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Abstract 
 

 Modeling interactions of multiple co-occurring objects 

in a complex activity is becoming increasingly popular in 

the video domain. The Dynamic Bayesian Network (DBN) 

has been applied to this problem in the past due to its 

natural ability to statistically capture complex temporal 

dependencies. However, standard DBN structure learning 

algorithms are generatively learned, require manual 

structure definitions, and/or are computationally complex 

or restrictive. We propose a novel structure learning 

solution that fuses the Granger Causality statistic, a direct 

measure of temporal dependence, with the Adaboost 

feature selection algorithm to automatically constrain the 

temporal links of a DBN in a discriminative manner. This 

approach enables us to completely define the DBN 

structure prior to parameter learning, which reduces 

computational complexity in addition to providing a more 

descriptive structure. We refer to this modeling approach 

as the Granger Constraints DBN (GCDBN). Our 

experiments show how the GCDBN outperforms two of the 

most relevant state-of-the-art graphical models in complex 

activity classification on handball video data, surveillance 

data, and synthetic data. 

 

1. Introduction 

 Many scenes in sports, surveillance, and other video 

domains involve complex multi-agent activities where the 

agents co-exist and interact in a complex manner. A 

complex activity is defined as a collection of sequential 

and co-occurring events. The core challenge here is to 

define the temporal interactions (temporal dependencies) 

between event occurrences in a manner that will improve 

classification. The temporal interactions between events 

are key to discriminating among activities that have 

similar sets of events. As an example, consider the Person-

Unload-Vehicle (P-Unload-V) and Delivery activities 

from the VIRAT Ground [13] and Ocean City (OC) 

webcam [19] datasets, Figure 1 (L) and (R), respectively. 

For the P-Unload-V activity a V-Stops and a P-Exits the 

vehicle while another person approaches to retrieve the 

object. They then unload the object from the vehicle and 

one of them enters the vehicle and drives away while the 

other walks away with the object. The main difference 

between this activity and a Delivery activity is that one 

person does all of the work in the Delivery activity and 

also enters/exits-buildings. Unfortunately, the unique 

building based events and even one of the pedestrians in 

the P-Unload-V activity may not be detected or associated 

with the same activity, thus increasing the reliance on the 

temporal interactions for discriminating between them.   

 Most complex activity modeling methods [4,5,6,7,14, 

15] can theoretically model any number of co-occurring 

agents or events. However, the methods used for learning 

the temporal interactions among agents have one or more 

limitations. That is, they require manual definition, are 

generatively learned using only data from the class of 

interest, and/or are computationally complex or impose 

restriction on the structure of the interactions. 

 Our solution is the introduction of a Dynamic Bayesian 

Network (DBN) structure learning approach that addresses 

all of these issues. Our method automatically learns the 

temporal interactions in a discriminative and efficient data 

driven manner without imposing restrictions on the 

structure. Note, prior knowledge of DBN theory and usage 

is assumed when reading this paper.   

 Our main contribution is the use of a Granger Causality 

(GC) statistic [1] to explicitly define the temporal 

dependencies of the DBN without needing to be 

incorporated into the model’s parameter learning process. 

Granger Causality explicitly measures the temporal 

dependence between two time sequences, making it ideal 

for selecting the temporal links in a DBN, which by 

definition represent temporal dependence. This enables us 

  

Figure 1: (L) VIRAT Ground surveillance video showing an 

example of the person-unload-vehicle activity with overlaid 

annotations and background clutter. (R) Ocean City webcam 

video with Delivery activity example annotated in yellow. 
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to learn the links prior to the parameter learning process, 

which significantly reduces computational complexity and 

in turn reduces the need for a large number of training 

examples. Using Granger Causality also has the benefit of 

not imposing a tree or acyclical structure, which makes it 

more expressive and better able to characterize activities. 

Our second contribution is the novel fusion of Adaboost 

feature selection [22] with Granger Causality to define the 

most discriminative temporal links for the DBN, which is 

also performed prior to parameter learning. The resulting 

DBN is referred to as the Granger Constrained DBN 

(GCDBN). Note, temporal dependence does not imply 

“true” causality, but this is not required since our objective 

here is to improve classification by using discriminative 

temporal links, not to capture the true causal network.  

