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Abstract

Fisher Kernels and Deep Learning were two develop-
ments with significant impact on large-scale object catego-
rization in the last years. Both approaches were shown to
achieve state-of-the-art results on large-scale object cate-
gorization datasets, such as ImageNet. Conceptually, how-
ever, they are perceived as very different and it is not un-
common for heated debates to spring up when advocates of
both paradigms meet at conferences or workshops.

In this work, we emphasize the similarities between both
architectures rather than their differences and we argue that
such a unified view allows us to transfer ideas from one
domain to the other. As a concrete example we introduce
a method for learning a support vector machine classifier
with Fisher kernel at the same time as a task-specific data
representation. We reinterpret the setting as a multi-layer
feed forward network. Its final layer is the classifier, pa-
rameterized by a weight vector, and the two previous layers
compute Fisher vectors, parameterized by the coefficients of
a Gaussian mixture model.

We introduce a gradient descent based learning algo-
rithm that, in contrast to other feature learning techniques,
is not just derived from intuition or biological analogy, but
has a theoretical justification in the framework of statistical
learning theory. Our experiments show that the new train-
ing procedure leads to significant improvements in classifi-
cation accuracy while preserving the modularity and geo-
metric interpretability of a support vector machine setup.

1. Introduction
Object categorization is a core topic of computer vision

research, and few other areas have seen as fast progress over
the last decade. With the development of patch-based im-
age representations, such as SIFT [26], bag-of-visual words
quantization [12], and spatial pyramid coding [21] for the
first time global image representations were available that
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stage operation type
SVM sign f(X) non-linear

prediction f(X) = 〈w, φ(X)〉 linear
per image square root, normalize (3) non-linear

vector, ψ(X) compute average of ψ(xi) linear
per descriptor multiply by γk in (1)/(2) non-linear
vector, ψ(xi) bracket

(
·
)

in (1)/(2) linear
preprocessing L2-normalization non-linear

PCA projection linear
SIFT local pooling non-linear

gradient filter linear
image (as multiple overlapping regions)

Table 1. Schematic description of a Fisher kernel SVM as a 5-layer
feed-forward architecture (from bottom to top).

allow reliable decision about local properties of an image,
for example if a certain object class is visible or not. Later it
was observed that soft and data-dependent encodings, such
as locality constrained linear coding [39], super vector en-
coding [42], or Fisher vectors [30] can improve the catego-
rization accuracy even further. In combination with linear
support vector machine classifiers, such mid-level feature
representations have become a de facto standard for large-
scale visual categorization.

In a parallel development, the interest in deep learning
methods [3, 6] has increased continuously in the computer
vision community over the last years. While conceptually
going back at least to the 1980s, these techniques are now
rediscovered by the computer vision community since only
now it has become possible to build and train deep architec-
tures that are competitive on a variety of visual categoriza-
tion tasks. This trend culminated in a convolutional neu-
ral network winning the 2012 ImageNet Large Scale Visual
Recognition Challenge [18], which in the years before had
been dominated by hand-crafted system with mid-level fea-
tures.

In this work, we relate both architectures and show that
their differences are not so much structural, but rather in
the interpretation which of their parts are fixed and which
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are trainable. Our main technical contribution is a training
algorithm for support vector machines with Fisher kernels
that jointly learns the classifier weight vector and a suitable
image representation. The procedure is not only intuitively
appealing, but also has a theoretical justification in statisti-
cal learning theory.

After training, the architecture is still an instance of a
support vector machine with Fisher kernel. This allows us
to transfer the learned representation effortlessly to other
categorization tasks. In a quantitative evaluation we show
that learning the representation indeed leads to improved
classification accuracy compared to Fisher kernels with
fixed parameters.

2. Deep Fisher Kernel Learning
In this section we first give short summaries of image

categorization with Fisher kernel SVMs and with deep ar-
chitectures, concentrating on convolutional neural networks
(CNNs). We then highlight the conceptual similarities be-
tween both architectures, showing that the idea of end-to-
end training and discriminatively learned feature represen-
tations is not limited to neural network architectures, but
can also be applied for SVMs with Fisher kernels.

2.1. Image categorization with Fisher kernel SVMs

Fisher kernels were first introduced as a mathematically
sound tool for combining generative probabilistic models
with discriminative kernel methods [17]. In this work, we
concentrate on their practical use for image categorization,
following the established setup introduced in [30, 31].

