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Abstract

In this paper, we tackle the problem of co-localization in
real-world images. Co-localization is the problem of simul-
taneously localizing (with bounding boxes) objects of the
same class across a set of distinct images. Although similar
problems such as co-segmentation and weakly supervised
localization have been previously studied, we focus on be-
ing able to perform co-localization in real-world settings,
which are typically characterized by large amounts of intra-
class variation, inter-class diversity, and annotation noise.
To address these issues, we present a joint image-box for-
mulation for solving the co-localization problem, and show
how it can be relaxed to a convex quadratic program which
can be efficiently solved. We perform an extensive eval-
uation of our method compared to previous state-of-the-
art approaches on the challenging PASCAL VOC 2007 and
Object Discovery datasets. In addition, we also present a
large-scale study of co-localization on ImageNet, involv-
ing ground-truth annotations for 3,624 classes and approx-
imately 1 million images.

1. Introduction
Object detection and localization has long been a cor-

nerstone problem in computer vision. Given the variabil-
ity of objects and clutter in images, this is a highly chal-
lenging problem. Most state-of-the-art methods require ex-
tensive guidance in training, using large numbers of im-
ages with human-annotated bounding boxes [11, 28]. Re-
cent works have begun to explore weakly-supervised frame-
works [9, 14, 21, 22, 27, 29], where labels are only given
at the image level. Inspired by these works, we focus on
the problem of unsupervised object detection through co-
localization, which further relaxes the need for annotations
by only requiring a set of images that each contain some
common object we would like to localize.

We tackle co-localization in real-world settings where
the objects display a large degree of variability, and worse,
the labels at the image level can be noisy (see Figure 1).
Although recent works have tried to explicitly deal with an-

Figure 1. The co-localization problem in real-world images. In
this instance, the goal is to localize the airplane within each im-
age. Because these images were collected from the Internet, some
images do not actually contain an airplane.

notation noise [24, 30, 31], most previous works related to
co-localization have assumed clean labels, which is not a
realistic assumption in many real-world settings where we
have to analyze large numbers of Internet images or dis-
cover objects with roaming robots. Our aim is therefore to
overcome the challenges posed by noisy images and object
variability.

We propose a formulation for co-localization that com-
bines an image model and a box model into a joint opti-
mization problem. Our image model addresses the problem
of annotation noise by identifying incorrectly annotated im-
ages in the set, while our box model addresses the prob-
lem of object variability by localizing the common object
in each image using rich correspondence information. The
joint image-box formulation allows the image model to ben-
efit from localized box information, and the box model to
benefit by avoiding incorrectly annotated images.

To illustrate the effectiveness of our method, we present
results on three challenging, real-world datasets that are
representative of the difficulties of intra-class variation,
inter-class diversity, and annotation noise present in real-
world images. We outperform previous state-of-the-art ap-
proaches on standard datasets, and also show how the joint
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image-box model is better at detecting incorrectly anno-
tated images. Finally, we present a large-scale study of co-
localization on ImageNet [8], involving ground-truth anno-
tations for 3,624 classes and 939,542 images. The largest
previous study of co-segmentation on ImageNet consisted
of ground-truth annotations for 446 classes and 4,460 im-
ages [18].

2. Related Work

Co-localization shares the same type of input as co-
segmentation [15–18,24,33], where we must find a common
object within a set of images. However, instead of segmen-
tations, we seek to localize objects with bounding boxes.
Considering boxes allows us to greatly decrease the num-
ber of variables in our problem, as we label boxes instead of
pixels. It also allows us to extract rich features from within
the boxes to compare across images, which has shown to be
very helpful for detection [32].

Co-localization shares the same type of output as weakly
supervised localization [9, 21, 22, 27], where we draw
bounding boxes around objects without any strong super-
vision. The key difference is that in co-localization we
have a more relaxed scenario, where we do not know what
the object contained in our set of images is, and are not
given negative images for which we know do not contain
our object. Most similar is [9], which generates candidate
bounding boxes and tries to select the correct box within
each image using a conditional random field. Object co-
detection [3] also shares similarities, but is given additional
bounding box and correspondence annotations.

