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Abstract

This paper attempts to address the problem of recogniz-
ing human actions while training and testing on distinct
datasets, when test videos are neither labeled nor avail-
able during training. In this scenario, learning of a joint
vocabulary, or domain transfer techniques are not applica-
ble. We first explore reasons for poor classifier performance
when tested on novel datasets, and quantify the effect of
scene backgrounds on action representations and recogni-
tion. Using only the background features and partitioning
of gist feature space, we show that the background scenes
in recent datasets are quite discriminative and can be used
classify an action with reasonable accuracy. We then pro-
pose a new process to obtain a measure of confidence in
each pixel of the video being a foreground region, using
motion, appearance, and saliency together in a 3D MRF
based framework. We also propose multiple ways to exploit
the foreground confidence: to improve bag-of-words vo-
cabulary, histogram representation of a video, and a novel
histogram decomposition based representation and kernel.
We used these foreground confidences to recognize actions
trained on one data set and test on a different data set. We
have performed extensive experiments on several datasets
that improve cross dataset recognition accuracy as com-
pared to baseline methods.

1. Introduction

We investigate the problem of human action recognition
when training and testing on distinct datasets. Research
in recognition strives to develop increasingly generalized
methods that are robust to intra-class variability and inter-
class ambiguity. Indeed, recent years have seen tremendous
strides in improving recognition accuracy [27, 18] on ever
larger and complex benchmark datasets [13, 14, 12, 16, 11],
comprising actions “in the wild” videos. Unfortunately,
the all encompassing, dense, global representations [27, 28]
that bring about such improvements often benefit from the

inherent characteristics, specific to datasets and classes, that
do not necessarily reflect knowledge about the entity to be
recognized. This results in increasingly specific models that
perform well within datasets but generalize poorly.

The need to mitigate this disconnect has given rise to the
application of domain adaptation [1, 5], in recognition of
objects [19] and events [6, 30]. Lixin et al. [6] employed
an adaptive multiple kernel learning approach to minimize
the mismatch between distributions from YouTube and con-
sumer videos. Several variations of traditional SVM has
been introduced for domain adaptation such as adaptive
SVM [30], domain adaptation SVM [1], and domain adap-
tation machine [5]. However, the major limitation of all
these approaches is that they require availability of video
labels (or features [2]) from both domains during training.

There is no question that these techniques improve per-
formance across datasets, and are significant in their own
right, but it is worth asking whether the same actions in dis-
tinct datasets are truly representative of different domains
or if their specific characteristics are distracting biases that
emanate from data collection criteria and processes. This
issue has been raised recently in an interesting work by
Torralba and Efros [23] for the problem of image classifi-
cation and object detection. They have empirically estab-
lished that most object recognition datasets represent close
visual world views and have biases toward specific poses,
backgrounds, and locations, etc. In this study, we show
that action recognition datasets too are prejudiced towards
background scenes – a characteristic that should ideally be
inconsequential to human action classes.

Explicit mitigation of dataset bias is possible, e.g., as
proposed by Khosla et al. in [9] who introduced a data-
driven approach where biases of different datasets were
combined to classify image in a new dataset. We argue
however, that research should focus on video (or image)
representation instead, so it is invariant to said bias and po-
tentially generalizes better across datasets. The underlying
assumption is that the hypothetical, exhaustive set of exam-
ples of an action class would be truly representative of our
visual world, and treating distinct datasets as training and
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testing partitions is a step towards realizing such a set. We
propose that dataset invariant action representations should
attempt to capture features of the actor’s motion and appear-
ance along with involved objects, and diminish the effect of
scene background and clutter.

Historically, taking a page from image analysis, several
video interest point detectors were introduced, including
space time interest points [12], Dollar interest points [4],
and spatiotemporal Hessian detector [29], etc. The obvi-
ous idea was to estimate local descriptors only at these im-
portant locations and ignore the rest of the video. Repre-
sentations based on local descriptors estimated at interest
points showed promising results on simple datasets such as
Weizmann [21] and KTH [20]. Even though these datasets
are now considered easier, their generally static, mostly uni-
form scene backgrounds, coupled with interest point detec-
tion, ensured a true action representation, largely devoid of
background information.

