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Abstract

While machine learning has been instrumental to the on-
going progress in most areas of computer vision, it has not
been applied to the problem of stereo matching with simi-
lar frequency or success. We present a supervised learning
approach for predicting the correctness of stereo matches
based on a random forest and a set of features that cap-
ture various forms of information about each pixel.We show
highly competitive results in predicting the correctness of
matches and in confidence estimation, which allows us to
rank pixels according to the reliability of their assigned dis-
parities. Moreover, we show how these confidence values
can be used to improve the accuracy of disparity maps by
integrating them with an MRF-based stereo algorithm. This
is an important distinction from current literature that has
mainly focused on sparsification by removing potentially er-
roneous disparities to generate quasi-dense disparity maps.

1. Introduction

Stereo matching is an inverse problem and, as such, it is
notoriously prone to errors, mostly due to occlusion, lack of
texture and repeated structures. Since the common causes
of the errors are well known, one would expect that learn-
ing methods could have been used to detect them. Helpful
cues are available in the neighborhood of a pixel as well
as in information generated during the matching process.
Surprisingly, very few publications have attempted to tackle
stereo matching from a learning perspective [4, 12, 13] and
they have not gained much traction. Very recently, Haeusler
et al. [7] presented an approach for learning a confidence
measure from several features, some of which are similar to
those proposed by us, since both approaches rely on [9] for
feature selection. Haeusler et al. also use a random forest
for classification, but, unlike this paper, they do not pro-
pose ways of leveraging the estimated confidence to gener-
ate dense disparity maps of higher accuracy.

What separates our approach from recent literature on

confidence estimation [20, 6, 9, 21, 7], regardless of the
use of learning, is that the main objective of these methods
is sparsification. They can indeed generate disparity maps
with progressively fewer errors by removing matches start-
ing from the least reliable ones. What has not been shown,
however, is how this capability can be used to correct the
initially wrong matches. We present such an approach in
this paper.

Given a training set of stereo pairs with ground truth dis-
parity, the goal of this paper is to answer the following ques-
tions without making scene-specific assumptions:

Is it possible to predict whether a stereo correspondence
is right or wrong based on features extracted from the stereo
pair for that pixel and a trained classifier?

Is it possible to use these predictions to improve the dis-
parity map?

Our results show that the answer is affirmative in both
cases. Figure 1 shows the inputs to our algorithm: an im-
age and a Winner-Take-All (WTA) disparity map, as well as
its outputs: a correctness prediction map and an improved
disparity map after Markov Random Field (MRF) optimiza-
tion. The matching cost volume is an additional input not
shown here.

To answer the first question, we formulate a binary clas-

Figure 1. Top row: Input image and WTA disparity map using
NCC for Wood2 [22]. Bottom row: prediction map, in which
bright intensities correspond to WTA matches that are likely to
be correct, and final disparity after MRF optimization.
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sification problem and tackle it using a random forest (RF)
classifier [3]. We argue that this problem is more fundamen-
tal than confidence estimation without the ability to decide
on correctness [9, 20] or selection of a hypothesis among
a set generated by a mixture of experts [13, 16]. Ranking
stereo matches according to confidence accurately is valu-
able but does not imply the capability to determine which
of the matches are correct, since the error rate may fluctu-
ate from image to image making the selection of a threshold
hard without knowledge of the priors. As shown in Section
5, we are able to predict the correctness of matches on dis-
parity maps with very different error rates at nearly optimal
rates. Haeusler et al. [7] have been able to show very good
results on a similar task on the KITTI benchmark [5].

Before summarizing the contributions of our method, let
us remark that we made every effort to keep it generic. Cus-
tomizing our approach to a specific domain would allow us
to introduce task-specific features, likely resulting in even
higher accuracy. For example, if the task was driver assis-
tance [5], accuracy would benefit from features such as im-
age coordinates that provide information on which parts of
the scene are likely to be road, buildings or sky. We leave
this extension for future work. Our current contributions
are:

• an algorithm that achieves high accuracy in predicting
the correctness of stereo matching given training data,
• a diverse set of features that enable classification,
• a technique for detecting ground control points and for

inserting them as soft constraints into an MRF-based
optimizer, leading to improved disparity maps.