Although co-localization shares similarities with both
co-segmentation and weakly supervised localization, an im-
portant and new difficulty we address in this paper is the
problem of noisy annotations, which has recently been con-
sidered [24, 30, 31]. Most similar is [24], where the authors
utilize dense correspondences to ignore incorrect images.
We combine an image model that detects incorrectly anno-
tated images with a box model that localizes the common
object, which sets us apart from previous work. The ob-
jective functions in our models are inspired by works from
outlier detection [13], image segmentation [26], and dis-
criminative clustering [2, 15, 34]. Previous works have con-
sidered combining object detection with image classifica-
tion [11, 28], but only in supervised scenarios.

3. Our Approach

Given a set of n images I = {I1, I2, . . . , In}, our goal
is to localize the common object in each image. In addition,
we also consider the fact that due to noise in the process of
collecting this set, some images may not contain the com-
mon object. We denote these as noisy images, as opposed to
clean images, which contain the common object. Our goal
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Figure 2. Given a set of images, we start by generating a set of
candidate boxes independently for each image. Then, our joint
image-box model is able to simultaneously identify the noisy im-
ages and select the box from each clean image that contains the
common object, resulting in a set of co-localized images. Previ-
ous work considers only the box model [9].

is to simultaneously identify the noisy images and localize
the common object in the clean images.

An overview of our approach is given in Figure 2. We
start by generating a set of candidate boxes for each image
that could potentially contain an object. Then, we formulate
an image model for selecting the clean images, and a box
model for selecting the box in each image that contains an
instance of the common object. We denote the boxes that
contain an instance of the common object as positive boxes,
and the ones that don’t as negative boxes.

Combining the two models into a joint formulation, we
allow the image model to prevent the box model from be-
ing adversely affected by boxes in noisy images, and allow
the box model to help the image model determine noisy im-
ages based on localized information in the images. Similar
approaches have been considered [9], but only using a box
model and only in the context of clean images.

3.1. Generating candidate boxes

We use the measure of objectness [1], but any method
that is able to generate a set of candidate regions can be
used [5, 32]. The objectness measure works by combining
multiple image cues such as multi-scale saliency, color con-
trast, edge density, and superpixel straddling to generate a
set of candidate regions as well as scores associated with
each region that denote the probability a generic object is
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Figure 3. The variables v in the image model relate to the variables
z in the box model through constraints that ensure noisy images
(red) do not select any boxes, while clean images (green) select a
single box as the postive box.

present in the region. Examples of candidate boxes gener-
ated by objectness can be seen in Figure 2.

Using the objectness measure, for each image Ij ∈
I, we generate a set of m candidate boxes Bj =
{bj,1, bj,2, . . . , bj,m}, ordered by their objectness score.

3.2. Model setup

Given a set of images I and a set of boxes Bj for each
image Ij ∈ I, our goal is to jointly determine the noisy
images and select the positive box from each clean image.
To simplify notation, we define the set of all boxes as B =
B1 ∪ B2 . . . ∪ Bn and nb = nm the total number of boxes.

Feature representation. For each box bk ∈ B, we com-
pute a feature representation of the box as xboxk ∈ Rd, and
stack the feature vectors to form a feature matrix Xbox ∈
Rnb×d. Similarly for each image Ij ∈ I, we compute a fea-
ture representation of the image as ximj ∈ Rd, and stack the
feature vectors to form a feature matrix Xim ∈ Rn×d. We
densely extract SIFT features [20] every 4 pixels and vector
quantize each descriptor into a 1,000 word codebook. For
each box, we pool the SIFT features within the box using
1× 1 and 3× 3 SPM pooling regions [19], and for each im-
age, we use the same pooling regions over the entire image
to generate a d = 10, 000 dimensional feature descriptor for
each box and each image.