In recent years, the difficulty in obtaining meaningful lo-
cations of interest in contemporary datasets, coupled with
the lack of evaluation of action localization, has resulted
in a shift in research focus away from interest point detec-
tion. Indeed, it has been shown experimentally, that dense
sampling of feature descriptors generally outperforms in-
terest point [28] and other detectors (human, foreground,
etc.)[10]. Several methods have even been proposed to rec-
ognize actions in single images instead of videos [3]. It
is then safe to assume that background scene information
is a key component of the final representation that allows
higher quantitative performance, but in the process ‘learns
the dataset’ rather than the action. We maintain that the goal
of action representation schemes and efforts to collect larger
datasets should be to increase intra-class generalization for
which cross-dataset recognition is a reasonable metric.

While obtaining meaningful interest points, actor con-
tours or silhouettes in modern action datasets is challeng-
ing, we nevertheless argue that a truly representative ac-
tion model that generalizes reasonably well across unseen
datasets, would benefit from the same cues that are used
for foreground segmentation. Attempting to estimate ac-
tor bounding boxes, or binary foreground-background la-
bels is akin to introducing a new problem to solve the first.
Therefore, we propose to perform unsupervised estimation
of pixel-wise real-valued labels for the entire video that can
be employed to control influence of different video regions
on the final representation.

In this paper, we put forth several methods to exploit
these foreground confidences for soft assignment of fea-
tures within the bag-of-words paradigm. The two main
aspects of our proposed methods are: important features
should have larger influence in video representation; and
regions with a specific level of importance should only be
compared with corresponding similarly important parts of

other videos. Previously, [25] proposed the soft assignment
of features instead of hard quantization for improved ac-
curacy but the features themselves are equally weighted,
i.e., their total contribution to the histogram is constant.
Context specific histograms were proposed in [22] for im-
age classification, where different words contribute differ-
ently to each histogram. However, the context classifiers
need to be pre-trained in a supervised manner. Ullah et
al. [24] segmented a video into different regions and final
representation consisted of concatenation of all histograms.
Vig et al. [26] used saliency to remove features from non-
salient regions, however, their method requires threshold-
ing of saliency maps while each of the remaining features
contribute equally to the final representation. Instead, in
our first representation (weighted bag-of-words), each word
contributes to the histogram according to its probability of
being foreground. In our second representation (foreground
based histogram decomposition), we divide video into arbi-
trary (potentially non-contiguous) regions according to their
probability of being foreground, and the final distance be-
tween two videos is summation of weighted distances be-
tween regions that correspond to same quantized probabil-
ity of being foreground. In this way, the negative effects of
using (person, foreground) detectors, such as false positives
and false negatives are mitigated. Moreover, the problem
being considered in this paper is different from the above
mentioned papers. In fact, we are not aware of any previ-
ous methods attempting the problem of action recognition
across datasets, that do not exploit either labeled or unla-
beled videos (or features) from the test dataset.

We believe that the representation of an action should be
actor centric, so that a classifier learns the action and not the
dataset and hence is able to recognize actions across com-
pletely different backgrounds. Moreover, although back-
ground and contextual information is useful and should be
taken into consideration, its contribution to the final repre-
sentation should be less than the action itself. We demon-
strate that using soft weights instead of binary labels (person
or not person), in addition to pixel-wise analysis (instead
of bounding boxes) results in significant improvement. The
rest of the paper is organized as follows: We propose several
measures to quantify the effect of scene and background
statistics on action class discriminativity in §2. In §3, we
propose methods for obtaining foreground-specific action
representations, using motion, appearance, and saliency in
a 3D MRF based framework. Experimental setup and re-
sults are reported in §4. The paper is concluded in §5.