Our base representation of an image is as a set of local
descriptors, for example SIFT or one of its variants. The
descriptors are PCA-projected to reduce their dimensional-
ity and decorrelate their coefficients. We assume a given
K-component Gaussian mixture model (GMM) in descrip-
tor space, p(x|π, µ,Σ) =

∑K
k=1 π

kgk(x;µk; Σk), where
π ∈ [0, 1]K are mixture weights, and each gk(x;µk; Σk)
is a Gaussian with mean µk ∈ RD and each diagonal co-
variance matrix, Σk = diag(σk) for σk ∈ RD. For any
descriptor, x, we define a vector, ψ(x) =

(
F 1(x), . . . ,

FK(x),G 1(x), . . . ,GK(x)
)
∈ R2KD. The subvectors

F k(x) =
1√
πk
γk(x)

(
x− µk

σk

)
∈ RD (1)

G k(x) =
1√
2πk

γk(x)
( (x− µk)2

(σk)2
− 1
)
∈ RD (2)

are the gradients of p(x|π, µ,Σ) with respect to the param-
eter vectors µk and σk, respectively, scaled by an empirical
estimate of the inverse Fisher information matrix (see [30]).
Division and multiplication of vectors should be understood
componentwise, and γk(x) denotes the posterior of the k-th
GMM component, γk(x) = πkgk(x;µk;Σk)∑K

j=1 π
jgj(x;µj ;Σj)

.

To represent an image, X = {x1, . . . , xM}, one aver-
ages the vector representations of all descriptors, ψ(X) =
1
M

∑M
i=1 ψ(xi). The result is called the Fisher vector of

the image, since for any two images X and X ′, the inner
product ψ(X)>ψ(X ′) is approximately equal to the Fisher
kernel, k(X,X ′), that is induced by the GMM.

In practice, it has been proven useful to postprocess the
Fisher vector further: we compute the signed squared of
each vector dimension, d = 1, . . . , 2KD, and normalize
such that the resulting vector has unit L2-norm [31]

φd(X) = (signψd(X))
√
|ψd(X)| /

√
‖ψ(X)‖L1 (3)

For simplicity we refer to the resulting vectors again as
Fisher vectors and to their inner product as Fisher kernel.

The main advantage of having such an explicitly com-
putable vector representation is that one can use an SVM in
its primal (or linear) form. This allows training a state-of-
the-art object categorization system for thousands of classes
from millions of training images within just a few hours [1].

2.2. Image categorization with CNNs

Convolutional neural networks (CNNs) [22] are feed-
forward architecture that consist of multiple interconnected
layers. Each layer computes a non-linear function using the
outputs of the previous layer as its inputs. For the first layer
the input is the image itself. In the last layer each output
is associated with one of the target classes, and its value is
used as a measure of confidence whether the class is present
in the image or not.

Within each layer, multiple computing elements, the
neurons, operate in parallel. Each neuron computes one
output value using the same computational rule as the other
neurons in the layer, but based on a different receptive field,
i.e. subset of the available inputs. The actual computation
within each neuron has two phases: first, a linear map is
applied to the inputs. For CNNs, these maps are convolu-
tions of the inputs with (learned) filter masks. Afterwards, a
non-linear transformation is applied to the result, for exam-
ple a sigmoid or a thresholding [29], and often also a spa-
tial pooling or subsampling operation is applied. Improved
classification results have been reported when additionally a
groupwise normalization of several neuron’s outputs is per-
formed, e.g. by dividing each neuron’s output by the Lp-
norm of the outputs of a neighborhood [18].

Training CNNs is usually done by classical backpropa-
gation [33], which essentially is a joint stochastic gradient
descent optimization of all network parameters. The main
challenge lies in computing the gradient in an efficient way.
For the last layer this is straight-forward, since these param-
eters have an immediate effect on the network’s output. For
parameters in deeper layers (further away from the output),
analytic expression can be obtained by repeated invocations



of the chain rule. CNNs also allow for regularization, ei-
ther explicitly by weight decay [27] or implicitly by early
stopping [8].

2.3. Fisher kernel SVMs as deep networks

Comparing the two above procedures, we observe a sub-
stantial number of conceptual similarities. Like a CNN, an
SVM with Fisher kernel makes predictions for new images
by executing a sequence of alternating linear and non-linear
steps that start at the raw image and end with a value that
can be interpreted as confidence in the class decision. See
Table 1 for an illustration. Even technical details, such as
the application of a group-wise normalization step after the
componentwise non-linearity, have been identified as useful
in both settings.