Optimization variables. We associate with each image
Ij ∈ I a binary label variable vj , which is equal to 1 if Ij
is a clean image and 0 otherwise. Similarly, we associate
with each box bj,k ∈ Bj a binary label variable zj,k, which
is equal to 1 if bj,k is a positive box and 0 otherwise. We
denote by v, the n dimensional vector v = (v1, . . . , vn)T

and by z the nb dimensional vector obtained by stacking the
zj,k. Making the assumption that in each clean image there

is only one positive box, and in each noisy image there are
no positive boxes, we define a constraint that relates the two
sets of variables:

∀Ij ∈ I,
m∑

k=1

zj,k = vj . (1)

This constraint is also illustrated in Figure 3, where we
show the relationship between image and box variables.

3.3. Model formulation

We begin by introducing and motivating the terms in our
objective function that enable us to jointly identify noisy
images and select the positive box from each clean image.

Box prior. We introduce a prior for each box that repre-
sents our belief that the box is positive. We compute an
off-the-shelf saliency map for each image [6, 23], and for
each box we compute the average saliency within the box,
weighted by the size of the box, and stack these values into
the nb dimensional vector mbox to obtain a linear term that
penalizes less salient boxes:

fPbox(z) = −zT log(mbox). (2)

Although objectness also provides scores for each box, we
found that the saliency measure used in objectness is dated
and does not work as well.

Image prior. We introduce a prior for each image that
represents our belief that the image is a clean image. For
each image, we compute the χ2 distance, defined further be-
low, from the image feature to the average image feature in
the set, and stack these values into the n dimensional vector
mim to obtain a linear term that penalizes outlier images:

fPim(v) = vTmim. (3)

We experimented with several measures for outlier detec-
tion [13], but found that this simple distance worked well.

Box similarity. We encourage boxes with similar appear-
ances to have the same label through a similarity matrix
based on the box feature described above. Since this fea-
ture is a histogram, we compute a nb× nb similarity matrix
S based on the χ2-distance:

Sij = exp

(
−γ

d∑
k=1

(xboxik − xboxjk )2

xboxik + xboxjk

)
, (4)

where γ = (10d)−
1
2 . We set the similarity of boxes from

the same image to be 0. We then compute the normalized
Laplacian matrix Lbox = I −D− 1

2SD−
1
2 , where D is the

diagonal matrix composed of the row sums of S, resulting



in a quadratic term that encourages the selection of similar
boxes:

fSbox(z) = zTLboxz. (5)

This choice is motivated by the work of Shi and Malik [26],
who have shown that considering the second smallest eigen-
vector of a normalized Laplacian matrix leads to clustering
z along the graph defined by the similarity matrix, lead-
ing to Normalized Cuts when used for image segmentation.
Furthermore, Belkin and Niyogi [4] have shown that min-
imizing Equation 5 under linear constraints results in an
equivalent problem. The similarity term can be interpreted
as a a generative term that seeks to select boxes that cluster
well together.

Image similarity. We also encourage images with simi-
lar appearances to have the same label through a similarity
matrix based on the image feature described above. Re-
placing the box features with image features in Equation 4,
we compute a n× n similarity matrix and subsequently the
normalized Laplacian matrix Lim to obtain a quadratic term
that encourages the selection of similar images:

fSim(v) = vTLimv. (6)

Box discriminability. Discriminative learning techniques
such as the support vector machine and ridge regression
have been widely used within the computer vision commu-
nity to obtain state-of-the-art performance on many super-
vised problems. We can take advantage of these methods
even in our unsupervised scenario, where we do not know
the labels of our boxes [2, 34]. Following [15], we consider
the ridge regression objective function for our boxes:

min
w∈Rd,
c∈R

1

nb

n∑
j=1

m∑
k=1

||zj,k − wxboxj,k − c||22 +
κ

d
||w||22, (7)