 At a high level, our structure learning process starts 

with temporal sequences derived from the events that 

occur in the activity of interest, see step   in Figure 2 for 

an example. This temporal sequence stores the number of 

times that the event occurs on a given frame over all 

frames. Causal analysis of pairs of temporal sequences is 

performed in step  , which results in GC statistics that 

are then used in an Adaboost feature selection algorithm 

for discriminatively defining the temporal links. The 

resulting Granger Cause graphical model is shown in  , 

which completely defines the temporal  links in the 

GCDBN  .  Further details are in Section 3. 

 Experiments show how the GCDBN outperforms two of 

the most relevant state-of-the-art graph based activity 

recognition models, the Dynamic Multi-Linked Hidden 

Markov Model (DML-HMM) [7] and the Time Delayed 

DBN (TDDBN) [5] (an extension of the Time Delayed 

Probabilistic Graphical Model (TDPGM) [15] to DBNs). 

2. Relevant Work 

 The first well-known graphical model for capturing the 

interactions among events in activity recognition is the 

Coupled Hidden Markov Model (CHMM) [4], which 

models co-occurring agents as different layers of HMMs 

that are fully connected. The DML-HMM [7] was then 

introduced, which uses a data driven DBN Structural 

Expectation Maximization (SEM) learning algorithm [9]. 

Both methods automatically define the temporal structure, 

but the CHMM does not use the data to do this and the 

DML-HMM incorporates it into an iterative learning 

algorithm, which is computationally expensive and 

requires extensive training data. Additionally, both 

techniques are generative, so the links are learned without 

taking the classification performance into account. 

There have been many recent developments in activity 

recognition. In particular, a variety of bag-of-words 

(BoW) techniques that use Histogram Intersection for 

matching have shown great success; see [14] for details. 

These methods work particularly well when there is one 

person and/or one main activity existing at a time, such as 

in the TRECVID-MED 2011 dataset [3]. However, they 

do not generalize well to dense scenes that have several 

multi-agent activities occurring near each other throughout 

the scene, such as in the VIRAT Ground [13] or Ocean 

City [19] datasets. This is because they lack the 

discriminative capabilities of well-structured probabilistic 

models, which can result in high false alarm rates. Most 

success in this dense activity domain is attributed to 

methods that explicitly model these types of well-defined 

activities in dense scenes, such as [6]. However, most of 

this work, including [6], manually define their model 

parameters and/or the interactions between agents to 

ensure a proper representation. Because of the BoW 

limitations, we focus on probabilistic graphical models 

Other structure learning techniques, [10] and [15], also 

apply constraints for automatically learning links. The 

Campos algorithm [10] guarantees a globally optimal fit of 

the model to the data. However, it relies on domain expert 

knowledge and, as with the DML-HMM, may be a good 

fit to the current activity’s data, but does not necessarily 

improve classification performance.  

The TDPGM [15] automatically determines the spatial 

links in a single time slice graphical model. It uses the 

Time Delayed Mutual Information (TDMI) measure to 

search for delayed copies of a time series, which does not 

capture causal/temporal dependencies among co-occurring 

agents. The number and type of links are initialized using 

Prim’s Minimum Spanning Tree (MST) algorithm [16], 

which is restricted to acyclic tree structures, and refined 

using a modified K2 algorithm. This technique was 

extended to DBNs [5] to produce the TDDBN, which was 

used for recognizing complex American football plays.  

 
Figure 2: Overall approach: ingest temporal sequences for each event (node)  , calculate pair-wise Granger causality statistics   and 

use their normalized versions as features in an Adaboost feature selection algorithm to discriminatively select the links. These links 

define the Granger Cause model  , which are converted to temporal links in the GCDBN  . The lighter blue colors in   represent 

smaller number of occurrences while darker orange is larger. Similarly, the darker blue colors in step   are weaker causal relationships 

and the darker red are stronger.  
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There are two main differences between the TDDBN 

and our GCDBN structure learning algorithms. The 

GCDBN captures more temporal relationships since it is 

not restricted to the tree structure of the MST and is 

allowed to have cycles. Second, the TDDBN is designed 

to capture links between sequential events caused by the 

same agent. On the other hand, our GCDBN captures 

these and links between any number of agents leading to 

more descriptive links and improved classification. 