The main difference lies in the parameterization of the
computational steps. In the Fisher kernel SVM the opera-
tions in each level were designed manually and their param-
eters are held fixed during training, except for the final layer
which implements the SVM classifier. In a CNN, all linear
operations are fully parameterized, and the parameter val-
ues are learned during the training phase. As a consequence,
CNNs are very flexible to adapt to different data sources, but
they are also very demanding in computational resources
and the amount of training data necessary to achieve good
generalization.

Staying within the context of image categorization, it is
debatable if all the flexibility that deep architectures offer is
truly necessary. For example, it is known that when train-
ing a convolutional network on natural image data, the first
stages always learn essentially the same functionality: they
compute local image gradient orientations and pool them
over small spatial regions [24]. This, however, is also how a
SIFT descriptors is computed. The last layer of a CNN, on
the other hand, can be seen as an ordinary classifier acting
on features that were computed by the previous stages.

Consequently, the main difference between the two
architectures lies in the intermediate layers: CNNs as-
sume just a parametric form of filters here and learn task-
dependent values for the parameters jointly with the clas-
sifier. The Fisher kernel SVM uses a set of rules that are
parameterized by a fixed GMM that was constructed earlier
in a generative way.

In this work we aim at bridging this gap by training
Fisher kernel SVMs in a deep way: classifier parameters
and GMM parameters are learned jointly from training data.

2.4. Backpropagation in Fisher kernel SVMs

We follow our observation in the previous section and
interpret the Fisher kernel SVM as a deep learning architec-
ture. The last three layers are parameterized, one by clas-
sifier weight vector, the other two by the GMM that deter-
mines the the Fisher kernel. To train it we take the binary

SVM objective function with squared Hinge loss, and treat
it as a function not just of the weight vector, w, but also of
the GMM, G = (π, µ, σ),

L(w,G) =
1

2
‖w‖2+

C

n

∑n

i=1
`(yi〈w, φi〉)2, (4)

where `(t) = max{0, 1− t} is the hinge loss, and the right
hand side implicitly depends on G through the procedure of
computing φi = φ(Xi) from the training images Xi.

On first sight, it seems appealing to now minimizeLwith
respect to both, w and G. However, there is no a priori rea-
son why this would be a good idea, i.e. why it would lead
to a better classifier than a minimization only with respect
to w. It is, for example, imaginable that minimizing over
G only leads to overfitting. It is here that we benefit from
the fact that the objective (4) corresponds not an arbitrary
deep network, but an SVM with Fisher kernel. Returning to
the viewpoint of support vector machines as maximum mar-
gin classifiers, we use the following theorem from statistical
learning theory to obtain a guarantee on the performance of
the learned classifier.

Theorem 1 (SVM Radius–Margin Bound, simplified in
notation from [11, Theorem 4.22]). Let {(x1, y1), . . . ,
(xn, yn)} ⊂ Rd × {±1} be a set of i.i.d. training samples
from an unknown data distribution p(x, y). Then there ex-
ists a constant c such that for all linear classifiers, f(x) =
sign(〈w, x〉), the following inequality holds with high prob-
ability:

Pr(x,y)∼p{f(x) 6=y} ≤ R2‖w‖2+
c

n

∑n

i=1
`(yi〈w, xi〉)2,

(5)

where R ∈ R is the radius of the smallest ball centered at
the origin that contains all data points.

For the technical definition of ”with high probability” and
a proof of the theorem, please see the original reference.

The theorem states that a classifier has a low probability
of making mistakes on future data, if 1) it has a small loss
on the training set, and 2) its weight vector has a small norm
in relation to the data radius. In ordinary SVM learning the
data representation is fixed, so the data radius is constant
and it suffices to minimize the norm of w. When the data
representation is allowed to change, however, it is crucial
not to forget about the influence of the data radius, other-
wise the generalization guarantees of Theorem 1 are lost.