where w is the d dimensional weight vector of the classifier,
and c is the bias. The choice of ridge regression over other
discriminative cost functions is motivated by the fact that
the ridge regression problem has a closed form solution for
the weights w and bias c, leading to a quadratic function in
the box labels [2]:

fDbox(z) = zTAboxz, (8)

where Abox = 1
nb

(Πnb
(Inb

− Xbox(XT
boxΠnb

Xbox +

nbκI)−1XT
box)Πnb

) and Πnb
= Inb

− 1
nb

1nb
1Tnb

is the cen-
tering projection matrix. We know also that Abox is a pos-
itive semi-definite matrix [12]. This quadratic term allows
us to utilize a discriminative objective function to penalize
the selection of boxes whose features are not easily linearly
separable from the other boxes.

Image discriminability. Similar to the box discriminabil-
ity term, we also employ a discriminative objective to en-
sure that the features of the clean images should be easily
linearly separable from noisy images. Replacing the box
features in Equation 7 with image features, we can similarly
substitute the solutions for w and c to obtain:

fDim(v) = vTAimv, (9)

where Aim is defined in the same way as Abox, replacing
box features with image features.

Joint formulation. Combining the terms presented
above, we obtain the following optimization problem:

minimize
z,v

zT (Lbox + µAbox)z − zTλ log(mbox)

+ α(vT (Lim + µAim)v + vTλmim)

subject to v ∈ {0, 1}, z ∈ {0, 1}

∀Ij ∈ I,
m∑

k=1

zj,k = vj

K0 ≤
n∑

i=1

vi, (10)

where the constraints in the formulation ensure that only a
single box is selected in clean images, and none in noisy
images. Using the constant K0, we can avoid trivial solu-
tions and incorporate an estimate of noise by allowing noisy
images to not contain boxes. This prevents the boxes in
the noisy images from adversely affecting the box similar-
ity and discriminability terms.

The parameter µ controls the tradeoff between the
quadratic terms, the parameter λ controls the tradeoff be-
tween the linear and quadratic terms, and the parameter α
controls the tradeoff between the image and box models.
Since the matrices Lbox, Abox, Lim, and Aim are each pos-
itive semi-definite, the objective function is convex.

Convex relaxation. In Equation 10, we obtain a standard
boolean constrained quadratic program. The only sources
of non-convexity in this problem are the boolean constraints
on v and z. We relax the boolean constraints to continuous,
linear constraints, allowing v and z to take any value be-
tween 0 and 1. This becomes a convex optimization prob-
lem and can be solved efficiently using standard methods.

Given the solution to the quadratic program, we recon-
struct the solution to the original boolean constrained prob-
lem by thresholding the values of v to obtain the noisy im-
ages, and simply taking the box from each clean image with
the highest value of z.

4. Results
We perform experiments on three challenging datasets,

the PASCAL VOC 2007 dataset [10], the Object Dis-



aeroplane bicycle boat bus horse motorbike
Method left right left right left right left right left right left right Average

Our Method (prior) 13.95 20.51 10.42 8.00 2.27 6.98 9.52 13.04 12.50 13.04 17.95 23.53 12.64
Our Method (prior+similarity) 39.53 35.90 25.00 24.00 0.00 2.33 23.81 34.78 37.50 43.48 48.72 58.82 31.16

Our Method (full) 41.86 51.28 25.00 24.00 11.36 11.63 38.10 56.52 43.75 52.17 51.28 64.71 39.31

Table 1. CorLoc results for various combinations of terms in our box model on PASCAL07-6x2.

Figure 4. Example co-localization results on PASCAL07-6x2. Each column contains images from the same class/viewpoint combination.

Method Average CorLoc

Russell et al. [25] 22
Chum and Zisserman [7] 33

Deselaers et al. [9] 37
Our Method 39

Table 2. CorLoc results compared to previous methods on
PASCAL07-6x2.

covery dataset [24], and ImageNet [8]. Following previ-
ous works in weakly supervised localization [9], we use
the CorLoc evaluation metric, defined as the percentage
of images correctly localized according to the PASCAL-
criterion: area(Bp∩Bgt)

area(Bp∪Bgt)
> 0.5, where Bp is the predicted

box and Bgt is the ground-truth box. All CorLoc results are
given in percentages.