We show results on the extended Middlebury benchmark
[22] that contains 27 image pairs with ground truth, includ-
ing comparisons with numerous baselines.

2. Related Work

For a survey of stereo methods we refer readers to [23]
and its companion website. Here we focus on research that
aims at inferring the correctness of correspondences using
learning, or at detecting ground control points (GCPs).

Early work on applying machine learning to stereo in-
cludes that of Lew et al. [14] who presented an approach
for selecting a set of features that form an effective descrip-
tor for stereo matching. Cruz et al. [4] addressed the prob-
lem of determining whether a match in edge-based stereo
was correct or not. Classification relies on four features
extracted by filtering the images and uses a perceptron to
determine which feature mappings from the left to the right
image are indications of correct matching. This approach,
however, does not address challenges in textureless regions,
since it is only applied to edge pixels, and also does not
model mismatches due to repeated structures.

Kong and Tao [12] used non-parametric techniques to
learn the probability of a potential match to belong in three
categories: correct, wrong due to foreground over-extension
or wrong for other reasons. They used features extracted
from image appearance and matching cost estimates, while
final disparity assignments to fronto-parallel superpixels
were made via simulated annealing on an MRF. The integra-
tion of the correctness probabilities into the MRF improved
accuracy on the Middlebury benchmark, but the accuracy
of the stand-alone classifier was not reported in the paper.
This approach was extended [13] to select among 36 ex-
perts in the form of different normalized cross-correlation
(NCC) matching windows using similar features and opti-
mization technique. Motten et al. [17] presented a classifier
using decision trees implemented on FPGA for selecting
among multiple disparity hypotheses generated by trinoc-
ular stereo. Sabater et al. [21] introduced an a contrario
approach for validating the correctness of stereo matches.
A user-specified acceptable number of false matches deter-
mines the density of the final disparity map.

We would be remiss if we did not include the work of
Mac Aodha et al. [16] on optical flow, which shares some
characteristics with ours, such as an emphasis on being ap-
plicable to general scenes and operating on individual pix-
els. A multi-class classifier that selects among four state
of the art methods is used to learn the posterior of each ex-
pert being correct. The estimated posteriors are then used as
confidence measures. Other recent research on confidence
estimation, from which we draw inspiration and borrow fea-
tures, includes the work of Reynolds et al. [20] on time-of-
flight data and of Hu and Mordohai [9] on stereo. Haeusler
and Klette [6] also considered several confidence measures,
as well as the product of all measures, demonstrating good
performance in sparsification. Pfeiffer et al. [19] integrated
three confidence measures into a mid-level representation
for 3D reconstruction and showed that Bayesian reasoning
outperforms sparsification by thresholding.

Contrasted with methods for selecting among a set of ex-
perts, such as those of Kong and Tao for stereo [13] and Mac
Aodha et al. for optical flow [16], our research addresses
the more fundamental problem of verifying whether a pre-
diction from a single expert is correct. In that sense, it is
similar to the work of Haeusler et al. [7] who also make
predictions about the correctness of the outputs of the semi-
global matching algorithm.

Methods for selecting GCPs typically rely on heuristics
that are strongly correlated with correctness, but make hard
decisions based on multiple thresholds. Bobick and Intile
[2] imposed several constraints on GCPs: lower cost than
all competing matches in both images, low matching cost,
sufficient image texture and presence of nearby GCPs to
suppress outliers. Kim et al. [10] use left-right consis-
tency (LRC) and comparison of the matching cost against



a threshold for selecting GCPs. Wang and Yang [25] pick
GCPs by running three different Winner-Take-All (WTA)
stereo algorithms and require that the disparities be consis-
tent among all the matchers in each image, as well as left-
right consistent. Sun et al. [24] used LRC and the ratio of
the best to the second best matching cost in a disparity prop-
agation framework. Our approach integrates numerous cri-
teria in a principled way via supervised learning and learns
how to make decisions based on labeled data rather than in-
tuition. One of the byproducts of this approach is the much
higher density of GCPs without loss of accuracy, which is
at 99.7% on our data.