In the case of deep learning for Fisher kernel SVMs,
we can use Theorem 1 to show that minimizing the objec-
tive (4) also with respect to G is theoretically justified: we
first observe that for any GMM G, the set of possible Fisher
vectors lies within a unit ball around the origin, since the
normalization condition (3) ensures ‖φ‖L2 = 1. Conse-
quently, the bound (5) holds with R = 1 for any GMM,



Algorithm 1 Deep Fisher learning
input training images X1, . . . , Xn, labels y1, . . . , yn.
input initial GMM, G = (log π, µ, log Σ)
input regularization parameter C

1: repeat
2: compute Fisher vectors with respect to G:

φGi = φ(xi;G), for i = 1, . . . , n

3: solve SVM for training set {(φGi , yi)i=1,...,n}
w ← argminw

1
2‖w‖

2 + C
n `(w;G)

with `(w;G)=
∑n
i=1max{0, 1−yi〈w, φGi 〉}2

4: compute gradients w.r.t. the GMM parameters
δlog π =∇log π`(·), δµ =∇µ`(·), δlog Σ =∇log Σ`(·)

5: find best step size η∗ by line search:
η∗ = argminη `(w;Gη)

withGη = (log π−ηδlog π, µ−ηδµ, log Σ−ηδlog Σ)
6: update GMM parameters, G← Gη∗

7: until stopping criterion fulfilled
output GMM G, classifier f(x) = sign〈w, φ(x;G)〉.

which turns the right hand into the SVM objective (up to
constants). The smaller its value, the fewer mistakes we
can expect on future data. Therefore, finding a classifier by
minimizing Equation (4) with respect to w as well as G is a
promising way to find a classifier of high accuracy.

2.5. Algorithm

In this section we introduce our main technical contri-
bution: a procedure for the deep training of SVMs with
Fisher kernel. Algorithm 1 shows the steps in pseudocode.
The main loop (lines 1–7) iteratively updates the SVM and
GMM parameters until a stopping criterion is reached. This
could be, e.g., that all parameters have converged, after a
predetermined number of steps, or when the classification
accuracy on a validation set stops to increase.

The main observation for the algorithm is that minimiz-
ing Equation (4) with respect to w for a fixed GMM is a
convex optimization problem. In fact, it is a standard SVM
problem, for which we can find the unique optimal solution
efficiently using existing SVM solvers. We therefore treat
this step as a black box subroutine (line 3).

Minimizing the objective with respect to the GMM pa-
rameters, even for fixed w, is a non-convex optimization
problem that we address by gradient descent. Line 4 com-
putes the gradient of the loss function with respect to the
GMM parameters π, µ and σ. Their influence on the loss is
indirect through the computed Fisher vector, so as in the
case of deep networks, one must make use of the chain
rule. Analytic expressions for the gradients are given in
the appendix. Unfortunately, evaluating the gradients nu-

merically is computationally expensive, since there are non-
trivial couplings between all parameters. A straight-forward
implementation has runtime complexityO(d2T ), where d is
the dimension of the Fisher vectors, and T is the combined
number of SIFT descriptors in all training images. There-
fore, updating the GMM can be orders of magnitude slower
than just computing all Fisher Vectors, which has runtime
complexity O(d T ). In the appendix, we also discuss how
to mitigate this effect by working with more efficient ap-
proximate gradients.

For the gradient update we follow a batch setting with
a line search (line 5) to find the most effective step size in
each iteration. In combination, Algorithm 1 forms a block-
coordinate descent. The objective values decrease mono-
tonically until the algorithm terminates in a local optimum.
For any fixed GMM, the SVM parameters are even globally
optimal. Therefore, if we stop the algorithm early, we can
expect the current solution to be the best so far.

During the optimization it must be ensured that the mix-
ture weights and the Gaussian variances remain positive.
We achieve this by internally parameterizing and updating
the logarithms of their values, from which the original pa-
rameters can be obtained at any time by exponentiation. An-
other requirement for a valid GMM parameterization is that
the mixture weights sum up to 1. Enforcing this constraint
naively would require a projection step after every update.
We avoid this by deriving the gradients even for unnormal-
ized coefficient, π̃k, that relate to the normalized weights as
πk = π̃k/

∑
j π̃j . We then renormalize the mixture weights

when updating the actual GMM parameters (line 6). This is
not strictly necessary for the algorithm, but it simplifies the
analytic expressions and prevents numerical instabilities.