4.1. Implementation details and runtime

We set the parameters of our method to be µ = 0.6,
λ = 0.001, and α = 1, and tweaked them slightly for each
dataset. We set κ = 0.01 in the ridge regression objective.
Because there are no noisy images for PASCAL and Ima-
geNet, we fix the value of K0 = n for these datasets. For
the Object Discovery dataset, we set K0 = 0.8n. We use
10 objectness boxes for ImageNet, and 20 objectness boxes
for the other datasets.

After computing candidate object boxes using objectness
and densely extracting SIFT features, we are able to co-
localize a set of 100 images with 10 boxes per image in
less than 1 minute on a single machine using code written
in Python and a quadratic program solver written in C++.

4.2. PASCAL VOC 2007

Following the experimental setup defined in [9], we eval-
uate our method on the PASCAL07-6x2 subset to compare
to previous methods for co-localization. This subset con-
sists of all images from 6 classes (aeroplane, bicycle, boat,
bus, horse, and motorbike) of the PASCAL VOC 2007 [10]

Method Airplane Car Horse Average CorLoc
Kim et al. [17] 21.95 0 16.13 12.69

Joulin et al. [15] 32.93 66.29 54.84 51.35
Joulin et al. [16] 57.32 64.04 52.69 58.02

Rubinstein et al. [24] 74.39 87.64 63.44 75.16
Our Method 71.95 93.26 64.52 76.58

Table 3. CorLoc results on the 100 image subset of the Object
Discovery dataset.

train+val dataset from the left and right aspect each. Each
of the 12 class/viewpoint combinations contains between 21
and 50 images for a total of 463 images.

In Table 1, we analyze each component of our box
model by removing various terms in the objective. As ex-
pected, we see that results using stripped down versions of
our model do not perform as well. In Table 2, we show
how our full method outperforms previous methods for co-
localization that do not utilize negative images. In addi-
tion, our method does not incorporate dataset-specific as-
pect ratio priors for selecting boxes. In Figure 4, we show
example visualizations of our co-localization method for
PASCAL07-6x2. In the bus images, our model is able to
co-localize instances in the background, even when other
objects are more salient. In the bicycle and motorbike im-
ages, we see how our model is able to co-localize instances
over a variety of natural and man-made background scenes.

4.3. Object Discovery dataset

The Object Discovery dataset [24] was collected by au-
tomatically downloading images using the Bing API using
queries for airplane, car, and horse, resulting in noisy im-
ages that may not contain the query. Introduced as a dataset
for co-segmentation, we convert the ground-truth segmen-
tations and results from previous methods to localization
boxes by drawing tight bounding boxes around the segmen-
tations. We use the 100 image subset [24] to enable com-
parisons to previous state-of-the-art co-segmentation meth-



(a) (b)

Figure 5. (a) Example co-localization results on the Object Discovery dataset, with every three columns belonging to the same class; (b)
Images from the airplane class that were incorrectly localized.
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Figure 6. Precision-recall curves illustrating the effectiveness of our image-box model (blue) compared to the image model (pink) at
identifying noisy images on the Object Discovery dataset. The joint optimization problem allows the box model to help correct errors
made by the image model.

ods. CorLoc results are given in Table 3, and example co-
localization results are visualized in Figure 5(a). From the
visualizations, we see how our model is able to handle intra-
class variation, being able to co-localize instances of each
object class from a wide range of viewpoints, locations, and
background scenes. This is in part due to our quadratic
terms, which consider the relationships between all pairs of
images and boxes, whereas previous methods like [24] rely
on sparse image connectivity for computational efficiency.

We see that our method outperforms previous methods
in all cases except for the airplane class. In Figure 5(b), we
see that since our method localizes objects based on boxes
instead of segmentations [24], the airplane tail is some-
times excluded from the box, as including the tail would
also include large areas of the background. This causes our
method to fail in these images due to the non-convex shape
of the airplane and the height of the tail.