To our knowledge, the GC statistic has not been used to 

learn the structure of a DBN for multi-agent complex 

activity recognition in computer vision. It was only 

recently that the GC statistics have found applications in 

the computer vision domain [2,11,23]. The pairwise 

trajectory analysis performed in [11] uses Granger 

statistics as features in a Support Vector Machine to 

classify activities having two interacting agents. This 

method is restricted to two interacting agents, whereas the 

GCDBN can model a large number of interacting agents.  

Alternatively, a spectral version of the GC statistic [12] 

is used in [2] and [23]. Prabhakar et al. [2] cluster visual 

words into independent causal sets that can be used for 

social game retrieval and classification of video segments. 

Jiang and Loui [23] created Audio-Visual Grouplets 

(AVGs), which are sets of audio and visual codewords that 

are grouped together according to their temporal 

dependence. These are interesting pieces of work; 

however, the spectral version of the Granger statistics is 

computationally expensive, taking about 10 times as long 

to produce results as the continuous time version. The 

spectral version also does not scale to multiple co-

occurring events of the same type, since the signals are 

binary. This makes it impossible to determine the root 

cause of a change in a time series, which is common in 

closely spaced or high activity environments.  

3.  Overall Approach 

The datasets are analyzed using 5-fold cross-validation, 

where the training data is first used to learn the GCDBN’s 

structure and then its parameters. The overall training 

approach is shown in Figure 2. The first step,  , is to 

extract the temporal sequences for each event in the 

training data. These can be extracted by counting the 

detections from event detectors or by counting the amount 

of activity assigned to clusters as a function of time [5,7]. 

The dataset characteristics determine which technique is 

used; see Section 8 for details.  

The sequences from step   are used to calculate the 

pair-wise Granger statistics shown in step  . Binary 

versions of the temporal sequences are used to learn the 

GCDBN’s parameters, where each event’s temporal 

sequence corresponds to one observation and one hidden 

node (one layer). The event-types (nodes) are down-

selected to the top M most active nodes among the 

activities. This reduces computation and emphasizes the 

classifier’s reliance on the temporal links for model 

comparison purposes. The most active nodes are 

determined by counting the number of times that each 

event type occurs over all frames and activities, ranking 

them in descending order, and selecting the top M nodes to 

partially define the model’s structure. 

The Granger statistics for the M nodes are normalized to 

have a score between zero and one and are then passed 

into an Adaboost feature selection algorithm. The top 10% 

most discriminative links are then chosen, which defines 

the Granger Cause model   and in turn the GCDBN 

structure  . Note, the GCDBN’s structure is identical for 

all activities, but the parameters are learned using only the 

data from the activity of interest. The parameters are 

learned using maximum likelihood Expectation 

Maximization (EM) with a junction tree inference engine. 

The EM algorithm is initialized in a data driven manner 

for the observation distribution parameters and randomly 

for the transition parameters and runs for five iterations. 

The testing process is a simple maximum likelihood 

classification, where a pre-segmented unknown activity 

example is tested against each model and is assigned the 

ID of the most likely model.  

4. Granger Causality Theory 

 Clive Granger [1] stated that if the variance of the 

autoregressive prediction error of time series X at the 

present time is reduced by including the joint history of X 

and another time series, Y, then Y has a causal influence 

on X. This theory is directly applied here to determine the 

Granger Cause of one event’s temporal sequence on 

another. The time domain formulation of the Granger 

Cause test, as discussed in [1] and [12], is summarized 

below and implemented using Geweke’s method [12].  

 When there are two jointly stationary stochastic 

processes, Xt and Yt, they can be represented by an 

autoregressive model:      ∑             
 
     and 

    ∑             
 
     where     (    )     and, 

   (    )    , respectively. The model consists of 

parameters, a1,j and d1,j, along with noise terms, 

             , with variances          , respectively. The 

joint autoregressive models of Xt and Yt are: 
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 When there is no causal influence from Y to X then 

theoretically       , and when the strength of the 

causal influence increases      also increases. A similar 

statistic can be calculated for the causal influence from X 

to Y by replacing the  s with  s and interchanging X and 

Y in (3). Note, mutual causality can exist here, where X 

influences Y and vice-versa. Equation (3) and its dual are 

referred to as F-statistics in the following sections. The 

variance of the noise terms in Xt and Yt are considered 

stationary, but in practice will vary over time. Therefore, 

the F-statistic is calculated at every time instance, t, and 

the maxima are used to represent the degree of causality 

from X to Y and Y to X. 