2. Background Discriminativity in Action
Datasets

A recognition dataset should be representative of our
surrounding visual world, and therefore diverse as possi-
ble. Besides illumination, clutter, etc., the sample actions



STIP Sampling UCF Sports UCF Youtube

Foreground only 71.92% 59.80%
Background only 73.97% 55.27%
Dense 75.34% 60.60%

Table 1. Accuracy using STIP in different video regions. There
is little decrease in performance even when completely ignoring
features on the actor. In UCF Sports, background only features
actually perform better than foreground only features.

should vary in terms of actor viewpoint, pose, speed, and
articulation. The background should be diverse as well,
but not discriminative, i.e., it should not aid in recogni-
tion of the action class, or it would limit the generalizabil-
ity of the class model, and consequently result in worse
cross-dataset recognition than within dataset. In this sec-
tion, we quantify the discriminative power of background
scenes in a few well known action datasets using two meth-
ods. First, we computed motion features on only the back-
ground regions to perform recognition within datasets, and
second, we measured class-wise confusion within datasets
using global scene descriptor.

2.1. Background Motion Features

Computation of background features in a video requires
annotation or estimation of regions corresponding to the ac-
tion. For this analysis, two recent datasets were selected:
UCF Sports [17] and UCF Youtube [13], due to availability
of manually annotated actor bounding boxes.

Dense space-time interest point descriptor (STIP) [12]
was extracted for all videos in both datasets. The features
were extracted with a 50% spatiotemporal overlap, using a
single spatial and temporal scale. The features with an over-
lap of more than 50% with the actor bounding boxes were
then labeled as foreground, while all remaining features
were considered background features. Notice that multi-
scale features would not allow such categorization. The
train/test process followed the original papers, i.e., leave
one actor out classification for UCF Sports, and leave one
group out classification for UCF Youtube. The experimen-
tal results for both datasets are shown in Table 1. It is evi-
dent that even complete removal of foreground words does
not have a significant detrimental effect on accuracy. It is
reasonable to assume that the action in an arbitrary video
can hypothetically be replaced with a different action with-
out a significant change in background feature descriptors.
The implication then is that the background alone is al-
most as discriminative as the action itself. An action model
trained on these datasets with dense feature coverage will
therefore perform poorly on a novel test set with a different
background composition or distribution.

2.2. Global Scene Features

Using a global image descriptor to represent an action
video has two inherent disadvantages. First, it would ig-
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Figure 1. Relative number of partitions c of frames in KTH,
UCF50, and HMDB51 datasets at varying minimum inter-partition
distances, τ . At the maximum allowed distance (0.5), KTH,
UCF50, and HMDB51 have 1, 158, and 411 partitions respec-
tively. Please see text for interpretation.

nore the motion or temporal properties of the video, and
secondly, it may not appropriately capture the background
scene since a significant part of every image can potentially
be the actor. If a scene descriptor, despite these limitations,
can be used to reasonably recognize an action, the corre-
sponding classifier is likely to generalize poorly.

We used the gist descriptor [15] to quantify discrimina-
tivity of background scenes in action datasets. The gist de-
scriptor was computed for every 50th frame of all videos
in the KTH [20], UCF50 [16], and HMDB51 [11] datasets.
The first experiment we performed was to quantify the rela-
tive number of distinct background scenes in each dataset at
a fixed level of separation in the feature space. Given n gist
descriptors in a dataset, a graph G = (V,E) is constructed,
such that V = {vi}, i ∈ {1, . . . , n}, is the set of all de-
scriptors, and E = {eij}, i ∈ {1, . . . , n}, j ∈ {1, . . . , n},
and eij = ‖vi − vj‖2 is the Euclidean distance between
descriptors i and j. The feature distance matrix, E is then
thresholded to obtain U such that uij = 1, if eij ≤ τ , and
0 otherwise. The graph connected component analysis of U
then results in a partitioning of the n gist descriptors into c
groups.