3. Method Overview

In this section, we briefly describe the steps of our al-
gorithm. Initially, eight features are extracted for all pixels
with assigned disparity values in all images of the training
set (Section 4). In the training phase, a random forest (RF)
classifier is trained on individual pixels to predict whether
their assigned disparities are correct. In the testing phase,
the same features are extracted for all pixels of a test image
and the classifier generates a prediction for their correct-
ness. The effectiveness of the classifier is evaluated in Sec-
tion 5 where we measure the accuracy of the predictions,
as well as the ability of our method to rank pixels correctly
in order of decreasing reliability. A comparison against the
strongest individual features shows that the RF easily out-
performs them and approaches optimal performance.

The predictions of the RF can be used to select ground
control points (GCPs) which are of very high accuracy and
high density (Section 6) compared to baseline GCP selec-
tion methods. Finally, the GCPs are integrated as soft con-
straints into an MRF optimizer to improve the input Winner-
Take-All (WTA) disparity maps. Our results in Section 7
clearly demonstrate that it is possible to improve the accu-
racy of binocular stereo by learning from features extracted
from images, disparity maps and matching cost volumes.

4. Features and Learning

In this section, we present the rationale behind the fea-
tures and learning algorithm we selected. This set of fea-
tures is by no means exhaustive, but it aims at extracting
useful information from various sources including the cost
curve for each pixel and the pixel’s neighbors in the dis-
parity map. The label for each pixel indicates whether the
disparity with the minimum cost that would have been as-
signed to it by a WTA stereo algorithm, is correct or not.
The usual definition of correctness (disparity error less than
or equal to one [23]) is used.

Before describing the features, we introduce some nota-
tion. Given a pair of rectified images, we compute the cost
volume c(xL, xR, y) that contains a cost value for each pos-

sible match from a pixel in the left image (xL, y) to a pixel
in the right image (xR, y). Disparity is defined convention-
ally as d = xL − xR and we assume that the minimum
and maximum values it can take, dmin and dmax, are exter-
nally provided. For convenience, we define the disparity of
a pixel in the right image to be equal to d, dR = xL − xR.
Values in the cost volume for matches beyond the disparity
range are flagged as invalid and ignored in all computations.
If a similarity, instead of a cost function, is used to assess
matches, we negate its output to convert it to cost. The cost
curve of a pixel is the set of cost values for all allowable dis-
parities for the pixel. We use c1 and c2 for the minimum and
second minimum values of the cost curve, without requiring
c2 to be a local minimum. The disparity value correspond-
ing to c1 is denoted by d1.

We used the following eight features for the experiments
in this paper. Four of them were considered individually as
confidence measures in [9].

Cost. This is the minimum matching cost over all dispari-
ties for a given pixel and captures the fact that low cost often
corresponds to high likelihood of correct matching.

Distance from Border (DB). This feature measures the
distance in pixels from the nearest image border. It is based
on the assumption that pixels near the borders are likely to
be outside the field of view of the other camera and that
causes mismatches. We experimented with four separate
features measuring the distance from the left, right, top and
bottom borders, but no improvement was observed.

Maximum Margin (MMN). This feature measures the
difference between the two smallest cost values, c1 and c2,
of a pixel [9]. The rationale here is that a large difference
may indicate an unambiguous disparity assignment.

Attainable Maximum Likelihood (AML). This feature
is based on the conversion of the cost curve to a probabil-
ity density function over disparity. It has been shown that
subtracting the minimum cost c1(xL, y) from all cost values
leads to higher discriminative power [9]. AML is defined as
follows.

fAML(xL, y) =
1∑

xR
e
− (c(xL,xR,y)−c1(xL,y))2

2σ2
AML

(1)

Left-Right Consistency (LRC). A good indicator of the
correctness of a match from the left to the right image is
whether it is confirmed in the opposite direction. LRC, here,
is a binary feature set to 0 when the absolute value of the dif-
ference between the disparity d at pixel (xL, y) in the left
image and the disparity at pixel (xL − d, y) in the right im-
age is less than or equal to 1. LRC is 1 when the difference
is greater than 1.