5.  Granger Constrained DBN (GCDBN) 

 The GCDBN is a DBN with any node structure and 

spatial links, but with its temporal links constrained based 

on the GC statistic. The GCDBN is generally defined as 

having one hidden node as the parent of one observation 

node for each of the selected nodes. The temporal links are 

defined based on the Granger constraints between hidden 

nodes, see Section 6. No spatial links are defined here for 

simplicity. Without loss of generality, both the hidden and 

observed nodes are binomial-distributed for model 

simplicity and to reduce computational complexity. The 

observation nodes ingest binary versions of the temporal 

sequences, referred to as the observation profile, while the 

hidden nodes provide a noise buffer to compensate for 

errors in the observation sequences.   

 Using all N nodes to define the GCDBN can be 

computationally expensive during testing,          , 

where T is the length of the observation profiles being 

classified. This is of particular concern when dealing with 

on-line systems and the time needed to produce results. 

One solution to this is to reduce the number of nodes to 

the M most active nodes, where    , as defined in 

Section 3. After defining the number and type of nodes, 

the temporal links are chosen to finalize the GCDBN’s 

structure. A cross-validation approach for determining the 

number of links can be used to improve performance, but 

arbitrarily using the top 10% most discriminative Granger 

Cause links was sufficient for these experiments.  

6.  From GC to Temporal Link Selection 

 Given that each of the down-selected event-types i, 

where i=1…M, has a corresponding temporal sequence 

(observation profile)     
 , there are    F-statistics from 

all pairwise combinations of the sequences. The F-

statistics,      and     , are stored in an     

causality matrix,       . Each cell in z represents the 

causal influence from event i to j, thus preserving 

directionality and defining a weighted adjacency graph. 

Since each event type represents a node in the GCDBN, z 

can be used to explicitly define its temporal dependencies. 

The raw F-statistic values are not between zero and one, 

which makes it difficult to intuitively determine a 

causality threshold if one wishes to define temporal links 

strictly based on causality. Therefore, we perform a 

normalization process to convert the F-statistics,  , to 

probabilities,             , using its Cumulative 

Distribution Function (CDF), which is similar to 

histogram equalization. This probability preserves ranking 

and can be interpreted as the strength or weight of Granger 

Causality with values between zero and one, where one is 

completely causal. Figure 3 shows the raw F-Statistic 

distribution and the normalization transform, CDF. 

 These normalized F-statistics,       , are converted 

to a      dimensional feature vector for all classes.  

This results in a      feature vector for input into the 

Adaboost feature selection algorithm [22], where E is the 

total number of training examples from all classes. In 

short, an Adaboost classifier runs for 100 iterations using a 

Decision Stumps weak classifier that chooses the single 

most discriminative feature for classification on each 

iteration. This vote for the most discriminative feature is 

accumulated over all iterations and the most frequently 

chosen features define the Granger Cause modal links. 

Figure 2 step    shows the most discriminative 

Granger Cause model that is derived from the most active 

nodes for one of our experiments (Handball). This is 

transformed into the GCDBN model structure, Figure 2 

step  , by treating the causal links as temporal links in a 

two time-slice DBN. Note, the cyclical links are retained 

and the GCDBN structure is the same for all activity 

models to be consistent with its discriminative form. 

 Further refinement of the structure was initially 

performed using the SEM algorithm [9]. However, 

classification performance degraded since it is not a 

discriminative learning method and is a data intensive 

learning algorithm that is sensitive to dataset sizes. 

7. Datasets 

 Three video datasets and one simulated dataset are used 

to analyze the performance of the various models and to 

demonstrate the robustness and capabilities of the 

 
Figure 3: (L) Distribution of all F-statistics for the Handball 

experiments. (R) CDF of F-statistics.  
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GCDBN. The CVBASE06 handball video dataset [17] is 

used to represent the sports domain, while the VIRAT 

Ground dataset [6,13] and Ocean City webcam video [19] 

represent the surveillance domain. A fourth synthetic 

dataset is created to emulate the surveillance domain and 

includes more activity types and examples. Other 

comparable datasets [4,5,7,15] would be ideal for these 

experiments, but are not publicly available. The three 

video datasets analyzed here are comparable in the number 

of activities and examples as those in [4,5,7,15] while 

exceeding the dataset sizes in [6].  