As mentioned above, the optimization with respect to G
is non-convex. Algorithm 1 will find only a local optimum
of the objective function, and its quality will depend on the
initialization. For deep Fisher learning, we are in the lucky
situation that a strong initialization is readily available: we
simply use a GMM obtained by unsupervised expectation
maximization, as typically used for computing Fisher ker-
nels anyway. This can be seen as another overlap with deep
learning, where layer-wise unsupervised pre-training is a
common technique for finding good initializations [16].

Algorithm 1 has two relevant outputs: a classifier that
has been trained specifically for the problem at hand, and
a Gaussian mixture model that was trained such that the
Fisher kernel it induces works well with an SVM classifier.
It seems likely that such a kernel would be useful also in a
standard Fisher kernel setup with no further deep training.
In Section 4 we test this experimentally.

2.6. Extensions

The above section describes the most simple setup of
a single binary classification task. Extensions to multi-



class classification, regression, or structured prediction, are
straight-forward, since all of these can be formulated with
linearly parameterized maximum-margin objectives [19].

Another promising direction is multi-task learning:
given L learning tasks with objective functions L1, . . . ,LL,
we form a new, joint objective function for all tasks,

LMT (w1, . . . , wL, G) =
∑L

l=1
L(wl, G). (6)

Note that each task has its own weight vector, wl, but all
tasks share the GMM, G, so they rely on the same Fisher
kernel. We can minimize Equation (6) by a variant of Algo-
rithm 1: for fixed G, all wl can be updated in parallel, since
the SVM are decoupled. In the update of G, the gradient of
(6) is just the sum of the gradients of the individual task.

Note that for ordinary SVMs with fixed kernel, multi-
task learning by combining the objectives additively as in
Equation (6) is pointless. The resulting optimization prob-
lem would be completely decoupled with respect to the un-
known w1, . . . , wL, so the solutions from joint learning are
the same as when learning each task separately. In the deep
Fisher learning, however, information flows between tasks
through the shared G. The main advantage of multi-task
training in this form, however, is not increased accuracy
compared to learning separate GMMs (that might happen
or not), but the fact that the information from all tasks is
combined into a single learned kernel function. It is easier
to transfer this kernel to new problems than the L kernels
that are learned when training L task separately.

3. Related Work

In this section we discuss relevant prior work with focus
on methods that also aim at learning kernels or represen-
tations for SVM classifiers. For a broader overview, see,
e.g., these overviews on object categorization [32], image
kernels [19], and deep representation learning [4, 23].

While SVM classifiers traditionally assume a fixed ker-
nel on top of a fixed data representation, many methods
have been proposed in the context of computer vision to
learn the data representation automatically. Recent exam-
ples include the learning of dictionaries for bag-of-words
representations [14, 28], compact binary codes [5, 41], or
reuse the outputs of other discriminatively trained classi-
fiers [15, 20, 25]. It has also been proposed to learn opti-
mal image descriptors [40], or optimal strategies for feature
quantization and spatial pooling [7]. The resulting meth-
ods typically consist of two-layered architectures that are
trained either stage-wise (first the representation, then the
classifier) or by alternating between both stages.

An alternative path is to aim at learning a task-specific
kernel function instead of changing the data representation.
This was studied systematically in [9], which introduces a

framework for simultaneously learning the kernel parame-
ters and the classifier by minimizing a joint objective func-
tion. Multiple kernel learning [2, 38] is a special case of
this idea which restrict the new kernel to a weighted linear
combination of a set of base kernels. Later extensions allow
also for more complex dependencies [14, 37].

Deep Fisher kernel learning stands in the tradition of
both of the above categories. In a kernel view it is a partic-
ular instance of the general kernel learning framework [37],
but with the advantage that the layer-wise and feed-forward
setup allows for analytic expressions of all gradients. Com-
pared to the view of representation learning, which are often
ad-hoc constructions, it has the benefit that the minimiza-
tion of the objective function can be justified by a general-
ization bound.

The main advantage of deep Fisher learning over ear-
lier work, however, is that by working with Fisher kernels
we start from a particularly strong baseline: even without
learning the GMM, Fisher kernels provide state-of-the-art
results in image categorization tasks. As our experiments
in Section 4 will show, learning the GMM parameters leads
to substantial further improvements, even when using only
moderate amounts of training data. This is in contrast to fea-
ture learning methods that use simple architectures. These
allow efficient training, but result in representations that
typically do not improve significantly over state-of-the-art
hand designed representations. It is also different from the
situation for very complex models, including general deep
belief networks, which need large amounts of training data
to find good representations and classifiers.

