix, D (Eq. 1). The location of
each joint in the Hough space is then defined as the max-
ima which is closest to the location of its dependent vertex.

Efficiency In contrast to the state-of-the-art bottom-up
approaches that take dense pixels as input [8] our algorithm
takes the whole image as input. Thus, while both methods
are constrained in complexity by the depth of the trees, d,
i.e. O (d), ours has a much lower constant factor. This is
because the number of pixels to be evaluated in bottom-up
approaches are usually in the order of thousands for a stan-
dard VGA image; whereas, in contrast, we only evaluate
one sample per image.

3.3. Cascaded Error Regressor

As explained in previous sections, a multi-stage coarse-
to-fine structured search is efficient. However, an underly-
ing risk is that the dependency between stages can lead to
error accumulation throughout the search. To compensate
for this, we embed an error regressor inspired by [14] into
each stage of Latent Regression Forest. After training stage
d with set Sd and before creating a division node , we use
Sd+1 to validate the trained forest so far. For each sample
si ∈ Sd+1, an error offset ∆θ between the ground truth and
the estimation is measured. Similar to the previously de-
scribed method of splitting, the forest is further grown for a
few layers in order to minimise the variance of ∆θ. Once
the information gain falls below a threshold a division node
is generated and the forest training enters next stage, d+ 1.

4. Experiments

Dataset In this paper, we use Intel R©’s Creative Interactive
Gesture Camera [9] as a depth sensor for capturing training
and testing data. As the state-of-the-art consumer time-of-
flight sensor, it captures depth images at a lower noise level
than structured-light sensors making them ideal for hand
pose estimation. For labelling, we utilise [9] to obtain a

5

..

Pa
lm

.

Th
um

b
R
.

.

Th
um

b
M
.

.

Th
um

b
T.

.

In
de

x
R
.

.

In
de

x
M
.

.

In
de

x
T.

.

M
id

R
.

.

M
id

M
.

.

M
id

T.

.

R
in
g
R
.

.

R
in
g
M
.

.

R
in
g
T.

.

Pi
nk

y
R
.

.

Pi
nk

y
M
.

.

Pi
nk

y
T.

.

M
ea

n

.

Joints

.

0

.

10

.

20

.

30

.

40

.

50

.

60

.

M
ea

n
er
ro
r
di
st
an

ce
(m

m
)

.

LTM(Geodesic)

.

LTM(Euclidean)

.

LTM(Randomised)

(a)
..

0

.

10

.

20

.

30

.

40

.

50

.

60

.

70

.

80

.

D: max allowed distance to GT (mm)

.

0%

.

10%

.

20%

.

30%

.

40%

.

50%

.

60%

.

70%

.

80%

.

%
fr
am

es
w
ith

al
lj
oi
nt
s
w
ith

in
D

.

LTM(Geodesic)

.

LTM(Euclidean)

.

LTM(Randomised)

(b)

Figure 5: Effect of different LTMs.(R:root, M:middle, T:tip)

..

Pa
lm

.

Th
um

b
R
.

.

Th
um

b
M
.

.

Th
um

b
T.

.

In
de

x
R
.

.

In
de

x
M
.

.

In
de

x
T.

.

M
id

R
.

.

M
id

M
.

.

M
id

T.

.

R
in
g
R
.

.

R
in
g
M
.

.

R
in
g
T.

.

Pi
nk

y
R
.

.

Pi
nk

y
M
.

.

Pi
nk

y
T.

.

M
ea
n

.

Joints

.

0%

.

5%

.

10%

.

15%

.

20%

.

25%

.

%
de

cr
ea
se

in
m
ea
n
er
ro
r
di
st
an

ce

Figure 6: Error regression.

..

1

.

2

.

4

.

6

.

8

.

10

.

12

.

14

.

16

.

18

.

20

.

Number of trees

.

0%

.

10%

.

20%

.

30%

.

40%

.

50%

.

60%

.

70%

.

80%

.

%
fr
am

es
w
ith

al
lj
oi
nt
s
w
ith

in
D

Figure 7: Number of trees.

200 400 600 800 1000
0

10

20

30

40

50

Time(frame)

C
u
m
u
la
ti
ve

m
ov
in
g
av
er
a
ge

er
ro
r(
m
m
) LRF

Melax et al.(calibrated)
Melax et al.(uncalibrated)
Keskin et al.

(a) Test sequence A (average error)

200 400 600 800 1000
0

10

20

30

40

50

Time(frame)

C
u
m
u
la
ti
ve

m
ov
in
g
av
er
ag

e
er
ro
r(
m
m
)

(b) Test sequence A(index tip)
..

0

.

10

.

20

.

30

.

40

.

50

.

60

.

70

.

80

.

D: max allowed distance to GT (mm)

.

0%

.

20%

.

40%

.

60%

.

80%

.

100%

.