Left-Right Difference (LRD). This confidence measure
[9] favors a large margin between the two smallest minima
of the cost for pixel (xL, y) in the left image and also con-
sistency of the minimum costs across the two images.

fLRD(xL, y) =
c2(xL, y)− c1(xL, y)

|c1(xL, y)−minx′{c(x′, xL − d, y)}|
(2)

The intuition is that truly corresponding pixels should result
in similar cost values and thus a small denominator. LRD
can be small for two reasons: if the margin is small, or if the
margin c2 − c1 is large, but the pixel has been mismatched
causing the denominator to be large.
Distance from Discontinuity (DD). Pixels near depth
discontinuities are likely to be mismatched. Since we do
not know the true discontinuities, we use the WTA dispar-
ity estimates as a proxy and declare as discontinuous any
pixel whose disparity is not equal to all of its four neigh-
bors. DD then is equal to the horizontal distance from each
pixel to the nearest discontinuity.
Difference with Median Disparity (MED). Pixels with
disparity values that are consistent with their neighborhood
are more likely to be correct. We capture this by computing
the median disparity in a 5 × 5 window centered at each
pixel and taking the absolute value of the difference be-
tween the median and the pixel’s own disparity. This dif-
ference is truncated at 2 in our current implementation.

We experimented with some other features, but they did
not appear to contribute towards higher prediction accuracy.
We were not able to extract useful information from image
appearance using gradient or color variance-based features.
We speculate that the reason is that large gradients are asso-
ciated with discontinuities that have large mismatch proba-
bility, but also with highly textured pixels that can be reli-
ably matched. We also tried a feature that indicates whether
a pixel is occluded according to current disparity estimates,
but it also appears to offer little additional benefit. Other
features from [9] are either weak predictors or strongly cor-
related with the ones above. Haeusler et al. [7] have used
eight features, two of which are similar to AML and LRC,
as well as the variance of the disparity map which bears
some similarity to DD. They used horizontal intensity gra-
dients features, but they had low importance scores.
Random Forest. Our feature design was not done with
any learning algorithm in mind, an approach that allowed
us to experiment with different options. We have selected
a random forest [3] among alternatives, such as linear and
nonlinear Support Vector Machines which performed worse
in our tests. We believe that the non-parametric nature of
the random forest and its resilience to noisy labels make
it a good fit for our data. Boosting, which we did not at-
tempt, may have also been successful. We trained the ran-
dom forest in regression mode, using binary labels indicat-

(a) WTA disparity (b) RF Prediction
Figure 2. Input WTA disparity maps and RF predictions for Wood1
and Lampshade1. Notice the low predictions (dark pixels) for oc-
cluded regions and other errors.

ing whether the disparity assigned to a pixel is correct, in
order to obtain a soft prediction Y for the correctness of
each pixel. The predictions can be viewed as confidence
measures. They can be used to rank disparity assignments,
or they can be thresholded to classify them. Since we cannot
expect to know whether a pixel is occluded during testing,
we included the occluded pixels in the training set without
distinguishing them from non-occluded pixels. The ground
truth labels for the occluded pixels were treated identically
to those of the non-occluded ones.

5. Experimental Validation of Correctness Pre-
diction and Confidence Estimation

In this section, we present results that show the ability
of our approach to classify and rank matches without mod-
ifying them. The output of WTA stereo is used as-is in this
section. We use the extended Middlebury benchmark (2005
and 2006 datasets) [22] that includes 27 stereo pairs. All ex-
periments were performed on cost volumes computed using
normalized cross-correlation (NCC) in 5 × 5 windows and
negating the NCC values to obtain costs for disparity values
from 0 to 85. The choice of matching function and window
size is not optimized in any sense, but produces reasonable
results. σAML in (1) was set to 0.2. We trained random
forests comprising 50 trees in regression mode using the
Matlab TreeBagger package. Three-fold cross-validation
was used throughout by training a random forest on 18
stereo pairs and testing on the 9 remaining pairs. Figure
2 contains two noisy examples to show the ability of the RF
to assign low prediction scores to unreliable pixels.