Detecting noisy images. We also quantitatively measure
the ability of our joint image-box model to identify noisy
images. Because the solution to the quadratic program gives
continuous values for the image variables v, we can inter-
pret the values as a detection score for each image and plot
precision-recall curves that measure our ability to correctly
detect noisy images, as shown in Figure 6. To make com-
parisons fair, we compare using the best parameters for the
image model alone, and the best parameters for our joint
image-box model. By jointly optimizing over both image
and box models, we see how the box model can correct er-
rors made by the image model by forcing images that have
good box similarity and discriminability to be clean, even if
the image model believes them to be noisy.

Method Average CorLoc

Top objectness box [1] 37.42
Our Method 53.20

Table 4. CorLoc results on ImageNet evaluated using ground-truth
annotations for 3,624 classes and 939,542 images.

4.4. ImageNet

ImageNet [8] is a large-scale ontology of images or-
ganized according to the WordNet hierarchy. Each node
of the hierarchy is depicted by hundreds and thousands of
images. We perform a large-scale evaluation of our co-
localization method on ImageNet by co-localizing all im-
ages with ground-truth bounding box annotations, resulting
in a total of 3,624 classes and 939,542 images. A similar
large-scale segmentation experiment [18] only considered
ground-truth annotations in 446 classes and 4,460 images.
At this scale, the visual variability of images is unprece-
dented in comparison to previous datasets, causing methods
specifically tuned to certain datasets to work poorly.

Due to the scale of ImageNet and lack of code available
for previous methods, we compare our method to the high-
est scoring objectness box [1], which gives a strong baseline
for generic object detection. To ensure fair comparisons,
we use the objectness score as the box prior for our model
in these experiments, with CorLoc results shown in Table 4
and visualizations for 104 diverse classes in Figure 7.
Box selection. In Figure 8(a), we show the distribution
over objectness boxes that our method selects. The boxes
are ordered by decreasing objectness score, so objectness
simply selects the first box in every image. By consider-
ing box similarity and discriminability between images, our



Figure 7. Example co-localization results on ImageNet. Each image belongs to a different class, resulting in a total of 104 classes ranging
from lady bug to metronome. White boxes are localizations from our method, green boxes are ground-truth localizations.

method identifies boxes that may not have very high object-
ness score, but are more likely to be the common object.
Effect of ImageNet node height. We also evaluate the
performance of our method on different node heights in Im-
ageNet in Figure 8(b). Here, a height of 1 is a leaf node,
and larger values result in more generic object classes. We
see that our method seems to perfom better as we go up the
ImageNet hierarchy. This could be because generic objects
have more images, and thus our method has more examples
to leverage in the box similarity and discriminability terms.
CorLoc difference between methods. In Figure 9, we
show the CorLoc difference between our method and ob-
jectness for all 3,624 classes. From the best CorLoc differ-
ences, we find that our method performs much better than
objectness on large rooms and objects, which is probably
because objectness tries to select individual objects or ob-
ject parts within these large scenes, whereas our model is
able to understand that the individual objects are not simi-
lar, and select the scene or object as a whole.

5. Conclusion
In this paper, we introduce a method for co-localization

in real-world images that combines terms for the prior, sim-
ilarity, and discriminability of both images and boxes into a
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Figure 8. (a) Boxes selected by our method on ImageNet, ordered
by descending objectness score; (b) CorLoc performance of our
method separated into differing node heights of ImageNet.

joint optimization problem. Our formulation is able to ac-
count for noisy images with incorrect annotations. We per-
formed an extensive evaluation of our method on standard
datasets, and also performed a large-scale evaluation using
ground-truth annotations for 3,624 classes from ImageNet.

For future work, we would like to extend our model to
the pixel level for tasks such as co-segmentation, and to han-
dle multiple instances of objects.
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