%
fr
am

es
w
ith

al
lj
oi
nt
s
w
ith

in
D

(c) Worst case accuracy [18] of sequence A

200 400 600 800 1000
0

10

20

30

40

50

Time(frame)

C
u
m
u
la
ti
ve

m
ov
in
g
av
er
ag

e
er
ro
r(
m
m
) LRF

Melax et al.(calibrated)
Melax et al.(uncalibrated)
Keskin et al.

(d) Test sequence B(average error)

200 400 600 800 1000
0

10

20

30

40

50

Time(frame)

C
u
m
u
la
ti
ve

m
ov
in
g
av
er
ag

e
er
ro
r(
m
m
)

(e) Test sequence B(index tip)
..

0

.

10

.

20

.

30

.

40

.

50

.

60

.

70

.

80

.

D: max allowed distance to GT (mm)

.

0%

.

20%

.

40%

.

60%

.

80%

.

100%

.

%
fr
am

es
w
ith

al
lj
oi
nt
s
w
ith

in
D

(f) Worst case accuracy [18] of sequence B

Figure 8: Quantitative comparison against state-of-the-art methods.

preliminary pose for each frame, and then manually refine.
For training, we have collected sequences from 10 differ-

ent subjects with varying hand sizes by asking each subject
to make various hand poses with an illustration of 26 differ-
ent postures shown as aid. Each sequence was then samples
at 3fps producing a total of 20K images and by addition-
ally applying in-plane rotations to this set, the final dataset
contains 180K ground truth annotated training images. For
testing, we have collected two sequences (denoted sequence
A and B) each containing 1000 frames capturing a vast array
of different poses with severe scale and viewpoint changes.
Furthermore, as [9] is tracking based and requires initiali-
sation (frontal view of an open hand), in order to do a fair

comparison both test sequences start in this way.

In all experiments we train each Latent Regression Tree
by evaluating 2000 splitting candidates at each node and the
threshold used to stop growing the tree at a particular stage
is chosen based on the size of a finger joint, which was set
to (10mm)2.

In Section 4.1 we conduct a self comparison of the dif-
ferent components in the Latent Regression Forest. Fol-
lowing this, In Section 4.2 we do a thorough evaluation
against other state-of-the-art methods. Finally, in Figure 9
we present some qualitative results.

6

4.1. Self Comparisons

To evaluate the impact of different distance metrics used
when constructing the LTM we quantitatively measure the
impact of the different topologies on performance. We com-
pare LTMs generated using the Euclidean and geodesic dis-
tance as well as 5 randomly generated LTMs. For each of
these 7 topologies, an Latent Regression Forest is trained on
a subset of the training data and evaluated on sequence A.

Figure 5(a) shows the standard evaluation metric of mean
error, in mm, for each joint across the sequence. As
shown, the Euclidean-generated LTM performs slightly bet-
ter than the random ones, whereas the geodesic-generated
LTM achieves the best performance on all joints except for
two. In addition to this, we also employ more challenging
metric, the proportion of test images that have all predicted
joints within a certain maximum distance from the ground
truth, which was recently proposed in [18]. The results us-
ing this metric can be seen in Figure 5(b). As shown, the
Euclidean-generated LTM achieves the same performance
as the upper-bound of performance from the random LTMs,
whereas the geodesic-generated LTM significantly outper-
forms all of them showing a 20% improvement at a thresh-
old of 40mm.

Additionally, we evaluate the impact of the cascaded er-
ror regressor. In Figure 6 we show the decrease in mean
error distance for each joint across the whole sequence. As
can be seen, we achieve up to a 22% reduction in mean error
for one joint and and improvement of 10% on average.

In principle, since each tree generates much less votes
comparing to traditional regression tree, more trees are
needed in order to produce robust results. Figure 7 shows
the accuracy impact from different number of trees. A rea-
sonable choice considering the trade-off between accuracy
and efficiency is 16 trees, which is the setting we use in all
experiments.

4.2. Comparison with State-of-the-arts

We compare a 16-tree Latent Regression Forest with two
state-of-the-art methods. The first is a regression version of
Keskin et al. [8], for which we use our own implementa-
tion using the training parameters as described in [8]. The
second method we compare to is the model-based tracker of
Melax et al. [9], for which we use a compiled binary version
provided by the authors. As this method is model based it
requires calibration of the hand structure (width and height).
Therefore, in order to do a fair comparison we compare to
two versions of this method, one which has been calibrated
and one which has not.

In Figures 8 (a) and (d) we show the cumulative mov-
ing average of the mean joint error. As can be seen, our
approach maintains a low average error throughout both se-
quences, and as expected the tracking based approaches re-
duce in error over time. In Figures 8 (b) and (e) we show

the cumulative moving average of the index fingertip error,
a relatively unstable joint. Notice, that after approximately
the 500th frame the tracking based methods continuously
decrease in accuracy for this joint, indicating the tracking
has failed and could not recover. This further highlights the
benefit of using frame-based approaches.