It is important to distinguish between disparity errors,
which are defined as pixels with incorrect disparities, and
prediction errors, which are errors made by our classifier
by considering a disparity assignment as incorrect, when it
was correct and vice versa.



In Table 1, we report the prediction accuracy of our clas-
sifier on the 27 stereo pairs. We classify disparity assign-
ments of WTA stereo by thresholding the prediction Y of
the random forest at 0.5. Note that our method is effective
for disparity maps with both low and high error rates. See
for example Books and Lampshade2 which have a predic-
tion error of approximately 11%, while the disparity error
of the WTA disparity maps is 22% and 32% respectively.
Low sensitivity to input variability differentiates our work
from confidence estimation methods which may be able to
rank matches accurately, but are unable to determine which
ones are correct without knowledge of the disparity error
rate. The overall prediction error for pixels with correct dis-
parity is 4.5% and for pixels with incorrect disparity it is
22.8%, for a combined prediction error of 8.4%.

Following recent publications on evaluating the confi-
dence of stereo [9], time-of-flight data [20] and optical flow
[16], we evaluated the accuracy of the ranking of disparity
assignments using receiver operating characteristic (ROC)
curves of error rate as a function of disparity map den-
sity. We ranked all matches in decreasing order of pre-
diction and produced disparity maps of increasing density
by selecting pixels according to rank. The area under the
curve (AUC) quantifies the ability of a confidence measure
to predict correct matches. Better confidence measures re-
sult in lower AUC values. The optimal AUC can be ob-
tained by selecting all correct matches first and is equal to
Aopt =

∫ 1

1−ε
dm−(1−ε)

dm
ddm = ε+ (1− ε)ln(1− ε), where

ε is the disparity error rate [9]. The average optimal AUC
over all 27 pairs is 0.0336. The average AUC value for RF
is 0.043, which is very close to the optimal. The AUC is
much higher for the baselines: 0.106 for NCC, 0.085 for
AML, and 0.078 for LRD. Our method is superior to all

Correct Disparity Incorrect Disparity
Image Y < 0.5 Y ≥ 0.5 Y < 0.5 Y ≥ 0.5
Aloe 4,377 106,143 16,113 5,805
Baby1 1,934 119,735 10,074 3,210
Books 7,612 108,181 21,335 8,824
Cloth1 554 130,283 5,993 174
Lampshade1 9,539 82,016 33,005 8,847
Lampshade2 7,456 84,364 32,910 7,501
Wood1 3,052 125,435 11,711 3,843
... ... ... ... ...
TOTAL 130,142 2,756,764 601,110 177,227
ACCURACY 95.49% 77.23%

Table 1. Prediction accuracy of our classifier on WTA disparity
assignments for non-occluded pixels by thresholding the predic-
tion at 0.5. The second and third column correspond to correctly
classified pixels in each class, while the first and fourth to mis-
classifications. We show raw pixel numbers here to highlight the
inhomogeneity of the disparity error rate across images. The last
row shows the prediction accuracy for pixels with correct and in-
correct disparities over all 27 stereo pairs. The overall accuracy of
the classifier is 91.6%.

Figure 3. AUC values obtained by sorting the disparity assign-
ments according to NCC, AML, LRD and the RF prediction (solid
red curve). Disparity maps have been sorted in order of increasing
AUC to aid visualization. Our method achieves the minimum AUC
for every stereo pair.

other methods on every stereo pair, while its average AUC
is roughly one half of that of the baseline methods. Figure
3 shows the AUC obtained by each method for all images.