The number of partitions obtained in this manner are in-
dependent of n, and for a specific τ provides a comparison
of two datasets in terms of the relative diversity of scenes.
The larger the value of c, the more diverse the backgrounds
will be. A quantitative comparison of the number of par-
titions in each of KTH, UCF50, and HMDB51 datasets
is shown in Fig. 1. As expected, KTH with largely uni-
form background, and little camera motion, consistently has
the fewest partitions. One would expect that UCF50 and
HMDB51 with similarly large number of classes, and com-
plexity, should have similar number of partitions in the gist
feature space, at equal inter-partition distances. However
HMDB51 has consistently larger values of c for the same τ ,
as compared to UCF50. This comparison points to the hy-
pothesis that the background scene features would be less
helpful for the former dataset. A similar observation was
made in [11] when using scene descriptors.
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Figure 2. Class-wise PMI distance matrices for each dataset can
be considered as the inverse of a confusion matrix. The values are
normalized with respect to the maximum of across all 3 datasets,
so the same colors correspond to the same absolute value.

k 100 200 300

KTH 5.12 8.25 10.40
HMDB51 7.15 11.07 14.06
UCF50 7.97 11.79 14.38

Table 2. Average discrimination between classes of different
datasets, using PMI of gist clusters, for different number of clus-
ters. Discrimination increases (confusion decreases) as number of
clusters (background scene codebook size) increases. Even though
there are fewer distinct backgrounds in KTH (see Fig. 1), it is
the hardest to classify using scene information alone. UCF50 and
HMDB51 are comparable, the latter being consistently harder.

The number of partitions c however, does not explicitly
reveal the relative importance of background in discriminat-
ing action classes from each other. Therefore, we performed
another experiment where we clustered the gist descriptors
for each dataset into k clusters using K-means. The point-
wise mutual information (PMI) between each cluster and
an action class, resulting in a k × N matrix, where N is
the number of classes in the dataset. We then computed the
class-wise Euclidean distances between all pairs of classes
to obtain an N × N matrix, P (see Fig. 2 for examples).
Each element pij of the matrix represents the discrimina-
tion between gist-based representations of classes i and j.
The larger the value, the easier it is for gist to classify a
test action video. We compute the mean discrimination as
the average of matrix P . These values for different values
of k are reported in Table 2. It can be noticed that even
with fewer action categories, KTH is relatively the hardest
to classify using gist (not to be confused with actual accu-
racy using a classifier like SVM). The relative confusions
for HMDB51 and UCF50 are more similar, with the former
being consistently harder than the latter.

3. Foreground specific Action Representation

Given our experimental verification of the effect of
scene background on action classification, we propose to
learn foreground specific action representation to improve
recognition on novel test sets. However, the problems of
foreground-background segmentation, and human or actor
detection are very challenging, and all the more so, in un-
constrained videos that make up the more recent action
datasets. Since our eventual goal is to recognize actions,
rather than segmentation, or actor detection, our proposed

0

0

0

0

0

0

0

0

0

0

0

0

Figure 3. Top: original video frame on the left and optical flow
on the right as per the color wheel. Bottom(L-R): optical flow
gradient magnitude fm(x, y); magnitude of color gradient in LAB
space fc(x, y); and saliency fs(x, y), resp.

framework does not attempt to label each pixel or region as
foreground or background. Instead, we estimate the confi-
dence in each pixel being a part of the foreground, and use
it directly to obtain the codebook as well as the video repre-
sentation. This confidence is computed using several cues
as explained below.

3.1. Motion Gradients

Action is mainly characterized by the motion of moving
parts. We used this important clue to give high confidence
to the locations undergoing articulated motion in a video.
However, since most of the realistic datasets involve mov-
ing camera, simple optical flow magnitude can be high for
background as well. Hence, we used the Frobenius norm
of optical flow gradients. The motion gradients based fore-
ground confidence, fm is then defined as:

fm(x, y) =
√
u2x + u2y + v2x + v2y ∗ g, (1)

where, ux, vx, uy , and vy are the horizontal and vertical
gradients of optical flow respectively, and g is a 2D Gaus-
sian filter with fixed variance. The main idea behind us-
ing optical flow gradients is that it not only helps to remove
camera motion but also gives high magnitude around the ar-
ticulated moving object. A qualitative example of fm(x, y)
for a frame in a moving camera video is shown in Fig. 3.