 The handball video data, Figure 4, is part of the public 

CVBASE 06 dataset [17] which captures ten minutes of a 

full court team handball match at 25fps. The handball 

activities can be separated into two offensive and two 

defensive complex activities: nfpn, nks, ovpd, and obg, 

with 18, 5, 8, and 20 examples, respectively. Each activity 

has seven players from one team with each example 

lasting between 100 and 200 frames.  

The nfpn activity has the players passing the ball back 

and forth while attempting to score on the defense.  The 

nks activity has all of the offensive players running down 

the court and passing the ball to each other who then 

attempt to score. The ovpc activity is where the team is 

returning to their defensive positions after the other team 

gets the ball. The obg activity is where the team is strictly 

defending their goal. Further details on the dataset can be 

found on the CVBASE website [17]. 

 The Ocean City (OC) dataset [19], Figure 1(R), is a 

surveillance webcam video focused on a main street in 

Ocean City NJ. This dataset contains various types of 

complex pedestrian-vehicle activities, which have 17 

examples each with annotated events. We focus on 

complex activities that have similar sets of events, but 

different temporal dependencies: vehicle-drop-off-person, 

vehicle-pickup-person, and vehicle-delivers-package. 

  In an effort to add another activity type to our 

analysis, clips from the VIRAT Ground surveillance 

dataset [13], Figure 1(L), were also included. This 

complex activity, person-unload/load-vehicle, has a 

similar set of events as those in the OC data, see Figure 5. 

Figure 5 shows the annotated event sequences and the 

temporal relationships for one example of the four 

activities as an image matrix, where the rows are the 

event-types and columns are the frame numbers. The 

events in Figure 5, from top to bottom, are: person-walk, 

vehicle-stopping, vehicle-starting, person-exit-building, 

person-enter-building, person-exit-vehicle, person-enter-

vehicle, and person-near-vehicle (unload/load). 

 The synthetic dataset includes five randomly generated 

activities where each has 10 event sequences that represent 

the detected events and temporal dependencies between 

pedestrian and vehicle activities. Figure 6 shows their true 

temporal sequences and event durations.   

Notice in Figure 6 that the event durations are 

constrained to only 5, 15, or 35 frames in order to reduce 

their separability simply based on event duration. 

Similarly, all temporal sequences are 45 frames long in 

order to eliminate separability based solely on activity 

duration and all the activities have the same number and 

types of events. The resulting activities have an increased 

reliance on temporal dependencies for discrimination, 

 

Figure 4: (Top) Selected frames of the four activities from marked frames. (Bottom) All position estimates (color coded according to 

player Id) in ground plane overlaid on the court image with Gaussian clusters. The activities are, ovpc: defense-returning, obg: basic 

defense, nks: offense-on-fast-break, and nfpn: offense-against-setup-defense, where “<#> ex” refers to the number of examples. 

 

 
Figure 5: Event profiles for one example of each of the four 

surveillance complex activity types, where the rows are the 

events and the columns are the frame numbers.  Event profiles 

are binary, where zero is white and one is red. 
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which makes this dataset much more challenging than the 

other two. Twenty examples of each activity are created 

by perturbing the truth event sequences’ start and end 

times based on a Gaussian distribution, resulting in 100 

examples, almost twice the size of the other datasets.  

 
Figure 6: True temporal sequences for the ten events involved in 

the synthetic data’s five randomly generated activities. 

8. Experiments and Results 

 The experiments show that using the Granger 

Constrained DBN improves classification while being 

robust to a smaller number of nodes as compared to the 

TDDBN and DML-HMM for the three types of datasets. 

To demonstrate robustness to a smaller number of nodes, 

we varied the number of active nodes within a predefined 

range and recorded the resulting classification 

performance for a 5-fold cross-validation framework. A 

final experiment (All) selects the number and type of 

nodes from this entire range based on which experiments 

achieve the greatest performance on the training data. The 

confusion matrix and Probability of Correct Classification 

(PCC) are used to characterize the performance, where the 

PCC is the number of correctly classified examples 

divided by the number of total examples.  