6. Detection of Ground Control Points

In this section, we present an approach for selecting
ground control points (GCPs), which will be used in the
next section to improve WTA disparity maps via global op-
timization. Consistent with earlier definitions, a GCP here
is defined as a pixel with a disparity assignment that is as-
sumed to be very reliable and, therefore, can be used to in-
fluence neighboring pixels. We present a principled way of
detecting such points using the RF predictions of the previ-
ous sections. Quantitative results in Section 7 demonstrate
that our approach succeeds in the main challenge when
selecting GCPs: the trade-off between density and accu-
racy. If GCPs are not accurate and contain many pixels
with wrong disparities, these errors will be propagated to
neighboring pixels and can have a strong negative effect on
overall accuracy. See, for example, some of the results pro-
duced by the baseline methods in Fig. 5. On the other hand,
if GCP detection is overly conservative, the small number
of selected GCPs has little effect on overall accuracy, since
they do not appear in uncertain regions of the images.

The goal is to achieve the highest possible density
of GCPs while including a very small fraction of wrong
matches in the set. Since the random forest has proven very
effective in ranking disparity assignments in order of reli-
ability, we chose GCPs by learning a threshold on the RF
prediction that resulted in the highest overall disparity ac-
curacy after MRF optimization. The threshold was learned
using cross-validation. It was set to 0.7 and remained con-
stant throughout all experiments.



We compared the GCPs selected by our approach with
several alternatives, both in terms of density and accuracy of
the GCPs (Table 2) and in terms of accuracy of the resulting,
MRF-optimized disparity maps (Section 7). GCPs in Table
2 were selected by choosing pixels that exceeded a thresh-
old in NCC, LRC, LRD or RF prediction. All thresholds
were determined by cross-validation. The RF predictions
are clearly superior in terms of final disparity map accuracy,
but also in terms of GCP accuracy. In fact, the very small
fraction of errors in the GCPs is what enables our method
to outperform the baselines after MRF optimization.

Our method was successful in addressing a major chal-
lenge in GCP selection: on one hand, stereo pairs, for which
WTA stereo works well, often have their accuracy degraded
by regularization which may over-smooth details, while, on
the other hand, stereo pairs for which WTA stereo performs
poorly require more regularization and small GCP sets to
avoid including errors in them. The RF scores are more
flexible in automatically adapting to the inherent difficulty
of each stereo pair. The density of GCPs is above 92% for
the easy Cloth images and below 50% for harder images,
such as Midd1, Midd2 and Plastic. Baseline methods lack
this flexibility.

Despite the accuracy of detected GCPs, we chose not
to impose them as hard constraints on the MRF. Among
several alternatives, we decided on the following that was
proven to be superior experimentally. When the random for-
est predicted that a given disparity assignment to a pixel was
reliable, we set the cost of all other disparities for the pixel
to a constant value cGCP , leaving the cost for the selected
disparity unchanged. Using cross-validation as above, it

Stereo pair GCP Selection Accuracy Density
Plastic NCC 84.0 50.3

LRC 91.2 48.5
LRD 91.4 16.0
RF 99.2 25.2

Midd1 NCC 87.1 64.5
LRC 90.2 65.8
LRD 88.9 25.9
RF 98.5 47.1

Average NCC 94.0 89.8
LRC 98.0 81.2
LRD 98.2 43.4
RF 99.7 73.4

Table 2. Accuracy and density of GCPs over non-occluded pixels.
Our method (RF) is compared against three baselines: the match-
ing score (NCC), LRC and LRD. GCPs were chosen if NCC>
0.5, LRC= 1, LRD > 100 or RF > 0.7, respectively. All thresh-
olds were learned via cross-validation on the final disparity maps
after global optimization. Shown are results on: Plastic, on which
RF achieves its minimum density, by far; Midd1 on which RF
achieves its lowest accuracy; and averages on all 27 stereo pairs.

was determined that the most effective value for the cost of
disparities that have not been selected was cGCP = 2. This
allowed the MRF to override the GCPs, at a higher cost, and
was more effective than setting these costs to infinity. The
cost of all disparities of non-GCPs remained unchanged in
the [-1, 1] range of negated NCC.