3.2. Color Gradients

In many videos, the actor has different appearance and
color than the background, while the background (such
as sky or floor) has relatively uniform color distribution.
Therefore, the color gradients can be used as a cue to-
wards estimating the confidence in location of actor and ob-
ject boundaries, while resulting in low responses for back-
ground regions with uniform colors. Specifically, we com-
pute the color gradient based confidence in observing a fore-
ground pixel, fc, using the Frobenius norm of LAB color
space given as:

fc(x, y) =
√
L2
x + L2

y + a2x + a2y + b2x + b2y ∗ g, (2)



where (Lx, ax, bx) is the horizontal gradient of the color
vector at (x, y). A qualitative example of fc(x, y) is shown
in Fig. 3.

3.3. Saliency

We propose to use visual saliency as the third cue to
estimate the confidence in observing a foreground pixel.
In sports videos (a common type of actions in UCF50,
HMDB51 and olympic sports), the player receives most of
visual attention, and hence represents the most salient part
of the video. A similar observation applies to amateur as
well as professional moving camera videos that follow ob-
jects with distinct appearance amid relatively homogenous
backgrounds. Although, our ultimate goal is to estimate
foreground confidences for videos, we experimentally ob-
served that, due to large camera motion and noisy optical
flow, video or motion based saliency methods do not al-
ways result in reasonable outputs. Instead, we used graph
based visual saliency [8] to capture the salient regions in
each frame individually. We chose this method due its com-
putational efficiency, evident capability in finding salient re-
gions and natural interpretation as decomposition of image
into neural network.

Following [8], we computed contrast, luminance, and
four orientation maps corresponding to orientation θ =
{0o, 45o, 90o, 135o} using Gabor filters, all on multiple spa-
tial scales. In the activation step, a fully connected directed
graph is built where edge weight between two nodes, corre-
sponding to pixel locations, (i, j) and (p, q) is given as:

Ba(i, j, p, q) =
∣∣∣M(i, j)−M(p, q)

∣∣∣
exp

(
− (i− p)2 + (j − q)2

2ϕ2

)
, (3)

where M(i, j) represents the features at (i, j), and ϕ is a
free parameter. Using the graph to define a Markov chain,
the stationary distribution of the chain is computed and
treated as an activation map, A(p, q). A new graph is then
defined on all pixels with the edge weights being:

Bn(i, j, p, q) = A(p, q) exp

(
− (i− p)2 + (j − q)2

2ϕ2

)
.

(4)
Again, the weights of outbound edges are normalized and
the graph is treated as a Markov chain. The equilibrium
distribution of the chain is then used as a per pixel saliency
measure, fs(x, y). An example of the final saliency based
foreground confidence is shown in Fig. 3.

3.4. Coherence of Foreground Confidence

Since saliency and color gradients are computed based
on a single frame, they ignore the temporal information as
well as coherency. Moreover, color as well as optical flow
computation does not explicitly impose spatial coherence
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HMDB51 biking UCF50 basketball

UCF50 pull up HMDB51 horse riding

Figure 4. Original video frame, and corresponding confidence of
each pixel being the foreground, fa(x, y), for 4 example videos.

constraints. We therefore compute an initial aggregate con-
fidence map, f̂a, as: log (fm (fc + fs) + 1). The values of
f̂a are max-normalized for each frame of a video. In order
to impose spatiotemporal dependency among neighboring
pixels, we use temporal extension of 2D Markov random
field [7] similar to [31]. The video is considered as a 3D
grid graph, (V, E), where each node is connected to four
spatial and two temporal neighbors. If a labeling ω assigns
a weight ωp ∈ Ω = [0, 1] to a node, ψp ∈ V , then the qual-
ity of labeling is given by the following energy function:

E(ω) =
∑
ψp∈V

Dp(ωp) +
∑

(p,q)∈V
V (ωp − ωq). (5)