We see the deep learning of Fisher kernels as a compro-
mise, located in a sweet spot between the two extremes.
We build on a model that is known to be powerful, but by
using prior knowledge about images, such as SIFT descrip-
tors and the established non-linearities of Fisher kernels, we
keep the number of parameters reasonable, so we are able
to train successfully even on moderately sized datasets.

Alternative approaches for improving Fisher kernel clas-
sifiers have been proposed. In [36] a replacement for the
Fisher information matrix is learned for Fisher kernels in-
duces by a Markov model (HMM) or a Markov random
field (MRF). In [35] the Fisher vector construction is ap-
plied recursively, thereby creating a deeper pipeline than the
five steps we use. Both approaches are orthogonal to ours
and it will be interesting to see if even better results can be
achieved by a combined setup.

4. Experiments
We perform experiments on the PASCAL VOC2007

dataset [13]. With approximately 2500 training, 2500 val-
idation and 5000 test images of 20 classes it is of medium
size and allows us to study two questions in detail: 1) how
does deep learning of the Fisher kernel affect the classifica-



(a) deep training

class base deep diff.
aeroplane 67.3 70.5 +3.3
bicycle 52.8 56.9 +4.1
bird 46.6 50.6 +4.1
boat 59.6 59.9 +0.3
bottle 26.1 26.6 +0.5
bus 52.6 55.1 +2.5
car 75.1 77.7 +2.6
cat 48.0 51.5 +3.5
chair 50.3 51.5 +1.2
cow 27.0 30.4 +3.4
diningtable 37.4 44.5 +7.1
dog 39.9 40.7 +0.8
horse 66.6 68.5 +1.9
motorbike 64.3 65.3 +1.0
person 78.1 81.0 +2.9
pottedplant 19.4 22.0 +2.6
sheep 26.6 29.6 +3.0
sofa 47.2 49.3 +2.1
train 70.9 72.4 +1.6
tvmonitor 47.0 50.2 +3.1
average 50.1 52.7 +2.6

(b) kernel transfer

kbase kdeep diff.
74.2 77.6 +3.4
56.6 63.0 +6.4
49.8 53.9 +4.2
61.7 62.5 +0.8
28.4 27.6 –0.8
57.3 60.2 +2.8
76.3 79.7 +3.4
55.1 56.8 +1.6
48.8 49.7 +0.9
40.9 44.2 +3.3
45.5 47.7 +2.2
39.4 42.8 +3.3
73.8 76.8 +3.0
65.9 69.5 +3.7
82.1 84.4 +2.2
22.5 23.7 +1.3
28.0 29.9 +1.9
44.5 46.2 +1.7
75.9 78.8 +2.9
48.2 52.0 +3.9
53.7 56.3 +2.6

Table 2. Results of deep Fisher training (average precision on PAS-
CAL VOC2007 in %). (a): Learning task-specific kernels im-
proves the results for all classes, often by a large margin. (b): The
learned kernels also lead to significant improvements when used
in an ordinary SVM setup without further deep learning.

tion accuracy, and 2) how do the learned kernels perform
in a traditional SVM scenario?

4.1. Image features

We use feature representations as they are currently
state-of-the-art for SVM-based object categorization, fol-
lowing the descriptions in [1, 10]. Each image is repre-
sented by a set of approximately 10,000 local image de-
scriptors of 64 dimensions. To obtain these we first convert
color images to gray scale, perform contrast normalization,
and scale each image isotropically to at most 100,000 pix-
els. We then extract 128-dimensional SIFT descriptors of 5
scales from a dense grid with 4 × 4 pixel spacing. The de-
scriptors are preprocessed by taking the square root of every
entry, followed by a projection to 64 dimension using a ma-
trix obtained previously by PCA on a separate dataset. From
the local descriptors we form a 4096-dimensional Fisher
vector for each image based on a 32-component GMM that
was either obtained prior to learning by expectation maxi-
mization, or that is learned by Algorithm 1.