Additionally, in Figures 8 (c) and (f), we compare
all methods using the more challenging metric proposed
in [18]. As can be seen our method largely outperforms
the other state-of-the-arts. Furthermore, our method runs
in real-time at 62.5fps which is comparable to [9] (60 fps)
and much faster than [8] (8.6fps). Note that here both our
method and [8] are unoptimised—single threaded, without
any CPU/GPU parallelism.

5. Conclusion & Future Work
In this paper we presented the Latent Regression Forest,

a method for real-time estimation of 3D articulated hand
pose. We formulated the problem as a structured coarse-to-
fine search for skeletal joints, in which we learnt the granu-
larity of each search stage using a Latent Tree Model. Fur-
thermore, compared to other forest-based methods that take
dense pixels as input, our method is applied on the whole
image as opposed to individual pixels, greatly increasing
the run-time speed. To the best of our knowledge this is
the first work combining Latent Tree Models and Random
Forests, allowing us to apply the Latent Regression Forest
to many existing applications of the Latent Tree Model. As
future work, we plan to investigate the application of the La-
tent Regression Forest to many other structured problems,
either spatially or temporally.
Acknowledgement
This project was supported by the Samsung Advanced In-
stitute of Technology(SAIT).

References
[1] L. Ballan, A. Taneja, J. Gall, L. V. Gool, and M. Polle-

feys. Motion capture of hands in action using discriminative
salient points. In ECCV, 2012.

[2] M. J. Choi, V. Y. F. Tan, A. Anandkumar, and A. S. Willsky.
Learning latent tree graphical models. JMLR, 12:1771–1812,
2011.

[3] M. de La Gorce, D. Fleet, and N. Paragios. Model-based
3d hand pose estimation from monocular video. TPAMI,
33(9):1793–1805, 2011.

[4] A. Erol, G. Bebis, M. Nicolescu, R. D. Boyle, and
X. Twombly. Vision-based hand pose estimation: A review.
CVIU, 108(1):52–73, 2007.

[5] R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and
A. Fitzgibbon. Efficient regression of general-activity hu-
man poses from depth images. ICCV, 2011.

[6] H. Hamer, K. Schindler, E. Koller-Meier, and L. V. Gool.
Tracking a hand manipulating an object. In ICCV, 2009.

7

Figure 9: In (a) we show success cases; we show the localisation on the depth image followed by a visualisation of the
estimated 3D joint locations from multiple angles. In (b) we show some failure cases, note however that the structure of the
output is still in line with the hand topology. This image is best viewed in colour.

[7] S. Harmeling and C. K. I. Williams. Greedy learning of bi-
nary latent trees. TPAMI, 33(6):1087–1097, 2011.

[8] C. Keskin, F. Kıraç, Y. E. Kara, and L. Akarun. Hand pose
estimation and hand shape classification using multi-layered
randomized decision forests. In ECCV, 2012.

[9] S. Melax, L. Keselman, and S. Orsten. Dynamics based
3d skeletal hand tracking. In Interactive 3D Graphics and
Games, 2013.

[10] Microsoft Corp. Redmond WA. Kinect for xbox 360.

[11] R. Mourad, C. Sinoquet, N. L. Zhang, T. Liu, and P. Leray. A
survey on latent tree models and applications. JAIR, 47:157–
203, 2013.

[12] I. Oikonomidis, N. Kyriazis, and A. A. Argyros. Full dof
tracking of a hand interacting with an object by modeling
occlusions and physical constraints. In ICCV, 2011.

[13] G. Pons-Moll, J. Taylor, J. Shotton, A. Hertzmann, and
A. Fitzgibbon. Metric regression forests for human pose es-
timation. In BMVC, 2013.

[14] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof.
On-line random forests. In ICCV Workshops, 2009.

[15] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake. Real-time human pose
recognition in parts from single depth images. In CVPR,
2011.

[16] M. Sun, P. Kohli, and J. Shotton. Conditional regression
forests for human pose estimation. In CVPR, 2012.

[17] D. Tang, T.-H. Yu, and T.-K. Kim. Real-time articulated hand
pose estimation using semi-supervised transductive regres-
sion forests. In ICCV, 2013.

[18] J. Taylor, J. Shotton, T. Sharp, and A. Fitzgibbon. The vitru-
vian manifold: Inferring dense correspondences for one-shot
human pose estimation. In CVPR, 2012.

[19] Y. Tian, C. Zitnick, and S. Narasimhan. Exploring the spatial
hierarchy of mixture models for human pose estimation. In
ECCV, 2012.

[20] F. Wang and Y. Li. Beyond physical connections: Tree mod-
els in human pose estimation. In CVPR, 2013.

8