7. Globally Optimized Disparity Maps using
GCPs

The random forest, comprising 50 trees, was trained us-
ing three-fold cross validation as described in Section 5.
The MRF minimizes an energy function with the data and
smoothness terms denoted by Edata and Esmooth, respec-
tively. The former is equal to the negated NCC values mod-
ified according to the previous paragraph. The latter follows
a simple Potts model with edge weights modulated by the
strength of the intensity edges between neighboring pixels.
We used the implementation of Komodakis [11] and par-
tially adopted the settings of Wang and Yang [25] and de-
fined the smoothness energy of the disparity map D as:

Esmooth(D) = λ
∑
p∈IL

∑
q∈N4(p)

ωpq[dp 6= dq], (3)

where p is a pixel in the left image IL with disparity dp,
q is a pixel in p’s neighborhood with disparity dq , λ is a
parameter and the edge weights are defined as:

ωpq = max{e−
∆cpq
γc , 0.0003}, (4)

with ∆cpq the Eulidean distance of the RGB values of p and
q, and γc equal to 3.6. The data term is set as described at
the end of the previous section. These settings are constant
regardless of how the GCPs were chosen.

Figure 4 presents the relative error rates of the final dis-
parity maps after MRF optimization using our method com-
pared to four baselines: a basic MRF optimizer without
GCPs, as well as MRFs with GCPs selected as the pixels
with the highest NCC, LRC or LRD values. Absolute er-
ror rates can be seen in Table 3. The values for cGCP and λ
and the threshold for each method were determined by cross
validation. Our results show significant improvements in
accuracy compared to all baseline methods. Sensitivity to
the parameters was low in general. Changing the RF pre-
diction threshold from 0.7 to 0.6 results in an average error
rate of 7.396% instead of 7.394%. Representative disparity
maps are shown in Fig. 5.

GCP type None NCC LRC LRD RF
Average error 9.84 9.95 10.28 8.69 7.39

Table 3. Error rates of the final disparity maps after MRF optimiza-
tion. Our method (RF) is superior to a basic MRF without GCPs
and MRFs with GCPs determined according to various criteria.



Figure 4. Relative difference of error rates between our method and the baselines after MRF optimization. The first bar for example,
represents (εnone − εRF)/εRF, which is the increase in error rate between an MRF without GCPs and one with GCPs selected according to
RF on Aloe. The difference is a 39% increase. Four bars corresponding to no GCPs and GCPs selected using NCC, LRC and LRD are
shown in red, blue, green and magenta respectively.

On the 2005 Middlebury benchmark (Art, Books, Dolls,
Laundry, Moebius, Reindeer), our method achieved an error
rate of 10.41%. Other results include those of Hirschmüller
and Scharstein [8] who report error rates of 8.13% using
SGM and 10.88% using graph cuts, Weinman et al. [26]
16.05%, Li et al. [15] 14.36%, Alahari et al. [1] 13.34%,
and Pal et al. [18] 18.22%. It should be noted that, unlike
[8] who optimized the choice of cost function, we initialize
our algorithm using NCC in small windows.

8. Conclusions

We have presented a supervised learning approach that
is able to classify and rank stereo matches according to the
likelihood of being correct. Experiments on standard data
with ground truth demonstrate 91.6% classification accu-
racy, as well as ranking accuracy that is much closer to be-
ing optimal than any single confidence measure in isola-
tion. We have also presented a stereo algorithm that builds
upon the aforementioned capabilities and global optimiza-
tion techniques to improve disparity estimation accuracy.
To our knowledge, these are the first results that show that
disparity maps can be improved using confidence. Being
able to achieve the right balance between density and accu-
racy of the GCPs and their use as soft constraints are im-
portant factors in the overall accuracy of our final disparity
maps. Only 9 out of 108 baseline disparity maps (4 meth-
ods on 27 stereo pairs) are more accurate than our MRF-
optimized disparity maps. Moreover, there is only one pub-
lication [8] reporting higher accuracy than ours on a subset
of the benchmark.
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