The number of states for each node and the observation 

profiles are identical between the three model types 

(GCDBN, TDDBN, and DML-HMM) resulting in models 

that only differ because of their learned temporal links. In 

order to focus on the impact of the key differences in the 

algorithms, the temporal links, neither the GCDBN nor the 

TDDBN refine their structures after being set. 

Unlike the surveillance activities, the Handball 

activities do not have well defined events, but they do 

have persistent spatial patterns and dynamics. So, instead 

of running event detectors on the Handball data we create 

temporal sequences based on the amount of activity in 

Gaussian clusters, as is done in [5,7]. The cluster based 

temporal sequences make the models independent of 

tracks and their errors while providing both a spatial and 

temporal encoding of the activities. The temporal 

sequences in this case represent the number of moving 

object detections assigned to a particular cluster at time t, 

as opposed to the number of occurrences of an event type.    

The clusters are formed by performing hierarchical 

divisive clustering [20] on all the training data using the 

features derived from the track’s detections, i.e. 2D 

position estimates. The clustering algorithm starts by 

assigning all moving object detections from all tracks to a 

single cluster, which is then bifurcated, independent of 

track ID, into two more clusters. This splitting process 

continues by bifurcating the cluster with the largest area 

first, where the area is defined as the determinant of the 

feature’s covariance matrix. The bifurcation process 

continues until we reach the desired number of clusters, or 

until the model fit to all the data vs. complexity no longer 

improves, as measured with the Bayesian Information 

Criterion (BIC) [8]. The leaf nodes are used to represent 

the set of spatial behaviors for all Handball activities.  

 Figure 7 shows 20 clusters with temporal sequences for 

eight of the most active clusters in the nfpn activity: 

1,2,3,8,9,10,11, and 18. The y-axis for these sequences is 

the number of movers, ranging from zero to six, and the x-

axis is the frame number. The track overlay in Figure 

4(bottom) shows how these clusters are the most active.  

 

Figure 7: 20 Gaussian clusters overlaid on the Handball court 

with several temporal sequences from an nfpn example.  

CVBASE06 Results 

 The experiments on the CVBASE06 Handball dataset 

vary the number of active nodes from four to ten. Figure 

8(L) shows the PCCs for the GCDBN, TDDBN, and 

DML-HMM as a function of the number of active nodes, 

as determined across all 5-folds. Notice, the GCDBN has a 

consistently higher classification performance than the 

other two models for all experiments. In particular, when 

the optimal set of nodes is used (All) the GCDBN has a 

PCC of 96.08%, the TDDBN is 90.20%, and the DML-

HMM is 47.06%. Given the relatively high PCCs the 

improvement are better represented by the amount of 

reduction in error. That is, the GCDBN has a 60% 

reduction in error compared to the TDDBN and a 92.6% 

reduction compared to the DML-HMM.  

 Figure 8 also shows the current state-of-the-art results 

on the CVBASE06 handball data [18], where five 

activities are modeled using a Support Vector Machine 

(SVM), PCC= ~92%, and a Dynamical System Tree 

(DST), PCC= ~61%. These methods are simpler than 
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DBN based approaches, but they require absolute position 

features as inputs, making them scene dependent, and they 

also do not learn temporal interactions. Therefore, these 

methods cannot translate to spatially independent 

activities, such as those in a surveillance environment.  

 The DML-HMM in Figure 8 chooses its temporal links 

based on a randomly initialized SEM algorithm that 

iterates over the structure 25 times and the parameters five 

times. Due to the random initialization, the SEM algorithm 

is repeated six times and the model structure that produces 

the highest PCC on the training data is used to report the 

results in Figure 8. We believe the GCDBN and TDDBN 

have higher PCCs because they explicitly define temporal 

links and because the DML-HMM is sensitive to smaller 

number of training examples.   

 The GCDBN’s confusion matrix is shown in Figure 

8(R) and is based on the final experiment (All). We 

observe difficulty classifying the ovpc activity, where it 

was confused with the nfpn and nks activities due to both 

spatial and temporal overlap; see Figure 4.  

The top layer of Figure 9 shows the links for the 

TDDBN, while the lower layer shows the GCDBN links. 

Notice the noncyclical tree structure of the TDDBN 

compared to the more representative GCDBN links.  
 

OC and VIRAT Ground Results 

The experiments on the surveillance datasets vary the 

number of active nodes from four to eight, where eight 

corresponds to all of the events across the activities. 