Even though the features are rather low-dimensional and
based on only a single descriptor type, they provide a pow-
erful representation for image categorization. As our later

result show, linear SVMs with Fisher vectors constructed
in the above way achieve classification accuracies on par
with the state-of-the-art for features of this dimension [10].
With a mean average precision score of 53.7, already the
baseline system would have ranked 4th out of 17 participat-
ing systems in the original PASCAL VOC challenge, de-
spite the fact that most participants used multiple descriptor
types, and higher-dimensional features or non-linear classi-
fiers. While higher numbers than ours have been reported
in the literature, these are typically the result of higher-
dimensional feature vectors or of combining multiple fea-
ture type, such as SIFT and color histograms. A detailed
study of the influence of such factors can be found in [34].

4.2. Results

In a first set of experiments we directly compare the
classification accuracy of the baseline setup and of the deep
training. Table 2(a) contains the results when using Algo-
rithm 1 for 100 iterations on the train part of the PASCAL
VOC dataset, and evaluating the resulting classifier on the
val part. One sees that deep training improves the classifi-
cation quality for all classes, and often by a large margin. A
more detailed discussion and learning curves can be found
in the supplemental material.

In a second set of experiments we evaluate the possibility
of reusing the learned data representation for future tasks.
For this we train ordinary Fisher kernel SVMs on the train-
val part of the data and evaluate them on the test part. As
baseline, we use the Fisher kernel computed with respect
to the default GMM. For the learned model, we select for
each class the GMM with best results on the validation set
in the previous experiments. Table 2(b) shows the results.
Again, the learned Fisher kernels are clearly superior to the
base kernel, improving the classification quality in all cases
but one. The overall improvement is as big as in the previ-
ous setting, indicating that the positive effect of learning the
representation is orthogonal to the positive effect of a larger
available training set.

We also performed an experimental evaluation of the
multi-task learning introduced in Section 2.6. For this we
repeat the experiments of the previous paragraph, but now
based on Equation (6), such that the classifiers of all 20
classes share a common kernel. The results in Table 3(a)
show that this procedure also clearly improves the classifi-
cation accuracy, with average precision scores typically be-
tween the baseline and the task-specific training. Table 3(b)
reports the results of using the resulting (single) kernel in
a regular SVM task. Again, the improvement is substantial
but lower than when training a separate kernel for each task.
We interpret the above result as an indication that even the
approximately 2500 training image of the PASCAL VOC
training set are already sufficient to train strong per-task
models, so the additional regularization induced by shar-



(a) multi-task deep training

class base deep diff.
aeroplane 66.8 68.7 +1.9
bicycle 53.0 55.4 +2.4
bird 46.5 50.5 +4.0
boat 59.4 59.5 +0.1
bottle 25.7 26.0 +0.3
bus 52.3 52.6 +0.3
car 74.6 75.6 +1.0
cat 49.1 52.0 +3.0
chair 45.2 47.0 +1.8
cow 30.2 33.7 +3.5
diningtable 39.8 39.0 –0.7
dog 37.5 39.7 +2.2
horse 68.1 69.5 +1.4
motorbike 64.3 65.9 +1.6
person 78.6 80.4 +1.8
pottedplant 17.5 18.8 +1.4
sheep 26.2 27.9 +1.7
sofa 44.3 44.3 0.0
train 71.2 73.4 +2.3
tvmonitor 48.2 48.1 –0.1
average 49.9 51.4 +1.5

(b) kernel transfer

kbase kdeep diff.
74.2 75.7 +1.5
56.6 58.9 +2.3
49.8 52.8 +3.1
61.7 61.2 –0.5
28.4 28.4 0.0
57.3 58.6 +1.3
76.3 77.5 +1.2
55.1 55.7 +0.6
48.8 49.5 +0.7
40.9 43.4 +2.5
45.5 46.4 +0.9
39.4 40.3 +0.9
73.8 74.7 +0.9
65.9 67.7 +1.9
82.1 83.5 +1.4
22.5 22.9 +0.4
28.0 32.4 +4.4
44.5 45.2 +0.7
75.9 76.7 +0.7
48.2 48.6 +0.4
53.7 55.0 +1.3

Table 3. Results of multi-task deep Fisher training (average pre-
cision on PASCAL VOC2007 in %). (a) Multi-task learning of a
shared kernel improves the results for almost all classes. (b) The
learned kernels also lead to significant improvements when used
in an ordinary SVM setup without further deep learning.

ing the GMM is not required here. However, part of the
effect might also be explained by the less flexible model
selection step. In the multi-task setting, Equation (6), all
tasks share the same regularization constant, whereas in the
single-task setting, Equation (4), the regularization strength
is determined on a per-task basis.