We used quadratic data term defined as Dp(ωp) =
(f̂a(p) − ωp)

2 and truncated quadratic smoothness term
given as V (ωp − ωq) = min((ωp − ωq)

2
, κ). During in-

ference, in addition to spatial neighbors, each node receives
a message from the temporal neighbors as well. At time t,
the message, mt

p→q(ωq), that node p sends to q is given as:

min
ωp

⎛
⎝Dp(ωp) + V (ωp − ωq) +

∑
s∈Np\q

mt−1
s→p(ωp)

⎞
⎠ ,

(6)
where Np\q represents the five neighbors of p other than q
and the belief vector for node q at time t is,

btq(ωq) = Dq(ωq) +
∑
s∈Nq

mt
s→q(ωq). (7)

The inference starts by sweeping in six directions, and af-
ter a fix number of iterations, the weights which give the
minimum cost for the belief vector are selected as final, and
denoted as fa. Qualitative examples of the final confidence
after 3D MRF is shown in Fig. 4. Note that after imposition
of spatiotemporal dependencies the resultant map assigns
high weights for the entire region corresponding to the ac-
tor and the bicycle and gives low values for the background
pixels despite the camera motion.

3.5. Foreground weighted Representation

Given the confidence in each pixel being in a foreground
region, we propose to modify the bag-of-words representa-
tion of a video in several important ways. The underlying



goal is to represent the video so that features corresponding
to the actual action, i.e., the foreground, contribute towards
the vocabulary as well as the resulting representation, while
those on the background have minimal effect when train-
ing models or comparing videos. Our proposed ideas are
described in the following.
Weighted Codebook: Traditionally, the codebook or vo-
cabulary in a bag-of-words framework is learned using K-
means, whereby the set of feature descriptors X = {xi},
obtained from training videos are the data points to be clus-
tered into k clusters, with centers represented as zj . Given
the pixel wise foreground confidence for every frame in ev-
ery video, we begin by computing the average foreground
confidence, wi =

∑
(x,y)∈Pi

fa(x, y)/|Pi|, where Pi is the
set of pixels in the spatiotemporal volume corresponding to
descriptor xi. We then employ weighted K-means to obtain
the codebook, where the goal of clustering is to minimize
the following energy function,

argmin
C

K∑
j=1

C(i, j)wi ‖xi − zj‖2 , (8)

where C is the |X| × k unknown membership matrix. The
resulting vocabulary, Z = {zj}, is a set of points in the
feature space that are more similar to descriptors with high
confidence of being a foreground, and potentially farther
away from descriptors on the background.
Weighted Histogram: In the bag-of-words method, the
image or video is represented as a k long vector, H =
[h1, . . . , hK ], where hj is the number of times the nearest
neighbor of a descriptor in the video is found to be zj . Given
the average foreground confidence, wi for the descriptor, xi,
we propose to compute the weighted histogram, Ĥ , where
ĥj is the sum of wi for all descriptors whose nearest code-
word is zj . The weighted histogram therefore is influenced
by features with high confidence of being in the foreground
regions, while the background features have a minimal ef-
fect on the final video representation. The weighted his-
togram is not to be confused with soft quantization where
the weight wi would have been distributed across bins.
Foreground Confidence based Histogram Decomposi-
tion: We notice that despite weighing the influence of fea-
tures on the histogram, the accumulative effect of back-
ground features on different bins of the histogram can sum
up to be significant. This is because of the fact that a sig-
nificant number of pixels in the video, and consequently
densely samples descriptors, can have relatively low fore-
ground confidence. In other words, the number of high con-
fidence features contributing to the histogram is far less than
those with low confidence of being foreground. This would
not be a problem if features with high and low confidences
were quantized to different words, but that may not always
be the case, especially due to the weighted codebook.