Figure 10(L) shows the PCCs for the GCDBN, TDDBN, 

and DML-HMM as a function of the number of active 

nodes for the surveillance datasets. Notice, the GCDBN 

consistently has a much higher performance than the other 

two models for most of the experiments. In particular, the 

PCCs for the optimal set of nodes (All) experiment are 

92.2%, 79.7%, and 75% for the GCDBN, TDDBN, and 

DML-HMM, respectively. Notice, we do not compare 

against the models from [18] for the surveillance or 

synthetic datasets because they do not translate to 

activities that are location independent (occur at any 

location in the scene).  

 The confusion matrix for the GCDBN is shown in 

Figure 10(R) as determined from the five cross-validation 

iterations. The activities are abbreviated as: Drop-Off 

(DO), Pick-Up (PU), Delivery (DY), and Person-

Unload/Load-Vehicle (PULV). The confusion matrix 

shows good performance overall but with a slightly lower 

performance on the PU activity. Comparatively, the 

TDDBN performs considerably lower on the PU activity 

(0.59), where it is confused with the DY activity 35% of 

the time. We believe this confusion comes about because 

the TDDBN structure does not characterize the PU activity 

well compared to the GCDBN, due to its restrictions on 

the structure. This can be seen in the GCDBN and 

TDDBN graph models, Figure 11. Notice, the TDDBN 

 
 

Figure 8: (L) Handball dataset PCCs as a function of the number 

of active nodes across activities for the three DBN models and 

approximate PCCs from [18]. (R), GCDBN confusion matrices 

along with number of examples, #Ex. 

 

Figure 9: (L) TDDBN and GCDBN temporal links when the 

seven most active nodes are chosen from the handball data. (R) 

Graphs overlaid on handball court with temporal links. 

 

 
 

Figure 10: Surveillance dataset results, (L) PCCs as a function of 

the number of active nodes for the three models. (R) Confusion 

matrix for GCDBN along with number of examples, #Ex. 

  

Figure 11: (L) Most-discriminative GCDBN links between 

hidden nodes/events for the surveillance activities, (R) 

TDDBN links for the surveillance activities  
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does not include links between the vehicle-stopping (stop) 

and person-walking (walk) events, and is missing links 

necessary to discriminate the DY activity, i.e. person-

enter-building (PentB) to vehicle-start (start). 
   

Synthetic Dataset Results 

 The experiments on the Synthetic dataset further 

confirm the higher performance of the GCDBN. Figure 

12(L) shows the PCCs for the three models vs. the number 

of active nodes. The PCCs when using the optimal set of 

nodes (All) are 82%, 72%, and 50% for the GCDBN, 

TDDBN, and DML-HMM, respectively. The overall 

GCDBN confusion matrix is shown in Figure 12(R).  

  
Figure 12: Synthetic dataset results, (L) PCCs vs. number of 

active nodes for three models. (R) Confusion matrices for 

GCDBN along with number of examples, #Ex. 
 

Our 82% PCC on this dataset is very significant 

considering it is a much more challenging dataset than the 

other three. In particular, the GCDBN offers a 35.7% 

reduction in error when compared to the TDDBN.  

9. Conclusion 

We introduced a Granger Constrained DBN (GCDBN) 

model for recognizing complex activities that consist of 

multiple interacting objects. The novelty of our approach 

comes from the fusion of the Granger Causality statistic 

and the Adaboost feature selection algorithm to explicitly 

define the GCDBN links in an automatic, efficient, 

descriptive, and discriminative manner. We showed how 

the GCDBN consistently achieves higher classification 

performance with the sports, surveillance, and synthetic 

datasets. The experiments demonstrate how our method 

improves classification while being robust to activities 

with smaller event sets, particularly when compared to 

other state-of-the-art graphical modelling techniques.  

10. Acknowledgments/Disclaimer 

This material is based upon work supported by the 

Defense Advanced Research Projects Agency (DARPA) 

under contract nos. HR0011-10-C-0112 and W91CRB-10-

C-0098. The views and conclusions contained in this 

document are those of the authors and should not be 

interpreted as representing the official policies, either 

expressly or implied, of DARPA or the U.S. Government. 

Approved for public release; distribution unlimited. 