5. Summary and Discussion
We made two main contributions in this work. The first

is conceptual: SVMs with Fisher kernel for image catego-
rization can be interpreted as deep networks, and this view
opens possibilities for transferring successful concepts from
deep learning to maximum margin learning. The second
contribution is algorithmic and demonstrates a practical re-
alization of such transfer: a deep training algorithm that
learns an image representation by Fisher vectors together
with parameters of an SVM, while staying mathematically
grounded in statistical learning theory. We also studied a
method for multi-task SVM learning in image categoriza-
tion, where classifiers act independently, but share their un-
derlying feature representation.

Our experiments show substantial improvements by
learning the Fisher kernel, compared to a baseline that itself

already provides results comparable to the state-of-the-art.
We believe that our observations will be just first steps in
a process that will ultimately lead to new hybrid learning
models that combine the expressive power of deep architec-
tures with the theoretical guarantees and geometric inter-
pretability of maximum margin methods.

6. Appendix
This appendix gives explicit expression for the gradients

of the loss function ` with respect to the GMM component.
To shorten the notation we drop the explicit dependence on
the weight vector, w, the input, x, and the current value of
the GMM,G = (π, µ,Σ), where it is clear from the context.

The most complex expressions are the derivatives of the
Fisher vectors (1) and (2) with respect to the GMM pa-
rameters. An elementary but lengthy calculation yields for
all GMM component indices, k, k′ = 1, . . . ,K and vector
components indices, d, d′ = 1, . . . , D:

∂

∂πk
F k′

d′ =
γk′α

k′

d′

2πk
√
πk′

(πk + δkk′ − 2γk) (7)

∂

∂µkd
F k′

d′ =
γk′

σkd
√
πk′

(
αk
′

d′α
k
d(δkk′ − γk)− δkk

′

dd′

)
(8)

∂

∂σkd
F k′

d′ =
γk′α

k′

d′

σkd
√
πk′

((
(αkd)2−1

)
(δkk′−γk)− δkk

′

dd′

)
(9)

∂

∂πk
G k′

d′ =
γk′((α

k′

d′ )
2 − 1)

2πk
√

2πk′
[πk + δkk′ − 2γk] (10)

∂

∂µkd
G k′

d′ =
γk′α

k
d

σkd
√

2πk′

[(
(αk

′

d′ )
2−1

)
(δkk′−γk)− 2δkk

′

dd′

]
(11)

∂

∂σkd
G k′

d′ =
γk′

σkd
√

2πk′
(12)

×
[
((αk

′

d′ )
2−1)((αkd)2−1)(δkk′ − γk)−2δdd

′

kk′(α
k
d)2
]

where αk := x−µk

σk , and δab = 1 if a = b, and 0 otherwise,
and δabcd = δabδcd.

Stacking the above expression and averaging them over
all descriptors in an image, we obtain ∇ψ, the gradient of
the unnormalized per-image Fisher vector. From this the
gradient of the normalized Fisher vector (Equation (3)) is
obtained by an invocation of the chain rule:

∇φd =

(
∇ψd
2ψd
−
∑
d′ sign(ψd′)∇ψd′

2‖ψ‖L1

)
φd, (13)

where the gradient acts with respect to all parameters,
(π, µ,Σ). The gradient of the loss term (Equation (4)) fol-
lows by applying the chain rule one more time,

∇`(w,G) = −2
〈
w,
∑n

i=1
aiyi∇φ(Xi)

〉
, (14)



where ai = max{0, 1 − y〈w, φ(Xi)〉} for any image Xi,
and the inner product is taken with respect to the 2KD com-
ponents ofw. When gradients in the logarithmic domain are
required, we use the identity ∂

∂ log tf(t) = t ∂∂tf(t).
Note that while computing the gradient with the above

expressions is computationally costly, there are multiple
ways to accelerate it. First, one observes that the leading
constant of each expression (7)–(13) contains a term γk′ .
We suggest to compute the gradient terms only if this value
exceeds a threshold, e.g. 10−5. A significant speedup can
also be obtained by subsampling the number of descriptors
used from each image to form the gradient. For our experi-
ments, we used a fraction 10% at no noticeable loss of pre-
diction quality. In fact, the quality improve in some cases,
potentially because a slightly randomized gradient helps the
algorithm to escape shallow local minima.
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