If the foreground and background regions were divided
into two distinct classes (binary labeled), it would be

straightforward to compute two different histograms for
each type of region. However, given that it is desirable
to avoid thresholding and binarization of foreground con-
fidence, we propose a novel alternative solution. We begin
by categorizing the spatiotemporal regions corresponding to
different feature descriptors into R classes. These classes
correspond to R equal, non-overlapping, exhaustive parti-
tions of the range of average foreground confidences, w. A
set Ĥ of R weighted histograms, Ĥr, is then computed for
all the features in each of the R groups separately. The fol-
lowing kernel function then replaces histogram intersection:

Δ
(
Ĥi, Ĥj

)
=

R∑
r=1

αrΘ
(
Ĥi
r, Ĥ

j
r

)
, (9)

where Θ is the histogram intersection kernel, and αr
are predefined weights, that increase linearly with r ∈
{1, . . . , R}. As a result, regions of two videos that have ap-
proximately the same foreground confidence, are compared
only with each other. This process and the effect of our pro-
posed scheme are illustrated in Fig. 5. As can be seen in
the figure, the proposed multiple weighted histograms and
the weighted average of histogram intersection kernel, show
obvious improvement as a representation and measure of
similarity between videos, respectively.

4. Experimental Results

The main goal of our experiments is to verify that mod-
els trained using features from foreground regions are likely
to generalize better and attain higher recognition accuracy
than dense sampling, especially when tested on videos from
novel, unseen datasets. To this end, we have performed ex-
tensive experiments, evaluating the effect of our proposed
foreground confidence measure in a weighted bag-of-words
framework for cross dataset recognition over three datasets:
UCF50, HMDB51, and Olympic sports.

UCF50 has 50 action categories. Since all the videos
in UCF50 are taken from Youtube, they are implicitly bi-
ased towards a specific type of video shooting, including
but not limited to amateur shooting style, cluttered back-
ground, and abrupt camera motion. Videos in 51 action cat-
egories of HMDB51 are mostly taken from movies and a
small number from YouTube and Google Videos. The two
datasets have 10 actions with common class labels, namely
basketball, biking, pull ups, golf swing, horse riding, punch,
fencing, push ups, rock climbing, and walking. In our ex-
periments, we only chose the first 5 classes which are vi-
sually similar in both datasets. We did not consider other
actions because even though they have similar class labels,
there are visually very different: almost all the videos of
punch in UCF50 correspond to the sport of boxing in a
boxing ring, while most of the HMDB51 punch videos are
more unconstrained, such as those from fist fights. Simi-
larly the walking action of HMDB51 is quite different from
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Ĥi, Ĥj
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Figure 5. Figures on the left illustrate the effect of weighted histograms, and foreground confidence based decomposed histograms. In
each column the top row shows the original image. The middle row shows the relative average foreground confidence or weight wi of
each spatiotemporal cuboid in the video, where shades of red correspond to high values. The third row shows the category or group,
r ∈ {1, . . . , R}, out of a total of R = 5. Features in each group are compared only with those in corresponding group in other videos.
Notice that similarity between same label videos increases with use of weighted histograms, Ĥ , and the proposed kernel Δ for decomposed
histograms, Ĥ. The right column shows confusion tables for unweighted and decomposed weighted histogram classifiers trained on UCF50
and tested on HMDB51. See text for detailed analysis.

the ‘walking with dog’ action of UCF50. We only want to
evaluate videos from the same class which are at least visu-
ally/semantically similar to a human observer.

For training from and testing on HMDB51, we used the
train and test partitions for each of the chosen action as
the original setup [11]. In order to have a fair compari-
son, we selected the same number of training and testing
videos from UCF50 by dividing 100 videos of each class
into 18 and 7 groups respectively, i.e., an ∼70-30 ratio. We
computed dense STIP descriptors over both datasets with
cuboid size of 32 by 32 spatially, and 15 frames temporally,
with 50% spatial and temporal overlap.