11. References 

[1] C. Granger. Investigating causal relations by econometric 

models and cross-spectral methods. Econometrica, 

37(3):424–438, 1969 

[2] K. Prabhakar, S. Oh, P. Wang, G. Abowd,  and J. Rehg, 

“Temporal Causality for the Analysis of Visual Events,”  

CVPR, 2010 
[3] P. Over, G. Awad, J. Fiscus, B. Antonishek, M. Michel, A. 

F. Smeaton, W. Kraaij, and G. Quenot, “TRECVID 2011 – 
An Overview of the Goals, Tasks, Data, Evaluation 
Mechanisms, and Metrics,” Proceedings of TRECVID 2011 

[4] N. Oliver, B. Rosario, and A. Pentland, “A Bayesian 

Computer Vision System for Modeling Human 

Interactions,” PAMI 2000 

[5] E. Swears and A. Hoogs, “Learning and Recognizing 

Complex Multi-Agent Activities with Applications to 

American Football Plays,” WACV , 2012 

[6] S. Kwak, B. Han, and J.H. Han, “Multi-Agent Event 

Detection: Localization and Role Assignment,” CVPR 2013 

[7] T. Xiang and S. Gong, “Beyond Tracking: Modeling 

Activity and Understanding Behavior,” IJCV 2006 

[8] G. Schwarz, “Estimating the Dimension of a Model,” 

Annals of Statistics, 6(2), 461-464, 1978 

[9] N. Friedman, K. Murphy, S. Russell, “Learning the 

Structure of Dynamic Probabilistic Networks,” UAI, 1998 

[10] C. Campos, Z. Zheng, and Q. Ji, “Structure Learning of 

Bayesian Networks using Constraints,” ICML 2009 

[11] Y. Zhou, S. Yan, and T. Huang, “Pair-Activity 

Classification by Bi-Trajectories Analysis,” CVPR 2008 

[12] J. Geweke, “Measurement of linear dependence and 

feedback between multiple time series,” Journal of 

American Statistical Association, 77(378):304-313, 1982 

[13] Oh S., et al., “A Large-scale Benchmark Dataset for Event 

Recognition in Surveillance Video,” CVPR, 2011 

[14] W. Li, Q. Yu, H. Sawhney, and N. Vasconcelos, 

“Recognizing Activities via Bag of Words for Attribute 

Dynamics,” CVPR 2013 

[15] C.C. Loy, T. Xiang, and S. Gong, “Modeling Activity 

Global Temporal Dependencies using Time Delayed 

Probabilistic Graphical Model,” ICCV, 2009 

[16] R.C. Prim, “Shortest Connection Networks and Some 

Generalizations,” Bell Sys. Tech. J., 36:1389-1401, 1957 

[17] J. Pers, M. Bon, and G. Vuckovic, CVBASE 06 Dataset, 

available online: http://vision.fe.uni-lj.si/cvbase06 /dataset.html 

[18] S. Blunsden, R. Fisher, and E. Andrade, “Recognition of 

coordinated multi-agent activities, the individual vs. the 

group,” CVBASE workshop, ECCV, 2006 

[19] E. Swears and A. Hoogs, “Functional Scene Element 

Recognition for Video Scene Analysis,” WMVC, 2009 

[20] A. Guenoche, P. Hansen, and B. Jaumard, “Efficient 

algorithms for divisive hierarchical clustering with diameter 

criterion,” Journal of Classification, 8(1):05-30, 1991 
[21] J. Geweke, “Measurement of Linear Dependence and 

Feedback Between Multiple Time Series,” Journal of the 
American Statistical Association, 77(378):304-313, 1982 

[22] P. Silapachote, D. R. Karuppiah, and A. R. Hanson, 
“Feature Selection using Adaboost for Face Expression 
Recognition,” VIIP, 2004 

[23] W. Jiang and L. Loui, “Audio-Visual Grouplet: Temporal 
Audio-Visual Interactions for General Video Concept 
Classification,” ACM Multimedia, 2011 

http://www.kitware.com/publications/item/view/1317
http://www.kitware.com/publications/item/view/1317
http://www.kitware.com/publications/item/view/1317
http://www.kitware.com/publications/item/view/1263
http://www.kitware.com/publications/item/view/1263
http://www.kitware.com/publications/item/view/1210
http://www.kitware.com/publications/item/view/1210