For all datasets, we trained multi-class classifiers. An
3000-words vocabulary was created using K-means algo-
rithm. As in traditional bag-of-words approach, all the
STIP features were quantized into 3000-bin histograms for
each video, to establish the baseline representation, H . For
weighted histograms Ĥ , instead of having equal contribu-
tion, each descriptor contributed to the histogram based on
its confidence in being the foreground. Finally for fore-
ground based histogram decomposition Ĥ, we divided the
set of all features in each video into R = 5 groups based on
foreground weights. We used αi = {1, 0.8, 0.6, 0.4, 0.2},
for weighted summation of the 5 histogram intersections.

The Olympic dataset consists of 16 human actions,
where the videos mostly depict athletes practicing different
sports actions. This dataset is also collected from Youtube.
Similar to our previous experiment, we used 6 common
actions between UCF50 and Olympic Sports (see Table 3

for labels). Due to the small number of training and test-
ing examples in Olympic Sports, we extended the dataset
by adding a horizontally flipped version of each video se-
quence. In order to ensure fairness, we used the same
number of videos from UCF50 and added their horizontally
flipped counterparts. We ensured that both the original and
flipped video pairs are in either training or testing sets but
not both.

Our experimental results are reported in Fig. 5(right) and
Table 3. It can be seen from the confusion matrices in Fig. 5
corresponding to performance of UCF50-trained classifiers
on HMDB51 test videos, compared to the traditional bag-
of-words, our proposed representations exhibit consistent
improvement in all action classes except basketball. When
using baseline classifiers trained on UCF50, 68% of the
horse riding examples in HMDB51 are classified as biking.
Using the proposed method however, we were able reduce
this confusion to 36%. In the complimentary experiment,
baseline classifiers trained on HMDB51 categorized 57% of
UCF50 biking examples as horse riding, while the proposed
method reduced the confusion to 30%. Similarly, reducing
dependency on background has significantly improved ac-
curacy for pull ups and golf swing, where the actions are
visually similar across the datasets. The drop in basketball
accuracy is likely due to variation in actor pose and view-
point across datasets.

As reported in Table 3, the quantitative results conclu-
sively demonstrate that the proposed framework for estima-
tion of foreground confidence is meaningful, and the con-



Training Testing Unweighted Weighted
Histogram

Actions
Decomposition

UCF50 UCF50 70.00 74.20 77.85
Biking, Golf swing, Pull ups,
Horse riding, Basketball

UCF50 HMDB51 55.70 60.00 68.70

HMDB51 HMDB51 65.30 69.30 68.00
HMDB51 UCF50 63.33 64.00 68.67

Olympic Sports Olympic Sports 71.80 73.95 69.79 Basketball, Pole vault, Tennis
serve, Diving, Clean & jerk,
Throw Discus

UCF50 Olympic Sports 31.25 31.25 33.33
Olympic Sports UCF50 16.67 32.29 47.91

Table 3. Average accuracy of action recognition across different pairs of training and testing datasets. ‘Unweighted’ is the traditional bag-
of-words paradigm, using dense STIP features. The column labeled ‘weighted’ corresponds to foreground confidence weighted vocabulary
and weighted histograms. The column labeled ‘histogram decomposition’ uses multiple histograms for different range of foreground
confidence values, and uses a weighted mean of individual histogram intersections as the kernel. As can be observed, our two proposed
representations perform significantly better than the baseline for most experiments.

sistently higher recognition accuracies serve as an empir-
ical verification of our conjecture that the dataset specific
background scenes are one of the main causes of deterio-
ration in recognition accuracy across datasets. Moreover,
when training and testing on distinct datasets, the histogram
decomposition and the newly proposed corresponding sim-
ilarity measure perform better than even the foreground
weighted vocabulary and histograms, for all cross-dataset
experiments.

.

5. Conclusion

We have attempted cross dataset action recognition with-
out using labels or features from the test set. In doing so,
we have experimentally demonstrated the detrimental effect
of background scenes on action recognition dataset. We
have also proposed a new process for obtaining per pixel
confidence of every video pixel being the foregreound, as
well as novel soft assignment, and histogram decomposition
schemes for the bag-of-words representation. Our extensive
experimental results and discussion validates the proposed
ideas and framework.
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